Тарифы Услуги Сим-карты

Качество обслуживания qos. Защищаемся маршрутизатором: QoS. Сервисные модели Quality of Service

«Кос » — это технология, обеспечивающая выделение предпочтений высокоприоритетному сетевому трафику, устройству или критичному приложению, необходимая для работы Ип-телефонов , видеоконференций, потокового видео, CITRIX-Приложений, телефонии Voip и подобного чувствительного к задержкам трафика.
Упрощённо говоря, с её помощью приложения наподобие Скайпа, сетевого медиа-проигрывателя, (VLC-Player какой-нибудь), коллективной онлайн игры, смогут получить достаточную полосу пропускания (скорость) при любой степени загрузки Интернет-канала, тем самым не будут "тупить" и "лагать".


Видео: основы Qos, как это работает.

QoS оперирует некоторыми параметрами передачи данных, вот основные:
Полоса пропускания Bandwidth , или (BW ). Данный параметр определяет ширину канала, описывает номинальную пропускную способность среды передачи. Может измеряться в: Бит/сек (bps), Кбит/сек (kbps), Мбит/сек (mbps).
Delay: описывает величину возможной задержки передачи пакета по сети.
Jitter: флуктуации (диапазон возможных задержек) при передаче сетевых пакетов.
Packet Loss: этот параметр задает количество пакетов, которые отбрасываются в процессе передачи.

МЕТОДЫ ВНЕДРЕНИЯ в вычислительную сеть

Технология QoS может обеспечиваться различными способами. Каждый способ имеет свои особенности, преимущества и недостатки. Рассмотрим их подробнее.
1) Резервирование. Суть метода резервирования сетевых ресурсов заключена в его названии. Непосредственно перед передачей информации происходит запрос и резервирование необходимой приложению полосы пропускания. Реализуется посредством технологии интегрированного обслуживания IntServ вместе с протоколом RSVP .
2) Приоритезация. Трафик делится на классы различного приоритета. Некоторые классы, например видео, имеют приоритет над голосом. Технология осуществляется посредством дифференцированного обслуживания DiffServ .
3) Перемаршрутизация. Механизм пересылает трафик по резервному маршруту при перегрузке основного.

Вам также может быть интересен следующий материал. Как работает приоритезация в беспроводных сетях .

глобальные виды Qos

УРОВЕНЬ 2

CoS (Class of service) - технология второго уровня, простая схема разметки, реализуемая посредством протокола 802 1P . Для реализации данной технологии необходимо задействовать протокол 802 1Q (TRUNK + VLAN), после чего станет возможным активация CoS посредством 802_1P. Стандарт 802_1P маркирует кадры Ethernet 2го уровня трехбитным полем CoS, принимающем значения от 0 до 7.
Метод поддерживается бюджетными коммутаторами сиско, наподобие Каталист Экспресс Series 500, старшими Catalysts 2900 Switches. Такой вид приоритезации используется внутри локальной сети на втором уровне модели OSI и не выходит за пределы ЛВС. Для корректной работы QoS уровня 2 требуется включить и сконфигурировать его поддержку на всех коммутаторах сети.

Классификация и маркировка трафика на третьем уровне

Qos третьего уровня может называться ToS (от Type of service) . Маршрутизационное оборудование работает с IP пакетами (Layer 3), в заголовке у которых под приоритезационные цели выделено специальное поле: «Tos» объемом один байт. Поле может быть заполнено разными классификаторами.
1) Трехбитный IPP (IP PRECEDENCE) может принимать значения 0-7.
2) Шестибитный DSCP (модель: DiffServ) более гибок, позволяет выставить значение с 0 по 63.
Используется для приоритезации ИП трафика, (третий уровень OSI); настраивается на маршрутизаторах. Поддерживается всеми моделями маршрутизаторов Сиско Systems, включая бюджетную серию ЦИСКО ИСР 870. В КоСе 3-го уровня могут использоваться две схемы разметки пакетов. Internet Protocol Precedence — простая система приоритезации. В ней заголовок АЙ-ПИ пакета размечается значениями с 0 по 7.
Ip Dscp (differentiated services code point) - глубокая дифференцированная приоритезация с точкой отсчета. Она позволяет более гибко настраивать приоритеты для нужд конвергентной сети.

