Тарифы Услуги Сим-карты

Что такое HDD на вашем компьютере и какие у него бывают характеристики? Жесткий диск что это такое? Характеристики жестких дисков

Цель этой статьи — описать устройство современного жёсткого диска, рассказать о его главных компонентах, показать, как они выглядят и называются. Кроме того, мы покажем связь между русскоязычной и англоязычной терминологией, описывающими компоненты жестких дисков.

Для наглядности, разберём 3.5-дюймовый SATA диск. Это будет совершенно новый терабайтник Seagate ST31000333AS. Осмотрим нашего подопытного кролика.

Зелёный текстолит с медными дорожками, разъемами питания и SATA называется платой электроники или платой управления (Printed Circuit Board, PCB). Она служит для управления работой жесткого диска. Чёрный алюминиевый корпус и его содержимое называется гермоблоком (Head and Disk Assembly, HDA), специалисты также называют его «банкой». Сам корпус без содержимого также называют гермоблоком (base).

Теперь снимем печатную плату и изучим размещённые на ней компоненты.

Первым в глаза бросается большой чип, расположенный посередине - микроконтроллер, или процессор (Micro Controller Unit, MCU). На современных жёстких дисках микроконтроллер состоит из двух частей - собственно центрального процессора (Central Processor Unit, CPU), который производит все вычисления, и канала чтения/записи (read/write channel) — особого устройства, преобразующего поступающий с головок аналоговый сигнал в цифровые данные во время операции чтения и кодирующий цифровые данные в аналоговый сигнал при записи. Процессор имеет порты ввода-вывода (IO ports) для управления остальными компонентами, расположенными на печатной плате, и передачи данных через SATA-интерфейс.

Чип памяти (memory chip) представляет собой обычную DDR SDRAM память. Объем памяти определяет размер кэша жёсткого диска. На этой печатной плате установлена память Samsung DDR объемом 32 Мб, что в теории даёт диску кэш в 32 Мб (и именно такой объём приводится в технических характеристиках жёсткого диска), но это не совсем верно. Дело в том, что память логически разделена на буферную память (кэш) и память прошивки. Процессору требуется некоторый объём памяти для загрузки модулей прошивки. Насколько нам известно, только Hitachi/IBM указывают действительный объём кэша в описании технических характеристик; относительно остальных дисков, об объёме кэша остаётся только гадать.

Следующий чип - контроллер управления двигателем и блоком головок, или «крутилка» (Voice Coil Motor controller, VCM controller). Кроме того, этот чип управляет вторичными источниками питания, расположенными на плате, от которых питается процессор и микросхема предусилителя-коммутатора (preamplifier, preamp), расположенная в гермоблоке. Это главный потребитель энергии на печатной плате. Он управляет вращением шпинделя и движением головок. Ядро VCM-контроллера может работать даже при температуре в 100° C. Часть прошивки диска хранится во флэш-памяти. При подаче питания на диск микроконтроллер загружает содержимое флэш-чипа в память и приступает к исполнению кода. Без корректно загруженного кода, диск даже не пожелает раскручиваться. Если на плате отсутствует флэш-чип, значит, он встроен в микроконтроллер.

Датчик вибрации (shock sensor) реагирует на опасную для диска тряску и посылает сигнал об этом контроллеру VCM. Контроллер VCM немедленно паркует головки и может остановить вращение диска. Теоретически, такой механизм должен защищать диск от дополнительных повреждений, но на практике он не работает, так что не роняйте диски. На некоторых дисках датчик вибрации обладает повышенной чувствительностью, реагируя на малейшую вибрацию. Полученные с датчика данные позволяют контроллеру VCM корректировать движение головок. На таких дисках установлено как минимум два датчика вибрации.

На плате имеется ещё одно защитное устройство — ограничитель переходного напряжения (Transient Voltage Suppression, TVS). Он защищает плату от скачков напряжения. При скачке напряжения TVS перегорает, создавая короткое замыкание на землю. На этой плате установлено два TVS, на 5 и 12 вольт.

Теперь рассмотрим гермоблок.

Под платой находятся контакты мотора и головок. Кроме того, на корпусе диска имеется маленькое, почти незаметное отверстие (breath hole). Оно служит для выравнивания давления. Многие считают, что внутри жёсткого диска находится ваккум. На самом деле это не так. Это отверстие позволяет диску выровнять давление внутри и снаружи гермозоны. С внутренней стороны это отверстие прикрыто фильтром (breath filter), который задерживает частицы пыли и влаги.

