Тарифы Услуги Сим-карты

Базовой единицей измерения скорости передачи. Что такое скорость интернета

Думаете, скорость вашего широкополосного подключения к интернету быстрая? Осторожно, после прочтения данной статьи ваше отношение к слову "быстро" относительно передачи данных может сильно измениться. Представьте объем вашего жесткого диска на компьютере и определитесь, какая скорость его заполнения является быстрой -1 Гбит/с или может быть 100 Гбит/с, тогда 1 терабайтный диск заполнится уже через 10 сек? Если бы книга рекордов Гиннеса констатировала рекорды по скорости передачи информации, то ей бы пришлось обработать все приведенные далее эксперименты.

В конце ХХ в., то есть еще относительно недавно, скорости в магистральных каналах связи не превышали десятков Гбит/с. В то же время пользователи интернета с помощью телефонных линий и модемов наслаждались скоростью в десятки килобит в секунду. Интернет был по карточкам и цены за услугу были немаленькие - тарифы приводились, как правило, в у.е. На загрузку одной картинки порой даже уходило несколько часов и как точно подметил один из пользователей интернета того времени: "Это был интернет, когда за одну ночь можно было только несколько женщин в интернете посмотреть". Такая скорость передачи данных медленная? Возможно. Однако стоит помнить, что все в мире относительно. Например, если бы сейчас был 1839 г., то неким подобием интернета для нас бы представляла самая протяженная в мире оптическая телеграфная линии связи Петербург-Варшава. Длина этой линии связи для ХIХ века кажется просто заоблачной - 1200 км, состоит она из 150 ретранслирующих транзитных вышек. Любой гражданин может воспользоваться этой линией и послать "оптическую" телеграмму. Скорость "колоссальная" - 45 символов на расстояние 1200 км можно передать всего за 22 минуты, никакая конная почтовая связь здесь и рядом не стояла!

Вернемся в ХХI век и посмотрим, что в сравнении с описанными выше временами мы сегодня имеем. Минимальные тарифы у крупных провайдеров проводного интернета исчисляются уже не единицами, а несколькими десятками Мбит/с; смотреть видео с разрешением менее 480pi мы не уже хотим, такое качество картинки нас уже не устраивает.

Посмотрим среднюю скорость интернета в разных странах мира. Представленные результаты составлены CDN-провайдером Akamai Technologies. Как видно, даже в республике Парагвай уже в 2015 году средняя скорость соединения по стране превышала 1.5 Мбит/с (кстати, Парагвай имеет близкий для нас русских по транслитерации домен - *.py).

На сегодняшний день средняя скорость интернет соединений в мире составляет 6.3 Мбит/с . Наибольшая средняя скорость наблюдается в Южной Корее 28.6 Мбит/с, на втором месте Норвегия -23.5 Мбит/с, на третьем Швеция - 22.5 Мбит/с. Ниже приведена диаграмма, показывающая среднюю скорость интернета по лидирующим в этом показателе странам на начало 2017 года.

Хронология мировых рекордов скоростей передачи данных

Поскольку сегодня неоспоримым рекордсменом по дальности и скорости передачи являются волоконно-оптические системы передачи, акцент будет делаться именно на них.

С каких скоростей все начиналось? После многочисленных исследований в период с 1975 по 1980 гг. появилась первая коммерческая волоконно-оптическая система, работающая с излучением на длине волны 0,8 мкм на полупроводниковом лазере на основе арсенида галлия.

22 апреля 1977 года в Лонг-Бич, штат Калифорния, компания General Telephone and Electronics впервые использовала оптический канал для передачи телефонного трафика на скорости 6 Мбит/с . При такой скорости, можно организовать одновременную передачу до 94 простейших цифровых телефонных каналов.

Максимальная скорость оптических систем передачи в экспериментальных исследовательских установках этого времени доходило до 45 Мбит/с , максимальное расстояние между регенераторами - 10 км .

В начале 1980-х передача светового сигнала проходила в многомодовых волокнах уже на длине волны 1,3 мкм с помощью InGaAsP-лазеров. Максимальная скорость передачи была ограничена значением 100 Мбит/с вследствие дисперсии.

При использовании одномодовых ОВ в 1981 году при лабораторных испытаниях добились рекордной для того времени скорости передачи 2 Гбит/с на расстоянии 44 км .