Каким сетям критически необходим QoS?

Полная поддержка "качества обслуживания" необходима при проектировании корпоративных мультисервисных, конвергентных сетей, где планируется перегон критичного голосового, видео трафика по каналу совместно с данными. Особенно остро возникает необходимость корректного внедрения QoS при прогоне на роутере конвергентного трафика через каналы WAN ограниченной пропускной способности (DSL, ISDN, E-3) как вариант, при межофисном обмене в сетях VPN между удаленными офисами.

Или если в организации один провайдер, через который клиентские рабочие станции выходят в Сеть Internet; и через него же осуществляется проброс портов на внутренние Web- и почтовые сервера из Интернета. В такой ситуации необходимо произвести настройку службы качества сервиса с целью выдать бОльший приоритет входящим соединениям, а если внутренних серверов несколько, то грамотно распределить приоритеты между ними.

какие устройства и в какой мере поддерживают QoS

Ip телефоны Cisko требуют комплексной поддержки КоСа (АйПи DSCP). Хотя есть модели (Циско 7920), поддерживающие базовый набор параметров «QBSS», что может выражаться в сужении универсальности, гибкости при работе данного устройства в сложной сетевой среде.

QoS это возможность сети обеспечить специальный уровень обслуживания для конкретных пользователей или приложений без ущерба остальному трафику. Главная цель QoS это обеспечение более предсказуемого поведения сети передачи данных при работе с тем, или иным типом трафика, путем обеспечения необходимой полосы пропускания, контролем над задержкой и джиттером и улучшением характеристик при потере пакетов. Алгоритмы QoS достигают этих целей путем ограничения трафика, более эффективным использованием каналов передачи, и назначением тех или иных политик к трафику. QoS обеспечивает интеллектуальную передачу поверх корпоративной сети, и, при правильной настройке, улучшает показатели производительности.

Политики QoS

Тип трафика QoS Безопасность Когда?
Голос Задержка меньше 150 мс в одну сторону Шифрование на уровне передаче голоса Понедельник - Пятница
Система планирования ресурсов предприятия Обеспечение доступной полосы пропускания минимум 512 кб/с Зашифрован 24 часа в сутки, 7 дней в неделю, 365 дней в году
Трафик, создаваемый программным обеспечением станков и оборудования Обеспечение доступной полосы пропускания минимум 256 кб/с В открытом виде Понедельник - Пятница
Трафик от использования интернет ресурсов HTTP/HTTPS Негарантированная доставка по принципу Best Effort HTTP прокси сервер Понедельник – Пятница, с 8 утра до 9 вечера.

Осуществление QoS в сетях унифицированных коммуникаций

Условно, процесс осуществления QoS в сетях Unified Communications (унифицированных коммуникаций), можно разделить на 3 этапа:

  1. Определение типа трафика в сети и его требований. На данном этапе необходимо научить сеть определять типы трафика чтобы применять к ним те или иные QoS алгоритмы;
  2. с одинаковыми требованиями QoS. Например, можно определить 4 типа трафика: голос, высоко – приоритетный трафик, низко – приоритетный трафик и трафик от пользования браузером для просмотра WEB страниц;
  3. Назначить политики QoS , применяемые к классам, определенным в п.2.

В современных корпоративных сетях, голосовой трафик всегда требует минимальную задержку. Трафик, который генерируют критически важные для бизнеса приложения требует маленькой задержки (например, информация, относящаяся к банковскому обслуживанию). Другие типы информации могут быть не так чувствительны к задержкам, например, передача файлов или электронная почта. Обычное использование интернета в личных целях на работе может быть так же ограничено или даже запрещено.

Согласно указанным принципам, можно условно выделить три QoS политики:

  • Без задержки: Присваивается в голосовому трафику;
  • Лучшее обслуживание: Присваивается к трафику с наивысшим приоритетом;
  • Остальное: Присваивается к низко – приоритетному и трафику web – браузеров;
Шаг 1: Определение типа трафика

Первым шагом на пути к осуществлению QoS является идентификация типов трафика в сети и определение конкретных требований каждого из типов. Перед осуществлением QoS, настоятельно рекомендуется провести аудит сети, чтобы полностью понимать как и какие приложения работают в корпоративной сети. Если осуществить политики QoS не имея полного понимания корпоративного сегмента сети, то результаты могут быть плачевными.