Теперь заглянем внутрь гермозоны. Снимем крышку диска.

Сама крышка не представляет собой ничего интересного. Это просто кусок металла с резиновой прокладкой для защиты от пыли. Наконец, рассмотрим начинку гермозоны.

Драгоценная информация хранится на металлических дисках, называемых также блинами или пластинами (platters). На фотографии вы видите верхний блин. Пластины изготавливаются из полированного алюминия или стекла и покрываются несколькими слоями различного состава, в том числе ферромагнитным веществом, на котором, собственно, и хранятся данные. Между блинами, а также над верхним из них, мы видим специальные пластины, называемыми разделителями или сепараторами (dampers or separators). Они нужны для выравнивания потоков воздуха и снижения акустических шумов. Как правило, их изготавливают из алюминия или пластика. Алюминиевые разделители успешнее справляются с охлаждением воздуха внутри гермозоны.

Вид блинов и сепараторов сбоку.

Головки чтения-записи (heads), устанавливаются на концах кронштейнов блока магнитных головок, или БМГ (Head Stack Assembly, HSA). Препаровочная зона — это область, в которой должны находиться головки исправного диска, если шпиндель остановлен. У этого диска, препаровочная зона расположена ближе к шпинделю, что видно на фотографии.

На некоторых накопителях, парковка производится на специальных пластиковых препаровочных площадках, расположенных за пределами пластин.

Жёсткий диск — механизм точного позиционирования, и для его нормальной работы требуется очень чистый воздух. В процессе использования внутри жёсткого диска могут образовываться микроскопические частицы металла и смазки. Для немедленной очистки воздуха внутри диска имеется циркуляционный фильтр (recirculation filter). Это высокотехнологичное устройство, которое постоянно собирает и задерживает мельчайшие частицы. Фильтр находится на пути потоков воздуха, создаваемых вращением пластин.

Теперь снимем верхний магнит и посмотрим, что скрывается под ним.

В жёстких дисках используются очень мощные неодимовые магниты. Эти магниты настолько мощны, что могут поднимать вес в 1300 раз больший их собственного. Так что не стоит класть палец между магнитом и металлом или другим магнитом — удар получится очень чувствительным. На этой фотографии изображены ограничители БМГ. Их задача — ограничить движение головок, оставляя их на поверхности пластин. Ограничители БМГ разных моделей устроены по-разному, но их всегда два, они используются на всех современных жестких дисках. На нашем накопителе, второй ограничитель расположен на нижнем магните.

Вот что можно там увидеть.

Ещё мы видим здесь катушку (voice coil), которая является частью блока магнитных головок. Катушка и магниты образуют привод БМГ (Voice Coil Motor, VCM). Привод и блок магнитных головок, образуют позиционер (actuator) — устройство, которое перемещает головки. Чёрная пластиковая деталь сложной формы называется фиксатором (actuator latch). Это защитный механизм, освобождающий БМГ после того как шпиндельный двигатель наберёт определённое число оборотов. Происходит это за счёт давления воздушного потока. Фиксатор защищает головки от нежелательных движений в препаровочном положении.

Теперь снимем блок магнитных головок.

Точность и плавность движения БМГ поддерживается прецизионным подшипником. Самая крупная деталь БМГ, изготовленная из алюминиевого сплава, обычно называется кронштейном или коромыслом (arm). На конце коромысла находятся головки на пружинной подвеске (Heads Gimbal Assembly, HGA). Обычно сами головки и коромысла поставляют разные производители. Гибкий кабель (Flexible Printed Circuit, FPC) идёт к контактной площадке, стыкующейся с платой управления.

Рассмотрим составляющие БМГ подробнее.

Катушка, соединенная с кабелем.

Подшипник.

На следующей фотографии изображены контакты БМГ.

Прокладка (gasket) обеспечивает герметичность соединения. Таким образом, воздух может попасть внутрь блока с дисками и головками только через отверстие для выравнивания давления. У этого диска контакты покрыты тонким слоем золота для улучшения проводимости.

Это классическая конструкция коромысла.

Маленькие чёрные детали на концах пружинных подвесов, называют слайдерами (sliders). Многие источники указывают, что слайдеры и головки — это одно и то же. На самом же деле слайдер помогает считывать и писать информацию, поднимая головку над поверхностью блинов. На современных жёстких дисках, головки двигаются на расстоянии 5-10 нанометров от поверхности блинов. Для сравнения: человеческий волос имеет диаметр около 25000 нанометров. Если под слайдер попадёт какая-нибудь частица, это может привести к перегреву головок из-за трения и выходу их из строя, именно поэтому так важна чистота воздуха внутри гермозоны. Сами считывающие и записывающие элементы находятся на конце слайдера. Они так малы, что разглядеть их можно только в хороший микроскоп.

