Тарифы Услуги Сим-карты

Параллельная работа генераторов. Параллельная работа синхронного генератора с сетью

Подавляющее большинство современных электрических станций оборудовано несколькими одновременно работающими на общую сеть генераторами. Такую работу генераторов называют параллельной. Необходимость параллельной работы генераторов диктуется следующими соображениями.

Если станция оборудована одним генератором, то его нагрузка сильно колеблется в зависимости от времени года и от времени суток. Замена одного генератора несколькими дает возможность при необходимости часть генераторов останавливать, экономя тем самым расход топлива, воды и т. д. Для надежного снабжения потребителей на случай аварии станция должна иметь резервный генератор. Мощность резервного генератора может быть уменьшена, если на станции работают не один, а несколько генераторов. Наконец, параллельная работа генераторов и станций диктуется необходимостью объединения в общую энергосистему нескольких электростанций, что позволяет наиболее рационально загружать станции в течение года и бесперебойно снабжать потребителей электроэнергией.

Для включения генераторов на параллельную работу необходимы следующие условия:

1. Равенство действующих значений напряжения сети и напряжения на зажимах генератора включаемого в сеть. Это достигается регулированием тока возбуждения.

2. Равенство частот генератора и сети которое достигается регулированием скорости вращения генератора.

3. Одинаковая последовательность чередования фаз, которая проверяется, например, с помощью специального прибора - фазо-указателя.

Наиболее трудным является выбор момента включения генератора, когда напряжения совпадают (или почти совпадают) по фазе. (Получить абсолютно одинаковую частоту сети и включаемого генератора практически невозможно.) Неправильный выбор момента включения генератора может привести к возникновению недопустимого режима для целости генератора и другой

вспомогательной аппаратуры. Поэтому многочисленные способы включения сводятся практически к выполнению этого условия. Для этой цели применяются специальные устройства, называемые синхроноскопами.

Для выяснения принципа включения генератора на параллельную работу с сетью кратко рассмотрим простейший способ, называемый включением та темное» (рис. 5-33, а). Здесь три лампы накаливания, образующие простейший синхроноскоп, включаются на разность напряжений сети и генератора. Равенство фазных напряжений и частот сети и генератора контролируется вольтметром и частотометром. При совпадении частот и фаз напряжений сети и генератора лампы не должны светиться, однако получить это практически невозможно. Звезда фазных напряжений генератора на ректорной диаграмме (рис. 5-33, б) вращается относительно звезды фазных напряжений сети в ту или иную сторону в зависимости от соотношения частот генератора и сети или при этом угол между одноименными векторами будет меняться от 0 до , а разностное напряжение - от нуля (когда векторы совпадают) до удвоенной амплитуды (когда векторы противоположны). Чем меньше различаются частоты , тем реже будут вспыхивать лампы. Регулированием скорости вращения генератора добиваются наименьшей частоты вспышек ламп; в момент, соответствующий середине между двумя вспышками, включают генератор в сеть. Этот момент и соответствует совпадению частот и фаз напряжений сети и генератора.

Способ «на темное» имеет тот существенный недостаток, что по вспыхиваниям ламп нельзя определить, какая из частот или больше, поэтому приходится регулировать генератор «вслепую». Есть и другие, более совершенные способы.

Помимо ламповых синхроноскопов существует специальный стрелочный синхроноскоп.

В настоящее время пользуются в основном методом «самосинхронизации» или «грубой синхронизации»: невозбужденный генератор при закороченной на резистор R обмотке возбуждения (рис. 5-34) первичным двигателем доводят до скорости, близкой к синхронной, затем генератор включают в сеть и возбуждают его. В результате действия механического толчка генератор втягивается в синхронизм. Разрядный резистор R, сопротивление которого в 5-10 раз больше сопротивления обмотки возбуждения, служит для предотвращения появления перенапряжений на обмотке в момент пуска генератора. На современных электростанциях пуск генераторов полностью автоматизирован.