Далее, необходимо определить проблемы пользователей при работе с теми или иными сетевыми приложениями: например, приложение медленно работает из-за чего имеет плохую производительности работы. Необходимо измерить сетевой трафик в часы наибольшей нагрузки, используя специальные утилиты. Для понимания процессов в сети, необходимым шагом является измерение загрузки процессора каждого из единиц активного сетевого оборудования в период наибольшей загруженности, чтобы четко знать, где потенциально могут возникать проблемы.

После этого, необходимо определить бизнес цели и модели работы и составить список бизнес – требований. По итогам этих действий, каждый из пунктов списка можно сопоставить с тем или иным классом трафика.

В конце, необходимо определить уровни обслуживания которые требуются для различного вида трафика в зависимости от требуемой доступности и быстродействия.

Шаг 2: Сгруппировать трафик в классы

После идентификации сетевого трафика, необходимо использовать список бизнес требований, составленный на первом этапе, чтобы определить классы трафика.

Голосовой трафик всегда определяется отдельным классом. Компания Cisco имеет разработанные механизмы QoS для голосового трафика, например, Low latency queuing (LLQ) , цель которого заключается в контроле за тем, чтобы голос получал преимущество в обслуживании. После того как определены наиболее критичные приложения, необходимо определить классы трафика использую список бизнес требований.

Не каждое приложение имеет свой собственный класс обслуживания. Довольно много приложений с похожими требованиями к QoS группируются вместе в единый класс.

Пример классификации трафика

Типичный корпоративный ландшафт определяет 5 классов трафика:

  • Голос: Наивысший приоритет для трафика VoIP;
  • Критически важные: Небольшой набор критически важных для бизнеса приложений;
  • Транзакции: В данном классе присутствуют сервисы баз данных, интерактивный трафик и привилегированный сетевой трафик;
  • Негарантированная доставка: Работает по принципу Best Effort, что дословно переводится как «лучшее усилие». В данный класс можно отнести интернет трафик и e-mail.

Шаг 3: Сгруппировать трафик в классы

Третьим шагом необходимо описать политики QoS для каждого из классов трафика, которые включают следующие действия:

  • Назначить минимальный размер гарантированной полосы пропускания;
  • Назначить максимальный размер полосы пропускания;
  • Назначить приоритеты для каждого из классов;
  • Использовать QoS технологии, такие как алгоритмы контроля очередей для управления перегрузками.

Рассмотрим на текущем примере определение политик QoS для каждого из классов:

  1. Голос: Доступна полоса пропускания – 1мбит/с. Использовать метку Differentiated Services Code Poin (DSCP) со значением EF . Метка EF (Expedited Forwarding) означает то, что пакеты с таким маркером получают приоритет в очереди согласно принципу наименьшей задержки. Дополнительно используется алгорит LLQ;
  2. Критически важные: Минимальная полоса пропускания – 1мбит/с. Использовать метку Differentiated Services Code Poin (DSCP) со значением AF31 (метка в поле DSCP 011010), что обеспечивает наименьшую вероятность отбрасывания пакета. Параллельное использование алгоритма CBWFQ гарантирует необходимую полосу пропускания для маркированного трафика;
  3. Негарантированная доставка: Максимальная полоса пропускания – 500кбит/с. Использовать метку Differentiated Services Code Poin (DSCP) со значением Default (метка в поле DSCP 000000), что обеспечивает обслуживание по умолчанию. Алгоритм CBWFQ обеспечивает «доставку по возможности», которая ниже по приоритету классов «Голос» и «Критически важные».

Полезна ли Вам эта статья?

Пожалуйста, расскажите почему?

Нам жаль, что статья не была полезна для вас:(Пожалуйста, если не затруднит, укажите по какой причине? Мы будем очень благодарны за подробный ответ. Спасибо, что помогаете нам стать лучше!

Нет ни одного человека, который бы хоть раз не прочитал какой-нибудь FAQ по Windows XP. А раз так, то каждый знает, что есть такая вредная служба Quality of Service - сокращенно QoS. При настройке системы ее настоятельно рекомендуется отключать, потому что она по умолчанию ограничивает сетевую пропускную способность на 20%, и как будто бы эта проблема существует и в Windows 2000.