Как видите, поверхность слайдера не плоская, на ней имеются аэродинамические канавки. Они помогают стабилизировать высоту полёта слайдера. Воздух под слайдером образует воздушную подушку (Air Bearing Surface, ABS). Воздушная подушка поддерживает почти параллельный поверхности блина полёт слайдера.

Вот ещё одно изображение слайдера.

Здесь хорошо видны контакты головок.

Это ещё одна важная часть БМГ, которая пока не обсуждалась. Она называется предусилителем (preamplifier, preamp). Предусилитель — это чип, управляющий головками и усиливающий поступающий к ним или от них сигнал.

Предусилитель располагают прямо в БМГ по очень простой причине — сигнал, идущий с головок очень слаб. На современных дисках он имеет частоту около 1 ГГц. Если вынести предусилитель за пределы гермозоны, такой слабый сигнал сильно затухнет по пути к плате управления.

От предусилителя к головкам (справа) ведёт больше дорожек, чем к гермозоне (слева). Дело в том, что жёсткий диск не может одновременно работать более чем с одной головкой (парой пишущих и считывающих элементов). Жёсткий диск посылает сигналы на предусилитель, и он выбирает головку, к которой в данный момент обращается жёсткий диск. У этого жёсткого диска к каждой головке ведёт шесть дорожек. Зачем так много? Одна дорожка — земля, ещё две — для элементов чтения и записи. Следующие две дорожки — для управления мини-приводами, особыми пьезоэлектрическими или магнитными устройствами, способными двигать или поворачивать слайдер. Это помогает точнее задать положение головок над треком. Последняя дорожка ведёт к нагревателю. Нагреватель служит для регулирования высоты полёта головок. Нагреватель передаёт тепло подвесу, соединяющему слайдер и коромысло. Подвес изготавливается из двух сплавов, имеющих разные характеристики теплового расширения. При нагреве подвес изгибается к поверхности блина, таким образом, уменьшая высоту полёта головки. При охлаждении подвес выпрямляется.

Хватит о головках, давайте разбирать диск дальше. Снимем верхний сепаратор.

Вот как он выглядит.

На следующей фотографии вы видите гермозону со снятыми верхним разделителем и блоком головок.

Стал виден нижний магнит.

Теперь прижимное кольцо (platters clamp).

Это кольцо удерживает блок пластин вместе, не давая им двигаться друг относительно друга.

Блины нанизаны на шпиндель (spindle hub).

Теперь, когда блины ничто не удерживает, снимем верхний блин. Вот что находится под ним.

Теперь понятно, за счёт чего создается пространство для головок — между блинами находятся разделительные кольца (spacer rings). На фотографии виден второй блин и второй сепаратор.

Разделительное кольцо — высокоточная деталь, изготовленная из немагнитного сплава или полимеров. Снимем его.

Вытащим из диска все остальное, чтобы осмотреть дно гермоблока.

Так выглядит отверстие для выравнивания давления. Оно располагается прямо под воздушным фильтром. Рассмотрим фильтр внимательнее.

Так как поступающий снаружи воздух обязательно содержит пыль, фильтр имеет несколько слоёв. Он гораздо толще циркуляционного фильтра. Иногда он содержит частицы силикагеля для борьбы с влажностью воздуха.

В данной статье будет идти речь только о жестких дисках (HDD) то есть о носителях на магнитных дисках. О SSD будет следующая статья.

Что такое жесткий диск

По традиции, давайте подсмотрим определение жесткого диска в Википедии:
Жесткий диск (винт, винчестер, накопитель на жестких магнитных дисках, НЖМД, HDD, HMDD) - запоминающее устройство произвольного доступа, основанное на принципе магнитной записи.
Используются в подавляющем большинстве компьютеров, а также как отдельно подключаемые устройства для хранения резервных копий данных, в качестве файлового хранилища и т.п.
Чуть-чуть разберемся. Мне нравится термин «накопитель на жестких магнитных дисках«. Эти пять слов передают всю суть. HDD - устройство, предназначение которого длительное время хранить записанные на него данные. Основой HDD являются жесткие (алюминиевые) диски со специальным покрытием, на которое при помощи специальных головок записывается информация.
Не буду рассматривать в деталях сам процесс записи - по сути это физика последних классов школы, и вникать в это, уверен, у вас желания нет, да и статья совсем не о том.
Также обратим внимание на фразу: «произвольного доступа» что, грубо говоря, означает, что мы (компьютер) можем в любое время считать информацию с любого участка ЖД.
Важным является тот факт, что память HDD не энергозависима, то есть не важно подключено питание или нет, записанная на устройство информация никуда не исчезнет. Это важное отличие постоянной памяти компьютера, от временной (ОЗУ).
Взглянув на жесткий диск компьютера в жизни, вы не увидите ни дисков, ни головок, так как все это скрыто в герметичном корпусе (гермозона). Внешне винчестер выглядит так.
Думаю что такое HDD вы поняли. Идем дальше.