Коммерческое внедрение таких систем в 1987 году обеспечивало скорость до 1,7 Гбит/с с протяженностью трассы 50 км .

Как можно было заметить, оценивать рекорд системы связи стоит не только по скорости передачи, здесь также крайне важно на какое расстояние данная система способна обеспечить данную скорость. Поэтому для характеристики систем связи обычно пользуются произведением общей пропускной способности системы B [бит/с] на ее дальность L [км].


В 2001 году при применении технологии спектрального уплотнения была достигнута скорость передачи 10,92 Тбит/с (273 оптических канала по 40 Гбит/с), но дальность передачи была ограничена значением 117 км (B∙L = 1278 Тбит/с∙км).

В этом же году был проведен эксперимент по организации 300 каналов со скоростью 11,6 Гбит/с каждый (общая пропускная способность 3.48 Тбит/с ), длина линии составила свыше 7380 км (B∙L = 25 680 Тбит/с∙км).

В 2002 г. была построена межконтинентальная оптическая линия протяженностью 250 000 км с общей пропускной способностью 2.56 Тбит/с (64 WDM канала по 10 Гбит/с, трансатлантический кабель содержал 4 пары волокон).

Теперь с помощью единственного оптоволокна можно одновременно передавать 3 миллиона! телефонных сигналов или 90 000 сигналов телевидения.

В 2006 г. Nippon Telegraph и Telephone Corporation организовали скорость передачи 14 триллион бит в секунду (14 Тбит/с ) по одному оптическому волокну при длине линии 160 км (B∙L = 2240 Тбит/с∙км).

В этом эксперименте они публично продемонстрировали передачу за одну секунду 140 цифровых HD фильмов. Величина 14 Тбит/с появилась в результате объединения 140 каналов по 111 Гбит/с каждый. Использовалось мультиплексирование с разделением по длине волны, а также поляризационное уплотнение.

В 2009 г. Bell Labs достигли параметра B∙L = 100 пета бит в секунду умножить на километр, преодолев, таким образом, барьер в 100 000 Тбит/с∙км.

Для достижения таких рекордных результатов исследователи из лаборатории Bell Labs в Villarceaux, Франция, использовали 155 лазеров, каждый из которых работает на своей частоте и осуществляет передачу данных на скорости 100 Гигабит в секунду. Передача осуществлялась через сеть регенераторов, среднее расстояние между которыми составляло 90 км. Мультиплексирование 155 оптических канала по 100 Гбит/с позволило обеспечить общую пропускную способность 15,5 Тбит/с на расстоянии 7000 км . Чтобы осмыслить значение этой скорости, представьте, что идет передача данных из Екатеринбурга во Владивосток со скоростью 400 DVD-дисков в секунду.

В 2010 г. NTT Network Innovation Laboratories добились рекорда скорости передачи 69.1 терабит в секунду по одному 240-километровому оптическому волокну. Используя технологию волнового мультиплексирования (WDM), они мультиплексировали 432 потока (частотный интервал составил 25 ГГц) с канальной скоростью 171 Гбит/с каждый.

В эксперименте применялись когерентные приемники, усилители с низким уровнем собственных шумов и с ультра-широкополосным усилением в С и в расширенном L диапазонах. В сочетании с модуляцией QAM-16 и поляризационного мультиплексирования, получилось достичь значения спектральной эффективности 6.4 бит/с/Гц.

На графике ниже видна тенденция развития волоконно-оптических систем связи на протяжении 35 лет с начала их появления.

Из данного графика возникает вопрос: "а что дальше?" Каким образом можно еще в разы повысить скорость и дальность передачи?

В 2011 г. мировой рекорд пропускной способности установила компания NEC, передав более 100 терабит информации в секунду по одному оптическому волокну. Этого объема данных, переданного за 1 секунду, достаточно, чтобы просматривать HD фильмы непрерывно в течение трех месяцев. Или это эквивалентно передаче за секунду содержимого 250 двухсторонних Blu-ray дисков.

101,7 терабит были переданы за секунду на расстояние 165 километров с помощью мультиплексирования 370 оптических каналов, каждый из которых имел скорость 273 Гбит/с.