Вот эти строки:

"Q: Как полностью отключить службу QoS (Quality of Service)? Как ее настроить? Правда ли, что она ограничивает скорость сети?
A: Действительно, по умолчанию Quality of Service резервирует для своих нужд 20% от пропускной способности канала (любого - хоть модем на 14400, хоть гигабитный Ethernet). Причем даже если удалить службу QoS Packet Scheduler из Properties-соединения, этот канал не освобождается. Освободить канал или просто настроить QoS можно здесь. Запускаем апплет Group Policy (gpedit.msc). В Group Policy находим Local computer policy и нажимаем на Administrative templates. Выбираем пункт Network - QoS Packet Sheduler. Включаем Limit reservable bandwidth. Теперь снижаем Bandwidth limit 20% до 0% или просто отключаем его. При желании здесь же можно настроить и другие параметры QoS. Для активации произведенных изменений остается только перезагрузиться".
20% - это, конечно, очень много. Воистину Microsoft - "маздай". Утверждения подобного рода кочуют из FAQ в FAQ, из форума в форум, из СМИ в СМИ, используются во всевозможного рода "твикалках" - программах по "настройке" Windows XP (кстати говоря, откройте "Групповые политики" и "Локальные политики безопасности", и ни одна "твикалка" не сравнится с ними по богатству вариантов настройки). Разоблачать голословные утверждения такого рода нужно осторожно, что мы сейчас и сделаем, применив системный подход. То есть основательно изучим проблемный вопрос, опираясь на официальные первоисточники.

Что такое сеть с качественным сервисом?

Давайте примем следующее упрощенное определение сетевой системы. Приложения запускаются и работают на хостах и обмениваются данными между собой. Приложения отправляют данные операционной системе для передачи по сети. Как только данные переданы операционной системе, они становятся сетевым трафиком.
Сетевая служба QoS опирается на способность сети обработать этот трафик так, чтобы гарантированно выполнить запросы некоторых приложений. Это требует наличия фундаментального механизма по обработке сетевого трафика, способного идентифицировать трафик, имеющий право на особую обработку и право управлять этими механизмами.

Функциональные возможности QoS призваны удовлетворить двух субъектов сети: сетевые приложения и сетевых администраторов. Они часто имеют разногласия. Администратор сети ограничивает ресурсы, используемые специфическим приложением, в то же время приложение пытается захватить как можно больше сетевых ресурсов. Их интересы могут быть согласованы, принимая во внимание тот факт, что сетевой администратор играет главенствующую роль по отношению ко всем приложениям и пользователям.

Основные параметры QoS

Различные приложения имеют различные требования по обработке их сетевого трафика. Приложения в большей или меньшей степени терпимы к задержкам и потерям трафика. Эти требования нашли применение в следующих параметрах, связанных с QoS:

  • Bandwidth (полоса пропускания) - скорость, с которой трафик, генерируемый приложением, должен быть передан по сети;
  • Latency (задержка) - задержка, которую приложение может допустить в доставке пакета данных.
  • Jitter - изменение времени задержки.
  • Loss (потеря) - процент потерянных данных.

Если бы были доступны бесконечные сетевые ресурсы, то весь трафик приложения можно было бы передать с требуемой скоростью, с нулевым временем задержки, нулевым изменением времени задержки и нулевыми потерями. Однако сетевые ресурсы не безграничны.

Механизм QoS контролирует распределение сетевых ресурсов для трафика приложения, чтобы выполнить требования по его передаче.

Фундаментальные ресурсы QoS и механизмы обработки трафика

Сети, которые связывают хосты, используют разнообразные сетевые устройства включая сетевые адаптеры хостов, маршрутизаторы, свичи и хабы. Каждый из них имеет сетевые интерфейсы. Каждый сетевой интерфейс может принять и передать трафик с конечной скоростью. Если скорость, с которой трафик направлен на интерфейс, выше, чем скорость, с которой интерфейс передает трафик дальше, то возникает перегрузка.