В том случае, когда мощность потребителя становится больше номинальной мощности работающего генератора, параллельно ему включают другой генератор.

Для включения синхронного генератора на параллельную работу с электрической сетью или другим, уже работающим синхронным генератором необходимо выполнить следующие условия:

напряжение подключаемой машины должно быть равно напряжению сети или работающей машины;

частота подключаемого генератора должна быть равна частоте сети;

напряжения всех фаз подключаемой машины должны быть противоположны (по фазе) напряжениям соответствующих фаз сети или работающей машины;

для подключения на параллельную работу трехфазного синхронного генератора необходимо также обеспечить одинаковое чередование фаз подключаемой машины и сети.

Подготовку к включению на параллельную работу синхронного генератора ведут следующим образом. Приводят во вращение первичный двигатель и регулируют его скорость вращения так, чтобы она была примерно равна номинальной. Затем возбуждают генератор и, следя за показаниями вольтметра, подключенного к зажимам статора, регулируют напряжение машины при помощи реостата в цепи возбуждения до тех пор, пока оно не станет равным напряжению сети. Воздействуя на регулятор первичного двигателя и наблюдая за показаниями частотомера, устанавливают более точно скорость машины так, чтобы частота генератора была равна частоте сети. Тем самым первое и второе условия для включения на параллельную работу будут выполнены.

Для выполнения третьего условия служат фазные лампы. Последние включаются по двум схемам: на потухание (рис. 282, а) и на вращение света (рис. 282, б). Лампы, включенные по схеме а, при одинаковом чередовании фаз сети и машины будут сначала быстро и одновременно мигать, затем мигание их становится все реже и реже, и когда лампы медленно погаснут, нужно включить рубильник генератора.

Для более точного определения момента включения рубильника часто применяют так называемый нулевой вольтметр, имеющий двустороннюю шкалу.

При одинаковом чередовании фаз сети и машины лампы, включенные по схеме б, будут мигать поочередно, и если их расположить по кругу, то получится впечатление вращающегося света. Генератор нужно включить в момент, когда лампы, включенные накрест (между фазами А и В), загорятся полным накалом, а третья лампа погаснет.

При неодинаковом порядке чередования фаз лампы, включенные по схеме а, дадут вращение света, а по схеме б будут одновременно загораться и потухать. Для изменения порядка чередования фаз машины два любых ее провода, подходящие к рубильнику, нужно поменять местами.

Включение фазных ламп высоковольтных генераторов осуществляется через измерительные трансформаторы напряжения. Чередование фаз машины можно также определить, пользуясь особым прибором - фазоуказателем, представляющим собой небольшой асинхронный двигатель. Направление вращения диска фазоуказателя показывает порядок чередования фаз.

На современных электростанциях момент включения синхронных генераторов на параллельную работу определяется с помощью специального прибора - синхроноскопа.

Процесс подготовки генератора для включения его на параллельную работу называется синхронизацией.

Включение синхронных генераторов на параллельную работу

Включение синхронных машин в сеть на параллельную работу производят - способом точной синхронизации и способом грубой синхронизации, который для генераторов обычно называют способом самосинхронизации. Иногда для синхронных машин применяют также частотный пуск, а для генераторов и несинхронное включение

Способ точной синхронизации . Этот способ используют при включении в сеть синхронных генераторов. Он состоит в том, что генератор сначала разворачивают турбиной до частоты вращения, близкой к синхронной, а затем возбуждают и при определенных условиях включают в сеть. Условиями, необходимыми для включения машины, являются:

1) равенство напряжений включаемого генератора и работающего генератора или сети;

2) совпадение фаз этих напряжений;

3) равенство частот включаемого генератора и работающего генератора или сети.

Первое условие обеспечивается путем регулирования тока возбуждения машины, а для выполнения второго и третьего условий необходимо изменение вращающего момента на ее валу, что достигается изме­нением количества пара или воды, пропускаемых через турбину.