В этом же году National Institute of Information and Communications Technology (Токио, Япония) сообщил о достижении 100-терабного порога скорости передачи посредством применения многосердцевинных ОВ. Вместо того чтобы использовать волокно только с одной световедущей жилой, как это происходит современных коммерческих сетях, команда использовали волокно с семью сердцевинами. По каждой из них осуществлялась передача со скоростью 15.6 Тбит/с, таким образом, общая пропускная способность достигла 109 терабит в секунду.

Как заявили тогда исследователи, использование многосердцевинных волокон пока является достаточно сложным процессом. Они имеют большое затухание и критичны к взаимным помехам, поэтому сильно ограничены по дальности передачи. Первое применение таких 100 терабитных систем будет внутри гигантских центров обработки данных компаний Google, Facebook и Amazon.

В 2011 г. команда ученых из Германии из технологического института Karlsruhe Institute of Technology (KIT) без использования технологии xWDM передала данные по одному ОВ со скоростью 26 терабит в секунду на расстояние 50 км . Это эквивалентно передачи в одном канале одновременно 700 DVD-дисков в секунду или 400 миллионов телефонных сигналов.

Начали появляться новые услуги, такие как облачные вычисления, трехмерное телевидение высокой четкости и приложения виртуальной реальности, что опять требовало беспрецедентной высокой емкости оптического канала. Для решения этой проблемы исследователи из Германии продемонстрировали применение схемы оптического быстрого преобразования Фурье для кодирования и передачи потоков данных со скоростью 26.0 Тбит/с. Для организации такой высокой скорости передачи была использована не просто классическая технология xWDM, а оптическое мультиплексирование с ортогональным частотным разделением каналов (OFDM) и соответственно декодирование оптических OFDM потоков.

В 2012 г. японская корпорация NTT (Nippon Telegraph and Telephone Corporation) и три ее партнера: фирма Fujikura Ltd., университет Hokkaido University и университет Technical University of Denmark установили мировой рекорд пропускной способности, передав 1000 терабит (1 Пбит / с ) информации в секунду по одному оптическому волокну на расстояние 52.4 км . Передача одного петабита в секунду эквивалентна передаче 5000 двухчасовых HD фильмов за одну секунду.

С целью значительного улучшения пропускной способности оптических коммуникационных систем, было разработано и протестировано волокно с 12-тью сердцевинами, расположенных особым образом в виде соты. В данном волокне благодаря его особой конструкции взаимные помехи между соседними сердцевинами, которые обычно являются главной проблемой в обычных многосердцевинных ОВ, значительно подавлены. В результате применения поляризационного мультиплексирования, технологии xWDM, квадратурной амплитудной модуляции 32-QAM и цифрового когерентного приема, ученые успешно повысили эффективность передачи в расчете на одну сердцевину более чем в 4 раза, в сравнении с предыдущими рекордами для многосердцевинных ОВ.

Пропускная способность составила 84.5 терабит в секунду на одну сердцевину (скорость канала 380 Гбит/с х 222 каналов). Общая пропускная способность на одно волокно составила 1.01 петабит в секунду (12 х 84.5 терабит).

Также в 2012 г. немного позднее исследователи из лаборатории NEC в Принстоне, Нью-Джерси, США, и Нью-Йоркского научно-исследовательского центра Corning Inc., успешно продемонстрировали сверхвысокую скорость передачи данных со скоростью 1.05 петабит в секунду. Данные передавались с помощью одного многосердцевинного волокна, которое состояло из 12 одномодовых и 2 маломодовых сердцевин.

Данное волокно было разработано исследователями Corning. Объединив технологии спектрального и поляризационного разделения с пространственным мультиплексированием и оптической системы MIMO, а также используя многоуровневые форматы модуляции, исследователи в результате достигли общей пропускной способности 1.05 Пбит/с, поставив, таким образом, новый мировой рекорд самой высокой скорости передачи по одному оптическому волокну.

Летом 2014 года рабочая группа в Дании, используя новое волокно, предложенное японской компанией Telekom NTT, установила новый рекорд -организовав с помощью одного лазерного источникаскорость в 43 Тбит/с . Сигнал от одного лазерного источника передавался по волокну с семью сердцевинами.

Команда Датского технического университета совместно с NTT и Fujikura ранее уже достигала самой высокой в мире скорости передачи данных в 1 петабит в секунду. Однако тогда были использованы сотни лазеров. Сейчас же рекорд в 43 Тбит/с был достигнут с помощью одного лазерного передатчика, что делает систему передачи более энергоэффективной.