Для чего компьютеру нужен жесткий диск

Рассмотрим что такое HDD в компьютере, то есть какую роль он играет в ПК. Понятно, что он хранит данные но, как и какие. Здесь выделим такие функции НЖМД:
- Хранение ОС, пользовательского ПО и их настроек;
- Хранение файлов пользователя: музыка, видео, изображения, документы и т.д;
- Использование части объема жесткого диска, для хранения данных не помещающихся в ОЗУ (файл подкачки) или хранение содержимого оперативной памяти во время использования режима сна;
- Как видим, жесткий диск компьютера не просто свалка из фотографий, музыки и видео. На нем хранится вся операционная система, и помимо этого ЖД помогает справляться с загруженностью ОЗУ, беря на себя часть ее функций.

Из чего состоит жесткий диск

Мы частично упоминали о составных жесткого диска, сейчас разберемся с этим детальнее. Итак, основные составляющие HDD:
- Корпус - защищает механизмы жесткого диска от пыли и влаги. Как правило, является герметичным, дабы внутрь та самая влага и пыль не попадали;
- Диски (блины) - пластины из определенного сплава металлов, с нанесенным с обеих сторон покрытием, на которое и записываются данные. Количество пластин может быть разным - от одной (в бюджетных вариантах), до нескольких;
- Двигатель - на шпинделе которого закреплены блины;
- Блок головок - конструкция из соединенных между собой рычагов (коромысел), и головок. Часть ЖД, которая считывает и записывает на него информацию. Для одного блина используется пара головок, поскольку и верхняя, и нижняя часть у него рабочая;
- Устройство позиционирования (актуатор) - механизм приводящий в действие блок головок. Состоит из пары постоянных неодимовых магнитов и катушки, находящейся на конце блока головок;
- Контроллер - электронная микросхема управляющая работой HDD;
- Парковочная зона - место внутри винчестера рядом с дисками либо на их внутренней части, куда опускаются (паркуются) головки во время простоя, чтобы не повредить рабочую поверхность блинов.
Такое вот незамысловатое устройство жесткого диска. Сформировалось оно много лет назад, и никаких принципиальных изменений в него уже давно не вносились. А мы идем дальше.

Как работает жесткий диск

После того, как на HDD подается питание двигатель, на шпинделе которого закреплены блины, начинает раскручиваться. Набрав скорость, при которой у поверхности дисков образовывается постоянный поток воздуха, начинают двигаться головки.
Данная последовательность (сначала раскручиваться диски, а затем начинают работать головки) необходима для того, чтобы за счет образовавшегося потока воздуха, головки парили над пластинами. Да, они никогда не касаются поверхности дисков, иначе последние были бы моментально повреждены. Тем не менее, расстояние от поверхности магнитных пластин до головок настолько маленькое (~10 нм), что вы не увидите его невооруженным глазом.
После запуска, в первую очередь происходит считывание служебной информации о состоянии жесткого диска и других необходимых сведениях о нем, находящихся на так называемой нулевой дорожке. Только затем начинается работа с данными.
Информация на жестком диске компьютера записывается на дорожки которые, в свою очередь, разбиты на сектора (такая себе разрезанная на кусочки пицца). Для записи файлов несколько секторов объединяют в кластер, он и является наименьшим местом, куда может быть записан файл.
Кроме такого «горизонтального» разбиения диска, есть еще условное «вертикальное». Поскольку все головки объединены, они всегда позиционируются над одной и той же по номеру дорожкой, каждая над своим диском. Таким образом, во время работы HDD головки как бы рисуют цилиндр.
Пока HDD работает, по сути он выполняет две команды: чтение и запись. Когда необходимо выполнить команду записи, происходит вычисление области на диске куда она будет производится, затем позиционируются головки и, собственно, выполняется команда. Затем результат проверяется. Кроме записи данных прямо на диск, информация также попадает в его кеш.
Если контроллеру поступает команда на чтение, в первую очередь происходит проверка наличия требуемой информации в кеше. Если ее там нет, снова происходит вычисление координат для позиционирования головок, дальше, головки позиционируется и считывают данные.
После завершения работы, когда питание винчестера исчезает, происходит автоматическая парковка головок в парковочных зоне.
Вот так в общих чертах и работает жесткий диск компьютера. В действительности же все намного сложнее, но обычному пользователю, скорее всего, такие подробности не нужны, поэтому закончим с этим разделом и пойдем дальше.