Сетевые устройства могут обработать состояние перегрузки, организуя очередь трафика в памяти устройства (в буфере), пока перегрузка не пройдет. В других случаях сетевое оборудование может отказаться от трафика, чтобы облегчить перегрузку. В результате приложения сталкиваются с изменением времени ожидания (так как трафик сохраняется в очередях на интерфейсах) или с потерей трафика.

Способность сетевых интерфейсов к пересылке трафика и наличие памяти для сохранения трафика в сетевых устройствах (до тех пор, пока трафик не может быть послан дальше) составляют фундаментальные ресурсы, требующиеся для обеспечения QoS для потоков трафика приложений.

Распределение ресурсов QoS по сетевым устройствам

Устройства, поддерживающие QoS, разумно используют ресурсы сети для передачи трафика. То есть трафик приложений, более терпимых к задержкам, становится в очередь (сохраняется в буфере в памяти), а трафик приложений, критичных к задержкам, передается далее.

Для выполнения этой задачи сетевое устройство должно идентифицировать трафик путем классификации пакетов, а также иметь очереди и механизмы их обслуживания.

Механизм обработки трафика

Механизм обработки трафика включает в себя:

  • 802.1p
  • Дифференцированные услуги per-hop-behaviors (diffserv PHB).
  • Интегрированные услуги (intserv).
  • ATM и др.

Большинство локальных сетей основано на технологии IEEE 802 включая Ethernet, token-ring и др. 802.1p - это механизм обработки трафика для поддержки QoS в таких сетях.

802.1p определяет поле (уровень 2 в сетевой модели OSI) в заголовке пакета 802, которое может нести одно из восьми значений приоритета. Как правило, хосты или маршрутизаторы, посылая трафик в локальную сеть, маркируют каждый посланный пакет, присваивая ему определенное значение приоритета. Предполагается, что сетевые устройства, такие, как свичи, мосты и хабы, обработают пакеты соответствующим образом, используя механизмы организации очередей. Область применения 802.1p ограничена локальной сетью (LAN). Как только пакет пересекает локальную сеть (через уровень 3 OSI), приоритет 802.1p удаляется.

Diffserv - это механизм уровня 3. Он определяет поле в уровне 3 заголовка пакетов IP, названных diffserv codepoint (DSCP).

Intserv - это целый комплекс услуг, определяющий гарантированный сервис и сервис, управляющий загрузкой. Гарантированный сервис обещает нести некоторый объем трафика с измеримой и ограниченной задержкой. Сервис, управляющий загрузкой, соглашается нести некоторый объем трафика с "появлением легкой загруженности сети". Это - измеримые услуги в том смысле, что они определены, чтобы обеспечить измеримый QoS к определенному количеству трафика.

Поскольку технология ATM фрагментирует пакеты в относительно маленькие ячейки, то она может предложить очень низкое время задержки. Если необходимо передать пакет срочно, интерфейс ATM может всегда освобождаться для передачи на время, которое требуется, чтобы передать одну ячейку.

QoS имеет еще много разных сложных механизмов, обеспечивающих работу этой технологии. Отметим лишь один важный момент: для того, чтобы QoS заработала, необходима поддержка этой технологии и соответствующая настройка на всем протяжении передачи от начальной точки до конечной.

Для наглядности рассмотрим рис. 1.

Принимаем следующее:

  • Все маршрутизаторы участвуют в передаче нужных протоколов.
  • Один QoS-сеанс, требующий 64 Kbps, инициализирован между хостом А и хостом B.
  • Другой сеанс, требующий 64 Kbps, инициализирован между хостом А и хостом D.
  • Для упрощения схемы полагаем, что маршрутизаторы сконфигурированы так, что могут резервировать все сетевые ресурсы.

В нашем случае один запрос о резервировании 64 Kbps достиг бы трех маршрутизаторов на пути данных между хостом А и хостом B. Другой запрос о 64 Kbps достиг бы трех маршрутизаторов между хостом А и хостом D. Маршрутизаторы выполнили бы эти запросы на резервирование ресурсов, потому что они не превышают максимума. Если вместо этого каждый из хостов B и C одновременно инициализировал бы 64 Kbps QoS-сеанс с хостом A, то маршрутизатор, обслуживающий эти хосты (B и C), запретил бы одно из соединений.