Выполнение условий точной синхронизации может быть осуществлено вручную или автоматически. При ручной синхронизации все операции по регулированию возбуждения и подгонке частоты выполняет дежурный персонал, а при автоматической синхронизации - автоматические устройства. Применяется также ручная синхронизация с автоматическим контролем синхронизма, который запрещает включение выключателя синхронизируемой машины при несоблюдении условий синхронизации. При точной ручной синхронизации напряжения и частоты контролируют по установленным на щите управления двум вольтметрам и двум частотомерам, а сдвиг по фазе напряжений - по синхроноскопу; последний позволяет не только уловить момент совпадения фаз напряжений, но также определить, вращается ли включаемый генератор быстрее или медленнее, чем работающие. Указанные приборы объединяют в так называемую «колонку синхронизации». Вольтметр и частотомер, относящиеся к синхронизируемому генератору, подключают к его трансформатору напряжения, а вольтметр и частотомер, относящиеся к работающим генераторам (или сети), обычно подключают к трансформатору напряжения сборных шин станции. Синхроноскоп подключают одновременно к обоим трансформаторам напряжения.

При соблюдении всех вышеуказанных условий разность напряжений генератора и сети равна нулю, поэтому уравнительного тока между включенным и другими генераторами не возникает. Точной ручной синхронизации свойственны следующие недостатки:

1) сложность процесса включения из-за необходимости подгонки напряжения по модулю и фазе, а также частоты гене­ратора;

2) большая длительность включения - от нескольких минут в нормальном режиме до нескольких десятков минут при авариях в системе, сопровождающихся изменением частоты и напряжения, когда особенно важно обеспечить быстрое включение генератора в сеть;

3) возможность механических повреждений генератора и первичного двигателя при включении агрегата с большим углом опережения.

Способ самосинхронизации . Он исключает необходимость точной подгонки частоты и фазы напряжения включаемой синхронной машины. Последнюю разворачивают до частоты вращения, незначительно отличающейся от синхронной (с точностью до нескольких процентов), и невозбуждённой включают в сеть. При этом обмотку возбуждения замыкают на разрядный резистор, используемый при гашении поля, либо на специально предусмотренный для этой цели резистор, либо на якорь возбудителя, чтобы избежать появления в обмотке возбуждения напряжений, опасных для ее изоляции. После включения генератора в сеть подаётся импульс на включение АГП и машина возбуждается.

В момент включения невозбуждённой синхронной машины в сеть имеет место бросок тока статора и снижение напряжения в сети. Однако ток и соответствующая электродинамическая сила (она пропорциональна квадрату тока) меньше, чем при КЗ на выводах генератора. Это объясняется тем, что ток статора в момент включения определяется только напряжением сети U c (так как генератор не возбуждён и его ЭДС равна нулю), которое меньше ЭДС нормального режима, и суммарными сопротивлениями Х" dΣ и X qΣ “ , кторые больше соответствующих сопротивлений генератора X" d и X" q за счет сопротивлений сети. Кроме того, при самосинхронизации затухание свободных периодических составляющих тока происходит быстрее, чем при КЗ, так как в первом случае ротор замкнут на разрядный резистор. Поэтому даже ошибочное включение машины в сеть с большим скольжением, когда продолжительность действия повышенных токов достаточно велика, не представляет опасности.

Испытания показали, что обмотка статора в механическом отношении не реагирует на первый пик тока включения; деформация достигает наибольшего значения только спустя несколько периодов после включения. Учитывая также быстрое затухание свободной сверхпереходной составляющей тока статора, можно при оценке допустимости самосинхронизации начальное значение периодической составляющей тока I п0 и напряжение U на выводах генератора определять по переходному сопротивлению:

.