Виды жестких дисков и их производители

На сегодняшний день, на рынке существует фактически три основных производителя жестких дисков: Western Digital (WD), Toshiba, Seagate. Они полностью покрывают спрос на устройства всех видов и требований. Остальные компании либо разорились, либо были поглощены кем-то из основной тройки, или перепрофилировались.
Если говорить о видах HDD, их можно разделить таким образом:

1. Для ноутбуков - основной параметр - размер устройства в 2,5 дюйма. Это позволяет им компактно размещаться в корпусе лептопа;
2. Для ПК - в этом случае также возможно использование 2,5″ жестких дисков, но как правило, используются 3,5 дюйма;
3. Внешние жесткие диски - устройства, отдельно подключаемые к ПК/ноутбуку, чаще всего выполняющие роль файлового хранилища.
Также выделяют особый тип жестких дисков - для серверов. Они идентичны обычным ПКшным, но могут отличаются интерфейсами для подключения, и большей производительностью.

Все остальные разделения HDD на виды происходят от их характеристик, поэтому рассмотрим их.

Характеристики жестких дисков

Итак, основные характеристики жесткого диска компьютера:

Объем - показатель максимально возможного количества данных, которые можно будет вместить на диске. Первое на что обычно смотрят при выборе HDD. Данный показатель может достигать 10 Тб, хотя для домашнего ПК чаще выбирают 500 Гб - 1 Тб;
- Форм-фактор - размер жестокого диска. Самые распространенные - 3,5 и 2,5 дюйма. Как говорилось выше, 2,5″ в большинстве случаев, устанавливаются в ноутбуки. Также их используют во внешних HDD. В ПК и на сервера устанавливают 3,5″. Форм фактор влияет и на объем, так как на больший диск может поместиться больше данных;
- Скорость вращения шпинделя - с какой скоростью вращаются блины. Наиболее распространены 4200, 5400, 7200 и 10000 об/мин. Эта характеристика напрямую влияет на производительность, а так же и цену устройства. Чем выше скорость - тем больше оба значения;
- Интерфейс - способ (тип разъема) подключения HDD к компьютеру. Самым популярным интерфейсом для внутренних ЖД сегодня является SATA (в старых компьютерах использовался IDE). Внешние жесткие диски подключаются, как правило, по USB или FireWire. Кроме перечисленных, существуют еще такие интерфейсы как SCSI, SAS;
- Объем буфера (кеш-память) - тип быстрой памяти (по типу ОЗУ) установленный на контроллере ЖД, предназначенный для временного хранения данных, к которым чаще всего обращаются. Объем буфера может составлять 16, 32 или 64 Мб;
- Время произвольного доступа - то время, за которое HDD гарантированно выполнить запись или чтение с любого участка диска. Колеблется от 3 до 15 мс;

Кроме приведенных характеристик также можно встретить такие показатели как:

Скорость передачи данных;
- Количество операций ввода-вывода в сек.;
- Уровень шума;
- Надежность;
- Сопротивляемость ударам и т.д;
На счет характеристик HDD это все.

В настоящее время накопитель на жестких магнитных дисках, является наиболее популярным устройством хранения электронных данных. Он используется, как в наших с Вами обычных компьютерах и ноутбуках, так и в серверах.
Многие из Вас наверно слышали, как называется жесткий диск по-другому. Например, HDD, винт или винч. И если первое сокращение происходит от вполне понятного hard disk drive (жесткий диск), то другие выражения большинству ничего не говорят. Так вот, данные сокращения пошли от другого сленгового названия жесткого диска — «винчестер». Если Вам интересно было бы узнать, откуда появилось такое выражение и кто его автор, то читайте статью дальше.

История возникновения второго названия жесткого диска

Для большинства винчестер означает тип огнестрельного оружия, но никак не компьютерное устройство. Так почему жесткий диск называют «винчестер» и откуда это пошло?