Теперь предположим, что администратор сети отключает обработку QoS в трех нижних маршрутизаторах, обслуживающих хосты B, C, D, E. В этом случае запросы о ресурсах до 128 Kbps удовлетворялись бы независимо от месторасположения участвующего в соединении хоста. При этом гарантии качества были бы низки, поскольку трафик для одного хоста подвергал бы риску трафик другого. Качество обслуживания могло бы быть сохранено, если бы верхний маршрутизатор ограничивал все запросы до 64 Kbps, однако это привело бы к неэффективному использованию сетевых ресурсов.

С другой стороны, пропускную способность всех сетевых связей можно было бы увеличить до 128 Kbps. Но увеличенная пропускная способность будет использоваться только когда хосты B и C (или D и E) одновременно затребуют ресурсы. Если это не так, то ресурсы сети опять будут использоваться неэффективно.

QoS-компоненты Microsoft

Windows 98 содержит компоненты QoS только пользовательского уровня включая:

  • Компоненты приложений.
  • GQoS API (часть Winsock 2).
  • QoS service provider.

Операционная система Windows 2000/XP/2003 содержит все описанное выше и следующие компоненты:

  • Resource Reservation Protocol Service Provider (Rsvpsp.dll) и службы RSVP (Rsvp.exe) и QoS ACS. В Windows XP, 2003 не используются.
  • Управление трафиком (Traffic.dll).
  • Generic Packet Classifier (Msgpc.sys). Классификатор пакетов определяет класс сервиса, которому принадлежит пакет. При этом пакет будет поставлен в соответствующую очередь. Очереди управляются Планировщиком пакетов QoS.
  • Планировщик пакетов QoS (Psched.sys). Определяет параметры QoS для специфического потока данных. Трафик помечается определенным значением приоритета. Планировщик пакетов QoS определяет график постановки в очередь каждого пакета и обрабатывает конкурирующие запросы между поставленными в очередь пакетами, которые нуждаются в одновременном доступе к сети.

Диаграмма на рис.2 иллюстрирует стек протоколов, компоненты Windows и их взаимодействие на хосте. Элементы, использовавшиеся в Windows 2000, но не использующиеся в Windows XP/2003, на диаграмме не показаны.

Приложения находятся наверху стека. Они могут знать или не знать о QoS. Чтобы использовать всю мощь QoS, Microsoft рекомендует использовать в приложениях вызовы Generic QoS API. Это особенно важно для приложений, требующих высококачественных гарантий обслуживания. Некоторые утилиты могут использоваться для вызова QoS от имени приложений, которые не знают о QoS. Они работают через API управления трафиком. Например, NetMeeting использует GQoS API. Но для таких приложений качество не гарантируется.

Последний гвоздь

Вышеизложенные теоретические моменты не дают однозначного ответа на вопрос, куда деваются пресловутые 20% (которые, замечу, никто еще точно не измерял). Исходя из вышесказанного, такого быть не должно. Но оппоненты выдвигают новый довод: система QoS хорошая, да реализация кривая. Стало быть, 20% все-таки "отжираются". Видать, проблема допекла и софтверного гиганта, поскольку он уже довольно давно отдельно опроверг подобные измышления.

Впрочем, дадим слово разработчикам и изложим избранные моменты из статьи "316666 - Windows XP Quality of Service (QoS) Enhancements and Behavior" литературным русским языком:

"Сто процентов сетевой полосы пропускания доступны для распределения между всеми программами, если какая-либо программа явно не запрашивает приоритетную полосу пропускания. Эта "зарезервированная" полоса пропускания доступна другим программам, если программа, которая ее затребовала, не отправляет данные.

По умолчанию программы могут резервировать до 20% основной скорости соединения на каждом интерфейсе компьютера. Если программа, которая резервировала полосу пропускания, не посылает достаточно много данных, чтобы использовать ее полностью, неиспользованная часть зарезервированной полосы пропускания доступна для других потоков данных.

Были заявления в различных технических статьях и телеконференциях, что Windows XP всегда резервирует 20% доступной полосы пропускания для QoS. Эти заявления неверны".

Если теперь у кого-то все еще "отжирается" 20% полосы пропускания, что ж, я могу посоветовать и дальше использовать побольше всевозможных "твикалок" и кривых сетевых драйверов. Еще и не столько будет "отжираться".