Электродинамические силы, воздействующие при самосинхронизации на обмотку статора неявнополюсных машин, больше, чем явнополюсных, так как неявнополюсные машины имеют относительно большие полюсные деле ния, большие вылеты лобовых соединений обмотки статора и меньшие индуктивные сопротивления (определяющие начальное значение тока включения), чем явнополюсные машины.

Магнитный поток, создаваемый током статора, наводит в роторе ток, вследствие чего в машине возникает соответствующий магнитный поток ротора. Взаимодействие указанных магнитных потоков приводит к создан электромагнитного вращающего момента. Наибольшую опасность для машины представляет знакопеременный вращащий момент, возникающий в первые периоды времени после включения возбужденной машины в сеть. Наибольшее значение этого момента равно:

,

т. е. оно тем меньше, чем больше противление сети Х с и чем меньше разница между Х ” dΣ и Х ” qΣ . Поэтому турбогенераторы с массивным ротором и явнополюсные машины с демпферными обмотками по обеим осям на роторе подвергаются меньшему воздействию знакопеременных моментов вращения, чем явнополюсные машины без демпферных обмоток. В общем случае Х с ≠0, поэтому в момент включения невозбуждённой синхронной машины в сеть она подвергается меньшему воздействию вращающих моментов, чем при трёхфазном КЗ, в то время как в случае ошибочного включения возбужденной машины в сеть вращающие моменты могут в несколько раз превышать моменты при трёхфазном КЗ.



Моменты, возникающие в машине при самосинхронизации, с одной стороны воспринимаются конструктивными элементами, которые крепят активную сталь к корпусу и корпус статора к фундаменту, а с другой - передаются на вал первичного двигателя. Момент, воспринимаемый первичным двигателем, приближенно равен отношению его момента инерции к моменту инерции всего агрегата. Это отношение у гидрогенераторов меньше, чем у турбогенераторов, и составляет 0,05 - 0,1.

В установившемся асинхронном режиме при постоянном скольжении машины момент состоит из знакопеременных составляющих, изменяющихся с двойной частотой скольжения, и постоянных составляющих. Знакопеременные составляющие момента оказывают влияние на вхождение машины в синхронизм только при малых скольжениях (s≤1,0 %), а при больших скольжениях работа, обусловленная этими составляющими, практически равна нулю. При синхронной частоте вращения (s=0) эти составляющие превращаются в реактивную составляющую вращающего момента, обусловленную явнополюсностью машины (X dΣ ≠X qΣ ):

,

где δ 0 - фаза включения.

Постоянная составляющая момента определяет средний асинхронный вращающий момент

который оказывает основное влияние на процесс вхождения генератора в синхронизм; при синхронной частоте вращения этот момент становится равным нулю. Чем больше средний асинхронный вращающий момент, тем легче машина, включаемая в сеть с некоторым скольжением, приближается к синхронной частоте вращения. Далее за счет реактивного момента и синхронного момента, обусловленного возбуждением,

,

где δ - угол между векторами E q и U с , машина втягивается в синхронизм.

Наибольший асинхронный момент воздействует на турбогенераторы, имеющие массивный ротор, а наименьший - на гидрогенераторы без демпферных обмоток. Турбогенераторы даже при включении с большими скольжениями (15 - 20%) входят в синхронизм за 2 - 3 с.

Преимуществами метода самосинхронизации являются:

значительное упрощение операции включения, которое позволяет применить несложную систему автоматизации процесса;

быстрое включение машины в сеть, что особенно важно при аварии в системе;

возможность включения машин во время глубоких снижений напряжения и частоты сети, имеющих место при авариях в системе; отсутствие опасности повреждения машины.

Понижение напряжения, возникающее при включении невозбуждённой машины в сеть, может быть значительным, если мощность включаемой машины соизмерима с мощностью системы или превосходит ее. Тем не менее, этот факт не может служить препятствием для включения машин методом само синхронизации, так как напряжение быстро восстанавливается (примерно через 1-2 с).