Как мы убедились, в связи есть свои интересные мировые рекорды. Для новичков в этой области стоит отметить, что многие представленные цифры до сих пор не встречаются повсеместно в коммерческой эксплуатации, поскольку были достигнуты в научных лабораториях в единичных экспериментальных установках. Однако и сотовый телефон когда-то был прототипом.

Чтобы не перегружать ваш носитель информации, пока остановим текущий поток данных.

Продолжение следует…

Серьезный интерес к вопросу скорости интернет соединения обычно возникает после или блога в процессе их Обусловлено это необходимостью узнать и, как правило, повысить скорость загрузки сайта, зависящей, помимо других факторов, в большой степени именно от скорости интернета. В данной статье коротко рассмотрим, что такое входящая скорость, исходящая скорость, а главное, разберемся с единицами измерения скорости передачи данных , понятие о которых у многих начинающих пользователей весьма расплывчатое. Кроме того, приведем простые методы измерения скорости интернет соединения посредством наиболее распространенных онлайн сервисов.

Что же такое, скорость интернет соединения? Под скоростью интернет соединения понимают объём передаваемой информации в единицу времени. Различают входящую скорость (скорость получения) – скорость передачи данных из интернета к нам на компьютер; исходящую скорость (скорость передачи) – скорость передачи данных от нашего компьютера в интернет.

Основные единицы измерения скорости интернета

Базовой единицей измерения количества передаваемой информации является бит (bit ). В качестве единицы времени принята секунда. Значит, скорость передачи будет измеряться бит/сек. Обычно оперируют единицами«килобит в секунду» (Кбит/сек), «мегабит в секунду» (Мбит/сек), «гигабит в секунду» (Гбит/сек).

1 Гбит/сек = 1000 Мбит/сек = 1 000 000 Кбит/сек = 1 000 000 000 бит/сек.

На английском языке базовая единица для измерения скорости передачи информации, используемая в вычислительной технике — бит в секунду или бит/с будет bits per second или bps.

Килобиты в секунду и, в большинстве случаев, Мегабиты в секунду (Кбит/с; Кб/с; Kb/s; Kbps, Мбит/с; Мб/с; Мb/s; Мbps - буква «б» маленькая ) используются в технических спецификациях и договорах на оказание услуг интернет провайдерами.Именно в приведенных единицах определяется скорость интернет соединения в нашем тарифном плане. Обычно, эта обещанная провайдером скорость, называется заявленной скоростью.

И так, количество передаваемой информации измеряется в битах. Размер же передаваемого или располагающегося на жестком диске компьютера файла, измеряется в байтах (Килобайтах, Мегабайтах, Гигабайтах).Байт (byte) – это также единица количества информации. Один байт равен восьми битам (1 Байт = 8 бит).

Чтобы было проще понимать различие между битом и байтом, можно сказать другими словами. Информация в сети передается «бит за битом», поэтому и скорость передачи измеряется в бит в секунду. Объем же хранимых данных измеряется в байтах. Поэтому и скорость закачки определенного объема измеряется в байтах в секунду.

Скорость передаваемого файла, использующаяся многими пользовательскими программами (программы-загрузчики, интернет браузеры, файлообменники) измеряется в Килобайтах, Мегабайтахи Гигабайтах в секунду.

Другими словами, при подключении к интернету, в тарифных планах указана скорость передачи данных в Мегабитах в секунду. А прискачивании файлов из интернета показывается скорость в Мегабайтах в секунду.

1 ГБайт = 1024 МБайта = 1 048 576 КБайта = 1 073 741 824 Байта;

1 МБайт = 1024 КБайта;

1 КБайт = 1024 Байта.

На английском языке базовая единица для измерения скорости передачи информации — Байт в секунду или Байт/с будет byte per second или Byte/s.

Килобайты в секунду обозначаются, как КБайт/с, КБ/с, KB/s или KBps.

Мегабайты в секунду - МБайт/с, МБ/с, МB/s или МBps.

Килобайты и Мегабайты в секунду всегда пишутся с большой буквой «Б», как в латинской транскрипции, так и в русском варианте написания: МБайт/с, МБ/с, МB/s, МBps.