Все, миф о QoS, умри!

Рубрика «Консультация» cоздана на портале «Цифровая подстанция» для того, чтобы каждый читатель мог получить ответ на интересующий его вопрос. Свои вопросы участники могут направлять на адрес [email protected] . Сегодня мы рассматриваем следующий вопрос:

Когда речь идет о коммутаторах и о передаче данных по информационной сети Ethernet часто возникает такое понятие как QoS (Quality of Service). Что это такое?

Отвечает начальник отдела инжиниринга компании «ТЕКВЕЛ» Дмитрий Стешенко:

Под качеством обслуживания (QoS) понимается способность сетевой инфраструктуры предоставлять улучшенное обслуживание определенному виду передаваемого трафика при помощи различных технологий.

Качество обслуживания на втором уровне модели OSI (канальном) в пределах одного сетевого элемента обеспечивается за счет использования модели дифференцированного обслуживания (Differentiated Service – DiffServ) и обеспечивается:

  • Классификацией и разметкой трафика.
  • Управлением перегрузками (механизмы очередей).

Следует отметить, что данная модель начинает работать лишь в случае появления очередей и перегрузок.

Согласно стандарту МЭК 61850 все коммуникационные процессы передачи данных осуществляются посредством технологии Ethernet. Данная технология определяет формат Ethernet кадров (фреймов), линии соединения (среду передачи), электрические и световые сигналы на физическом уровне, протоколы управления доступом к среде - на втором уровне модели OSI (канальном). Основные методы и технологии Ethernet описываются семейством протоколов IEEE 802.3.

Протокол Ethernet в чистом виде не поддерживает функцию приоритезации трафика, поэтому наряду со стандартным протоколом Ethernet IEEE 802.3, организация IEEE разработала стандарт создания виртуальных локальных сетей VLAN IEEE 802.1q. В стандарте IEEE 802.1q предусматривается вставка дополнительного четырехбайтового тега VLAN в заголовок Ethernet исходного фрейма, содержащий метку приоритета (Priority) класса обслуживания (Class of Service – CoS) IEEE 802.1p (см. рис. 1).

Рис. 1. Структура кадра Ethernet согласно стандарту IEEE 802.1q

КЛАССИФИКАЦИЯ И РАЗМЕТКА ТРАФИКА

К примеру, коммутаторы 2–го уровня PULLNET семейства AGENT-2 позволяют различать кадры Ethernet (классифицировать трафик) по параметрам метки приоритета (Priority) IEEE 802.1p. Значения приоритета в зависимости от типа трафика приведены в таблице ниже. Стандарт МЭК 61850 по умолчанию предусматривает для GOOSE сообщений и выборок мгновенных значений SV приоритет равный 4.

Таблица 1. Классы трафика согласно стандарту IEEE 802.1p.

Биты приоритета

Обозначение

Класс приоритета трафика

NC (Network Controlled)

Критически важный для сети. Трафик управления сетью

Интерактивный мультимедийный (видео)

CL (Controlled Effort)

Контролируемый. Потоковый мультимедийный

EE (Excellent Effort)

Приоритетный

Стандартный (Экономный)

BE (Best Effort)

Низший. Трафик передаваемый с максимальными усилиями («по возможности»). Вариант по умолчанию

Таким образом, классификация и разметка трафика решает две задачи:

  • Отнесение передаваемых данных к определенному классу трафика.
  • Назначение передаваемому фрейму соответствующего приоритета.

УПРАВЛЕНИЕ ПЕРЕГРУЗКАМИ (МЕХАНИЗМЫ ОЧЕРЕДЕЙ)

Перегрузка возникает в случае переполнения выходных буферов передающего трафик оборудования. Основными механизмами возникновения перегрузок (или, что равнозначно, скоплений – congestions) является агрегация трафика (когда скорость входящего трафика превышает скорость исходящего) и несогласованность скоростей на интерфейсах. Управление пропускной способностью в случае перегрузок (узких мест) осуществляется с помощью механизма очередей. Кадры Ethernet помещаются в очереди, которые упорядоченно обрабатываются по определенному алгоритму. Фактически, управление перегрузками – это определение порядка, в котором фреймы выходят из интерфейса (очередей) на основе приоритетов. Если перегрузок нет – очереди не работают.