Исторически так сложилось, что создали инженеры корпорации IBM и название винчестер он получил тоже от них. В 1973 году, при разработке IBM новой модели накопителя IBM-3340, инженеры для простоты общения использовали его внутреннее краткое рабочее название «30-30». Такое название отражало внутреннее устройство диска. Он состоял из двух пакетов дисков в максимальной компоновке по 30 мегабайт каждый. В модели жесткого диска 3340 впервые были использованы головки чтения/записи, которые за счет аэродинамических сил, возникающих от скорости вращения дисков, парили над поверхностью, что значительно сократило воздушный зазор между головкой и диском. Так же пластины диска и считывающие головки были объединены в одном не разборном герметичном корпусе, что позволило исключить любое внешнее воздействие и повысить надежность устройства. Ну а название «винчестер» (от англ. Winchester), накопитель получил благодаря руководителю проекта Кеннету Хотону, который в ходе обычного обсуждения, как назвать жесткий диск, случайно обозвал его винчестером.

Данное название оказалось созвучным очень популярному в то время охотничьему оружию Winchester Model 1894 использующих патрон с маркировкой.30-30 Winchester, что означало размер калибра в сотых долях дюйма «.30» или 7,62 мм и вес пороха в гранах «30» или 1,94 грамма.

Еще по одной версии, такое название жесткий диск получил только из-за самих патронов и оружие тут не причем.

Заключение

Так или иначе второе название жесткого диска – винчестер, вошло в историю и пока еще остается в обиходе, хотя иногда его сокращают до слов «винт» или «винч». В Европе и США название «винчестер» вышло из употребления еще в 1990-х годах, в русском же языке сохранилось и получило полуофициальный статус.

Скорее всего с массовым приходом твердотельных накопителей, жесткие диски перестанут так называться и данное сленговое название уйдет в прошлое и у нас, но это будет не скоро.

Жёсткий диск («винчестер», hdd, hard disc drive — eng.) — накопитель информации основанный на магнитных пластинах и эффекте магнетизма.

Применяется повсеместно в персональных компьютерах, ноутбуках, серверах и так далее.

Устройство жёсткого диска. Как жёсткий диск работает.



В полу герметичном блоке находятся двусторонние пластины, с нанесённым на них магнитным слоем , посаженные на вал двигателя и вращающиеся со скоростью от 5400 оборотов в минуту.Блок не совсем герметичен, но самое главное он не пропускает мелкие частицы и не допускает перепадов влажности . Всё это пагубно сказывается на сроке службы и качестве работы жёсткого диска.

В современных жёстких дисках, для вала используются . Это даёт меньший шум при работе, значительно увеличивает долговечность и уменьшает шанс заклинивания вала из-за разрушившегося .

Считывание и запись производится с помощью блока головок .

В рабочем состоянии, головки парят над поверхностью диска на расстоянии ~10нм . Они имеют аэродинамическую форму и поднимаются над поверхностью диска за счёт восходящего потока от крутящейся пластины. Магнитные головки могут находится с двух сторон пластины, если с каждой стороны магнитного диска нанесены магнитные слои.

Соединённый блок головок имеет фиксированное положение , то есть головки перемещаются все вместе.

Всеми головками, управляет специальный привод основанный на электромагнетизме .

Неодимовый магнит создаёт магнитное поле , в котором с высокой скоростью реакции под воздействием тока, может перемещаться блок головок. Это лучший и самый быстрый вариант перемещения блока головок, а ведь когда то блок головок перемещался механически, с помощью шестерёнок.

Когда диск выключается, чтобы головки не опустились на диск и не повредили его, они убираются в зону парковки головок (парковочная зона, parking zone).

Это также, позволяет без особых ограничений транспортировать выключенные жёсткие диски. В выключенном состоянии, диск может выдержать большие нагрузки и не повредиться. Во включенном состоянии, даже небольшой толчёк под определённым углом может разрушить магнитный слой пластины или повредить головки при касании о диск.

Помимо герметичной части, у современных жёстких дисков есть наружная плата управления . Когда то, все платы управления были вставлены в материнскую плату компьютера в слоты расширения. Это было не удобно в плане универсальности и возможностей. Сейчас у жёстких дисков, вся управляющая диском электроника, и интерфейса расположены на небольшой плате в нижней части жёсткого диска. Благодаря этому, можно настроить каждый диск под определённые, выгодные с точки зрения его строения параметры, давая ему выигрыш в скорости, либо более тихую работу к примеру.

Для подключения интерфейса и питания используются стандартные общепринятые разъёмы / и Molex /Power SATA .