В настоящее время для машин мощностью до 3000 кВт включительно самосинхронизация является основным способом включения на параллельную работу. Возможность использования этого способа для включения машин мощ­ностью более 3000 кВт ограничена допускаемым значением электродинамических сил в обмотке статора.

Включение машин с косвенным охлаждением методом самосинхронизации рекомендуется в тех случаях, когда переходная составляющая тока статора в момент включения не превосходит 3,5-кратного значения номинального тока статора. Этому условию удовлетворяют практически все гидрогенераторы и турбогенераторы с косвенным охлаждением, работающие по схеме блока с повышающими трансформаторами.

Включение методом самосинхронизации генераторов с непосредственным охлаждением обмоток допускается только в аварийных условиях. При работе нескольких генераторов на шины генераторного напряжения способ самосинхронизации не всегда применим; он допускается только в тех случаях, когда выполняется требование: I п0 ≤ 3,5I ном .

В аварийных случаях методом самосинхронизации допускается включать все машины независимо от кратности тока включения и способа их охлаждения.

Общие положения

В ряде случаев целесообразно питать определенную группу потребителей от двух или нескольких генераторов постоянного тока, которые при этом работают совместно на общую сеть. В этом случае в периоды малых нагрузок можно часть генераторов отключить, чем достигается экономия на эксплуатационных расходах. Если должно быть обеспечено бесперебойное питание потребителей при всех условиях, то нужно иметь резервный генератор. Необходимая мощность резервного генератора при совместной работе нескольких генераторов будет меньше. Возможно также выведение генераторов в плановый или аварийный ремонт без какого-либо или без серьезного нарушения бесперебойного обеспечения потребителей электроэнергией.

Для совместной работы используются генераторы независимого , параллельного или смешанного возбуждения. При этом они подключаются к сети параллельно. Последовательное включение генераторов применяется в редких случаях.

При параллельной работе генераторов необходимо соблюсти следующие условия: 1) при включении генератора на параллельную работу с другими не должно возникать значительных толчков тока, способных вызвать нарушения в работе генераторов и потребителей; 2) генераторы должны нагружаться по возможности равномерно, пропорционально их номинальной мощности.

При нарушении последнего условия полное использование мощности всех генераторов невозможно: когда один генератор нагружается полностью, другие недогружены, а дальнейшее увеличение общей нагрузки невозможно, так как отдельные генераторы будут перегружаться. Кроме того, при неравномерной нагрузке генераторов суммарные потери всех генераторов могут быть больше, а общий коэффициент полезного действия (к. п. д.) – меньше, чем при равномерной нагрузке.

В параллельной работе генераторов независимого и параллельного возбуждения нет никаких существенных различий. Поэтому ниже сначала рассмотрим параллельную работу генераторов параллельного возбуждения, а затем укажем на особенности параллельной работы генераторов смешанного возбуждения.

Включение на параллельную работу

Схема параллельной работы двух генераторов параллельного возбуждения показана на рисунке 1. Пусть генератор 1 уже работает на сборные шины и необходимо подключить к этим шинам генератор 2 .

Тогда надо соблюсти следующие условия: 1) полярность генератора 2 должна быть такой же, как и генератора 1 или шин Ш , т. е. положительный (+) и отрицательный (–) зажимы генератора 2 должны с помощью рубильника или другого выключателя Р2 соединиться с одноименными зажимами сборных шин; 2) электродвижущая сила (э. д. с.) генератора 2 должна равняться напряжению на шинах. При соблюдении этих условий при подключении генератора 2 к шинам с помощью рубильника не возникает никакого толчка тока и этот генератор после его включения будет работать без нагрузки, на холостом ходу.