Так как очереди не бесконечны, они могут заполняться и переполняться. Если очередь уже заполнена, то новые пакеты в нее не попадают и отбрасываются. Это явление называется концевыми потерями. Проблема концевых потерь заключается в том, что в этой ситуации коммутатор не может не отбрасывать данный фрейм, даже если он имеет высокий приоритет. Таким образом, необходим механизм, выполняющий следующие две операции:

  • Выяснить, действительно ли очередь переполнена и нет ли в ней места для фреймов с высоким приоритетом.
  • Сформировать политику, согласно которой в первую очередь будут отбрасываться фреймы с более низким приоритетом, и только потом – с более высоким.

Приоритезация используется для классификации фреймов путем их привязки к одной из очередей выхода. Метка приоритета IEEE 802.1p для назначений очереди определяется пользователем. Коммутаторы 2–го уровня PULLNET семейства AGENT-2 поддерживают 4 очереди приоритетов. В таблице ниже представлена подробная информация по меткам приоритета для параметров очереди, установленных на коммутаторе PULLNET по умолчанию.

Таблица 2. Привязка Class of Service (CoS) к очереди пересылки данных по умолчанию.

Значение приоритета

CoS IEEE 802.1p

IEEE 802.1p

Номер очереди

по умолчанию

в PULLNET AGENT-2

q0 (низший приоритет)

q3 (максимальный приоритет)

После процесса классификации фреймы можно привязать к определенной очереди (очередям) в зависимости от метки приоритета CoS.

Настройка очередей выхода осуществляется с помощью схемы планирования одного из следующих способов:

Строгий приоритет (Strict Priority) – гарантирует, что чувствительные ко времени приложения передаются всегда. Строгий приоритет (Strict Priority) позволяет присвоить трафику, зависящему от целевого назначения и чувствительности ко времени, наивысший приоритет перед менее чувствительными ко времени данными. Т.е. фреймы, находящиеся в очереди с высоким приоритетом, обрабатываются первыми. Кадры Ethernet из следующей по приоритету обслуживания очереди начнут передаваться только после того, как опустеет высокоприоритетная очередь. Например, передача голоса по IP осуществляется до пересылки трафика FTP или электронной почты (SMTP). Недостатком данного метода является то, что данные с низким приоритетом могут длительное время не обрабатываться.


Рис. 2. Механизм обработки очередей “Строгий приоритет” (Strict Priority) при постановке фреймов в очередь в соответствии с настройками по умолчанию в коммутаторах PULLNET.

Взвешенный циклический алгоритм (WRR) − гарантирует, что отдельное приложение не будет использовать все ресурсы по пересылке, доступные посредством модуля коммутатора Ethernet. С помощью WRR осуществляется пересылка всех очередей в цикле.

При наличии нескольких очередей фреймы могут быть помещены в разные очереди и обслуживаться по взвешенному циклическому алгоритму (Weighted Round Robin – WRR). Внутри очереди устанавливаются весовые коэффициенты (Weight Value) – в коммутаторах AGENT-2 это значения от 1 до 20. Они играют роль исходных точек, по которым определяется, с какой вероятностью может быть отброшен пакет. Процесс обработки очередей осуществляется по круговому принципу, начиная с самой приоритетной очереди. Из каждой непустой очереди передается некоторый объем трафика, пропорциональный назначенному ей весовому коэффициенту, после чего выполняется переход к следующей по убыванию приоритета очереди и так далее по кругу.


Рис. 3. Механизм обработки очередей “Взвешенный циклический алгоритм” (Weighted Round Robin).

Все очереди, за исключением очередей SP, могут работать по схеме WRR. Очереди SP обслуживаются непосредственно перед очередями WRR. Если поток трафика минимален и очереди SP не занимают всю полосу пропускания, назначенную для порта, то очереди WRR используют полосу пропускания совместно с очередями SP. При этом оставшаяся часть полосы пропускания распределяется в соответствии с весовыми коэффициентами. Данный комбинированный механизм «SP+WRR» доступен в коммутаторах PULLNET AGENT-2.