Особенности.

Жёсткие диски являются самыми ёмкими хранителями информации и относительно надёжными . Объёмы дисков постоянно растут, но в последнее время это связано с некоторыми сложностями и для дальнейшего расширения объёма, требуются новые технологии. Можно сказать, что жёсткие диски практически вышли на прямую в достижении максимальных возможностей. Распространению жёстких дисков в основном поспособствовало соотношение ценаобъём . В большинстве случаев, гигабайт объёма диска стоит меньше чем 2.5 рубля .

Плюсы и минусы жёстких дисков в сравнении с .

До появления твёрдотельных SSD (solid state drive ) — накопителей, у жёстких дисков не было конкурентов. Теперь у жёстких дисков есть направление куда нужно стремиться.

Минусы жёстких дисков (hard drive)(ssd) накопителями:

  • низкая скорость последовательного чтения
  • низкая скорость доступа
  • низкая скорость чтения
  • немного более низкая скорость записи
  • вибрации и небольшой шум при работе

Хотя с другой стороны, у жёстких дисков есть другие, более весомые преимущества, к которым SSD накопителям стремиться и стремиться.

Плюсы жёстких дисков (hard drive) в сравнении с твёрдотельными (ssd) накопителями:

  • значительно лучший показатель объёмцена
  • лучший показатель надёжности
  • больший максимальный объём
  • при выходе из строя, в разы больший шанс восстановить данные
  • лучший вариант для использования в медиа центрах, благодаря компактности и большому объёму 2.5 накопителей

О том, на что стоит обращать внимание при выборе жёсткого диска, можно посмотреть в нашей статье ««. Если вам необходим ремонт жесткого диска или восстановление информации, можно обратиться к .

Первый серийный жесткий диск емкостью 16 кбайт был выпущен компанией IBM еще в 1973 р., и содержал 30 магнитных цилиндров по 30 дорожек на каждом. Острые на язык разработчики уловили схожесть этих цифр с маркой «30/30», которая соответствует названию оружия — «винчестеру».

— это накопитель информации на жестких магнитных дисках.

Основным элементом накопителей на жестких магнитных дисках (HDD — Hard Disk Drive) является несколько жестких алюминиевых или стеклянных пластин круглой формы — дисков. Поверхность такого диска покрывается тонким слоем вещества, которая способна сохранять остаточную намагниченность после воздействия на нее внешнего магнитного поля. Этот слой называется рабочим или магнитным и на нем сохраняются записанные данные. Накопитель состоит из таких элементов.

  • Дисков с вращающимся приводом, которые смонтированы на общей вертикальной оси.
  • Головки чтения/записи информации с собственным приводом.

Основной критерий качества — поверхностная плотность записи . Современный показатель — 60-80 Гбайт/пластину.

Любой винчестер состоит из трех основных блоков. Итак, рассмотрим, каковы составляющие структуры жесткого диска .

Первый блок — собственно, само хранилище информации — одна или несколько стеклянных (или металлических) дисков. Структура диска выглядит так: магнитная поверхность каждого диска разделена на концентрические «дорожки (track) «, которые, в свою очередь, делятся на отрезки — секторы . Наряду с дорожками, которые имеют свой номер, и секторами, существуют цилиндры. Цилиндр — это совокупность всех совпадающих друг с другом дорожек по вертикали по всем рабочим поверхностям. Таким образом, чтобы узнать, какое количество цилиндров содержит жесткий диск, необходимо просто умножить число дорожек на суммарное число рабочих поверхностей. При низкоуровневом форматировании диска, которое исполняется на заводе-производителе, сначала и в конце каждого сектора создаются области, которые содержат информацию об их номерах и другое (служебная информация). Размер сектора составляет величину 571 байт, из которых 512 байт отведено под полезные для пользователя данные, другие — под заголовок (header) или префикс, по которому определяется начало и номер сектора и окончание (trailer) или суффикс, где записывается контрольная сумма, необходимая для проверки сохранности диска.

Второй блок — механика жесткого диска, которая отвечает за вращение массива «блинов» и точное позиционирование системы считывающих головок. Каждой рабочей поверхности жесткого диска соответствует одна считывающая головка, причем размещаются они по-вертикали точным столбиком. А значит, в любой момент времени все головки находятся на дорожках с одинаковым номером. То есть, работают в пределах одного цилиндра.

Третий блок включает электронную начинку — микросхемы, отвечающие за обработку данных, коррекцию возможных ошибок и управления механической частью, а также микросхемы кэш-памяти.