Для выполнения и проверки этих условий включения поступают следующим образом. Генератор 2 приводят во вращение с номинальной скоростью и возбуждают до нужного напряжения. Его напряжение измеряют с помощью вольтметра V1 и вольтметрового переключателя П , для чего последний ставят в положение 2 – 2. Напряжение шин измеряют тем же вольтметром в положении переключателя Ш Ш . Чтобы одновременно проверить соответствие полярностей, вольтметр V1 должен быть магнитоэлектрического типа. Тогда при включении вольтметра по схеме, изображенной на рисунке 1, отклонения его стрелки при правильной полярности генератора 2 и шин будут происходить в одну и ту же сторону. Если полярность генератора 2 неправильна, то необходимо переключить два конца от его якоря. Нужное значение напряжения генератора достигается путем регулирования его тока возбуждения i в2 с помощью реостата.

Возможен также другой способ контроля правильности условий включения – с помощью вольтметра V2 , подключенного к зажимам одного полюса рубильника Р2 . Если другой полюс (нож) рубильника включить, то при равенстве напряжений и правильной полярности генераторов показание вольтметра V2 будет равно нулю.

При включении генератора 2 с неправильной полярностью в замкнутой цепи, образованной якорями обоих генераторов (рисунок 1) и шинами, э. д. с. обоих генераторов будут складываться. Так как сопротивление этой цепи мало, то возникают условия, эквивалентные короткому замыканию, что приводит к аварии. При правильной полярности, но неравных напряжениях генераторов в указанной цепи возникает уравнительный ток

значение которого также может оказаться большим.

При включении нагрузки уравнительный ток вызывает увеличение тока одного генератора и уменьшение тока другого, в результате чего генераторы нагружаются неодинаково.

Параллельная работа генераторов параллельного возбуждения

При параллельной работе двух или более генераторов их напряжения U всегда равны, так как генераторы включены на общие шины. Поэтому для случая работы двух генераторов их уравнения можно записать в следующем виде:

U = E а1 – I а1 × R а1 = E а2 – I а2 × R а2 , (1)

E а1 = c e1 × Ф δ1 × n 1 ; E а2 = c e2 × Ф δ2 × n 2 .

После включения генератора 2 (рисунок 1) на шины его можно нагрузить током. Для этого нужно увеличить э. д. с. генератора E а2 , которая станет больше U , в результате чего в якоре генератора 2 возникнет ток I а2 [смотрите уравнение (1)]. Тогда при неизменном токе нагрузки ток I а1 уменьшается. Если э. д. с. E а1 останется постоянной, то разность E а1 – I а1 × R а1 не будет уже равна прежнему значению напряжения на шинах и U увеличится. Поэтому для поддержания U = const одновременно с увеличением E а2 нужно уменьшать E а1 . Изменение E а1 и E а2 возможно двояким путем: изменением тока возбуждения i в или скорости вращения n . В обоих случаях генератор и его первичный двигатель изменят свою мощность. В эксплуатационных условиях обычно изменяют ток возбуждения. В этом случае первичный двигатель работает на своей естественной характеристике n = f (P ). При изменении нагрузки двигателя его скорость также изменится и его регулятор в случае использования теплового или гидравлического двигателя изменит подачу топлива, пара или воды в двигатель.

Таким образом, если желательно, например, генератор 1 разгрузить и передать его нагрузку на генератор 2 , то поступают следующим образом: уменьшают i в1 (или n 1) и одновременно увеличивают i в2 (или n 2) до тех пор, пока не будет I 1 = 0. После этого генератор 1 можно отключить от сети. Если бы ток i в1 был уменьшен слишком сильно, то возникло бы положение, при котором E а1 < U . При этом I а1 и I 1 изменили бы свой знак [смотрите уравнение (1)], т. е. свое направление. При этом генератор 1 стал бы работать в режиме двигателя, потребляя энергию от генератора 2 . Для теплового или гидравлического первичного двигателя такой режим недопустим, так как может вызвать аварию двигателя.