Кластер (cluster) — это наименьшая область диска, которая выделяется для файла или его части. Каждый файл занимает на диске пространство, которое равняется целому числу кластеров. Как правило, кластер состоит из нескольких секторов.

Для жестких дисков размер кластера определяется при форматировании и зависит от версии операционной системы и размера диска. Но дисковое пространство занимается неэффективно. Например, необходимо сохранить файл в 500 байт. Зная, что каждый файл может занимать пространство на целом числе кластеров, то в этом случае будет занят один кластер. Файл будет записан с потерей дискового пространства.

Качественные характеристики жесткого диска

Время поиска сектора . Время поиска сектора (latency time) — это среднее время, необходимое для того, чтобы искомый сектор оказался под головкой после ее выведения на дорожку. Среднее время поиска равняется половине периода вращения диска и рассчитывается по формуле:

Среднее время поиска = 1/(число оборотов двигателя в секунду*2)

То есть при частоте вращения 7200 об/хв. время поиска составляет величину 4,17 мс.

Скорость чтения данных и спецификация . Средний показатель скорости чтения данных — около 40-45 Мбайт/с.

Считается, что контроллер на материнской плате спецификации UDMA/33 обязан обеспечивать скорость чтения данных не менее 33 Мбайт/с. А современные спецификации, например, UDMA/100 и UDMA/133 должны гарантировать не менее 100 и 133 Мбайт/с.

Скорость передачи данных определяет объемы данных, которые могут быть переданы из накопителя в компьютер и назад за определенные промежутки времени. Скорость передачи данных определяется двумя факторами:

  • Способом подключения накопителей, то есть производительностью интерфейса.
  • Скоростью считывания данных головками.

Скорость считывания данных (ее называют внутренней скоростью обмена данными и измеряют в Мбайт/с) можно определить по формуле:

Скорость считывания данных = количество секторов на дорожке * 512* * частота вращения дисков / 1000000.

Частота вращения дисков измеряется в об/с, 512 — количество байт данных в секторе.

Среднее время поиска . Среднее время поиска (Average seek time) — среднестатистическое время, в течение которого головки смещаются из одного цилиндра на другой. Этот показатель зависит от конструкции привода головок и составляет величину до 10 мс.

Среднее время доступа . Определяется как сумма среднего времени поиска и времени задержки и характеризует среднестатистическое время, необходимое для получения доступа к данным, записанным на произвольном секторе.

Скорость вращения диска . Показатель, напрямую связанный со скоростью доступа и скоростью чтения данных. Существуют параметры 5400 об/хв., 7200 об/хв. (IDE); 10000 об/хв., 15000 об/хв. (SCSI).

Жесткие диски подключаются к материнской плате при помощи специальных шлейфов-кабелей.

Таблица размещения файлов

Таблица размещения файлов — это область на диске, куда заносятся номера кластеров, которые занимаются файлами. Сюда не входят кластеры, которые содержат служебную информацию (загрузочные секторы, сама таблица размещения файлов и данные корневого каталога). В операционных системах производства Microsoft популярна файловая система FAT (File Location Table). На каждом логическом диске может быть создана отдельная файловая система. Таким образом, на одном жестком диске могут существовать файловые системы нескольких типов.

Популярные файловые системы

FAT . Эта файловая система используется в операционных системах MS DOS, Windows 3.x/9.x/2000, ME, XP, OS/2.

HPFS . Название этой файловой системы пошло от High Реrfomаnce File System, что значит высокопродуктивная файловая система. Поддерживается операционными системами OS/2, Windows NT.

NTFS . Название этой файловой системы пошло от Windows NT File System, что значит файловая система Windows NT/2000, поддерживается операционными системами Windows NT/2000, ХР.

Логические диски

Известно, что компьютер присваивает всем дискам, независимо от их конструкции логические имена А:, В:, С:. Имена А:, В: по умолчанию присваиваются накопителям на гибких дисках. Системному логическому диску, тому, на котором записана операционная система, присваивается имя С:.

Пространство жесткого диска можно разбить на разделы и логические диски. Операционные системы работают с логическими дисками, а не с физическими.

Преимущества развития винчестеров на несколько логических дисков:

  • Уменьшаются потери дискового пространства.
  • Упрощается структуризация данных.
  • Упрощается процесс дефрагментации диска, проверки на вирусы, и т. д.

На одном диске можно сохранять рабочие программы, на другом — документацию и архивы, игры (инсталляционные файлы). В случае сбоя в работе потеря информации минимизируется.