Необходимо иметь ввиду, что вследствие малости R а1 и R а2 даже малые изменения токов i в1 и i в2 способны вызвать большие изменения токов генераторов, так как, согласно уравнению (1), изменения E а1 и E а2 при U = const должны компенсироваться изменениями I а1 × R а1 и I а2 × R а2 . Поэтому регулирование токов возбуждения генераторов должно производиться осторожно и достаточно плавно. В условиях эксплуатации напряжение U часто регулируется автоматически регуляторами токов возбуждения генераторов. При этом характеристики регуляторов подбираются таким образом, чтобы обеспечить правильное распределение нагрузок между генераторами.

Если генераторы работают параллельно без регулирования токов возбуждения, то распределение нагрузок между ними зависит от вида их внешних характеристик. Пусть, например, внешние характеристики двух генераторов одинаковой мощности 1 и 2 изображаются кривыми 1 и 2 на рисунке 2. Если генераторы включены на параллельную работу при холостом ходе, то эти характеристики исходят из одной точки U 0 на оси ординат. Если затем подключить к генераторам некоторую нагрузку, то напряжение упадет до некоторого значения U , общего для обоих генераторов. При этом генератор 1 , имеющий более "мягкую" внешнюю характеристику, будет нагружаться меньшим током (I 1), чем генератор 2 (I 2), имеющий более "жесткую" характеристику. Зависимость U от общего тока нагрузки I = I 1 + I 2 изобразится на рисунке 2 в виде кривой 3 .

Если мощности генераторов 1 и 2 различны, то более правильно о распределении нагрузки между ними можно судить, если начертить характеристики 1 и 2 на рисунке 2 в функции относительных токов:

При совпадении таких характеристик обоих генераторов распределение нагрузок между ними происходит пропорционально их номинальным мощностям, что является наиболее выгодным.

При трех и более параллельно работающих генераторах также имеют место описанные выше явления, и анализ их работы можно произвести аналогичным образом.

Параллельная работа генераторов смешанного возбуждения

Упрощенная схема параллельной работы двух генераторов смешанного возбуждения с согласным включением последовательных обмоток изображена на рисунке 3.

Рисунок 3. Схема параллельной работы генераторов смешанного возбуждения с согласным включением последовательных обмоток

Если показанный на рисунке 3 уравнительный провод аб отсутствует, то устойчивая параллельная работа невозможна. Действительно, пусть при отсутствии этого провода ток I 1 первого генератора по какой-либо случайной причине (например, вследствие увеличения скорости вращения генератора) несколько увеличился. Тогда действие последовательной обмотки возбуждения этого генератора усилится, его э. д. с. E а1 возрастет, что вызовет дальнейшее увеличение I 1 , и т. д. Одновременно ток I 2 и э. д. с. E а2 второго генератора будут беспрерывно уменьшатся. В результате возможна значительная перегрузка генератора 1 , а генератор 2 разгрузится и даже может перейти в двигательный режим.

При наличии уравнительного провода аб параллельная работа будет протекать нормально, так как случайное приращение тока якоря одного генератора распределится между последовательными обмотками возбуждения обоих генераторов и вызовет увеличение э. д. с. обоих генераторов.

Можно также перекрестить последовательные обмотки возбуждения обоих генераторов: обмотку генератора 1 включить последовательно в цепь якоря генератора 2 и наоборот.

Параллельная работа генераторов смешанного возбуждения со встречным включением последовательных обмоток происходит без подобных затруднений.

На электрических станциях обычно устанавли­вают несколько синхронных генераторов, включае­мых параллельно для совместной работы (рис. 21.1). Наличие нескольких генераторов вместо одного суммарной мощности дает преимущества, объяс­няемые теми же соображениями, которые были из­ложены применительно к параллельной работе трансформаторов (см. § 2.2).

При включении синхронного генератора в сеть на параллельную работу необходимо соблюдать следующие условия: ЭДС генератора в момент подключения его к сети должна быть равна и проти­воположна по фазе напряжению сети (
),частота ЭДС генератора должна быть равна часто­те переменного напряжения в сети ; порядок следо­вания фаз на выводах генератора должен быть таким же, что и на зажимах сети.

Приведение генератора в состояние, удовлетво­ряющее всем указанным условиям, называют син­ хронизацией. Несоблюдение любого из условий син­хронизации приводит к появлению в обмотке статора больших уравнительных токов, чрезмерное значение которых может явиться причиной аварии.

Включить генератор в сеть с параллельно рабо­тающими генераторами можно или способом точной синхронизации, или способом самосинхронизации

Способ точной синхронизации. Сущность это­го способа состоит в том, что, прежде чем включить генератор в сеть, его приводят в состояние, удовле­творяющее всем вышеперечисленным условиям. Момент соблюдения этих условий, т. е. момент син­хронизации, определяют прибором, называемым синхроноскопом. По конструкции синхроноскопы разделяют на стрелочные и ламповые. Рассмотрим процесс синхронизации генераторов с применением лампового синхроноскопа, который состоит из трех ламп 1, 2, 3, расположенных в вершинах равносто­роннего треугольника.

При включении ламп по схеме «на погасание» (рис. 21.2, а) мо­мент синхронизации соответствует одновременному погасанию всех ламп. Предположим, что звезда ЭДС генератора
враща­ется с угловой частотой , превышающей угловую частоту

враще­ния звезды напряжений сети
.
В этом случае напря­жение на лампах определяется геометрической суммой +; +; +(рис. 21.2, б ).

Рис. 21.1. Включение синхронных генераторов

на параллельную работу:

Г 1 - Г 4 – синхронные генераторы, ПД 1 -ПД 4 - приводные двигатели

В момент сов­падения векторов звезды ЭДС с векторами звезды напряжений эта сумма достигает наибольшего значения, при этом лам­пы горят с наибольшим накалом (напряжение на лампах равно удвоенному напряжению сети). В последующие моменты времени звезда ЭДС обгоняет звезду напряже­ний, и напряжение на лампах уменьшается. В момент синхрониза­ции векторы ЭДС и напряжений занимают положение, при кото­ром , т.е.
= 0, и все три лампы одновременно гаснут (рис. 21.2, в). При большой разности уг­ловых частот и лампы вспыхивают час­то. Изменяя частоту вращения первичного двигателя, добиваются равенства
, очем будет свидетельст­вовать погасание ламп на длительное время. В этот момент и следует замкнуть рубильник, после чего генератор окажется подключен­ным к сети.

Рис. 21.2. Ламповый синхроноскоп

Способ самосин­хронизации . Ротор не­возбужденного генера­тора приводят во вра­щение первичным дви­гателем до частоты вращения, отличающейся от синхронной не более чем на 2-5%, затем генератор подключают к сети. Для того чтобы избежать перенапряжений в обмотке ротора в момент подключения генератора к сети, ее замыкают на некоторое активное Сопротивление. Так как в момент подключения генератора к сети его ЭДС равна нулю (генератор не возбужден), то под действием напряжения сети в обмотке статора наблюдается резкий бросок тока, превышающий номинальное значение тока генератора. Вслед за включением обмотки статора в сеть подключают обмотку возбуждения к источнику постоянного тока и синхронный генера­тор под действием электромагнитного момента, действующего на его ротор, втягивается в синхронизм, т. е. частота вращения ротора становится синхронной. При этом ток статора быстро уменьшается.

При самосинхронизации в генераторе протекают сложные электромеханические переходные процессы, вызывающие значи­тельные механические воздействия на обмотки, подшипники и муфту, соединяющую генератор с турбиной. Влияние этих воздей­ствий на надежность генератора учитывается при проектировании синхронных генераторов. Способ самосинхронизации (грубой синхронизации) обычно применяют в генераторах при их частых включениях. Этот способ прост и легко автоматизируется.