Как определить, сколько мегабит в мегабайте и наоборот?!

1 МБайт/с = 8Мбит/с.

Например, если скорость передачи данных, отображаемая браузером, равна 2 МБ/с (2 Мегабайта в секунду), то в Мегабитах это будет в восемь раз больше - 16 Мбит/с (16 Мегабит в секунду).

16 Мегабит в секунду = 16 / 8 = 2,0 Мегабайт в секунду.

Т.е, чтобы получить величину скорости в «Мегабайтах в секунду», нужно значение в «Мегабитах в секунду» разделить на восемь и наоборот.

Кроме скорости передачи данных, важным измеряемым параметром является время реакции нашего компьютера, обозначаемое Ping. Другими словами, пинг – это время ответа нашего компьютера на посланный запрос. Чем меньше ping, тем меньше, например, время ожидания, необходимое для открытия интернет страницы. Понятно, что чем меньше пинг, тем лучше. При измерении пинга определяется время, затрачиваемое для прохождения пакета от сервера измеряющего онлайн сервиса к нашему компьютеру и обратно.

Определение скорости интернет соединения

Для определения скорости интернет соединения существует несколько методов. Одни более точные, другие менее точные. В нашем же случае, для практических нужд, считаю, достаточно использования некоторых наиболее распространенных и неплохо себя зарекомендовавших онлайн сервисов. Почти все они, кроме проверки скорости интернета содержат многие другие функции, среди которых наше местоположение, провайдер, время реакции нашего компьютера (пинг) и др.

При желании можно много экспериментировать, сопоставляя результаты измерений различных сервисов и выбирая понравившиеся. Меня, например, устраивают такие сервисы, как известный Яндекс интернетометр, а также еще два – SPEED . IO и SPEEDTEST . NET .

Страница измерения скорости интернетавЯндекс интернетометре открывается по адресу ipinf.ru/speedtest.php (рисунок 1). Для повышения точности измерения выбираем меткой на карте свое местоположение и нажимаем левой кнопкой мыши. Процесс измерения начинается. Результаты измеренных входящей (download ) и исходящей (upload ) скоростей отражаются во всплывающей таблице и слева в панели.

Рисунок 1. Страница измерения скорости интернета в Яндекс интернетометре

Сервисами SPEED.IO и SPEEDTEST.NET, процесс измерения в которых анимируется в панели приборов, подобной автомобильной (рисунки 2, 3), пользоваться просто приятно.

Рисунок 2. Измерение скорости интернет соединения в сервисе SPEED.IO

Рисунок 3. Измерение скорости интернет соединения в сервисе SPEEDTEST.NET

Пользование приведенными сервисами интуитивно понятно и обычно не вызывает никаких затруднений. Опять же определяются входящая (download), исходящая (upload) скорости, ping . Speed.io измеряет текущую скорость интернета до ближайшего от нас сервера компании.

Кроме того в сервисе SPEEDTEST.NET можно протестировать качество сети, сравнить свои предыдущие результаты измерений с настоящими, узнать результаты других пользователей, сравнить свои результаты с обещанной провайдером скоростью.

Наряду с указанными, широко используются сервисы: CY - PR . com , SPEED . YOIP

Общая информация

В большинстве случаев в сетях информация передается последовательно. Биты данных поочередно передаются по каналу связи, кабельному или беспроводному. На Рисунке 1 изображена последовательность бит, передаваемая компьютером или какой-либо другой цифровой схемой. Такой сигнал данных часто называют исходным. Данные представлены двумя уровнями напряжения, например, логической единице соответствует напряжение +3 В, а логическому нулю - +0.2 В. Могут использоваться и другие уровни. В формате кода без возврата к нулю (NRZ) (Рисунок 1) сигнал не возвращается к нейтральному положению после каждого бита, в отличие от формата с возвращением к нулю (RZ).

Битрейт

Скорость передачи данных R выражается в битах в секунду (бит/с или bps). Скорость является функцией продолжительности существования бита или времени бита (T B) (Рисунок 1):

Эту скорость называют также шириной канала и обозначают буквой C. Если время бита равно 10 нс, то скорость передачи данных определится как

R = 1/10 × 10 - 9 = 100 млн. бит/с

Обычно это записывается как 100 Мб/с.

Служебные биты

Битрейт, как правило, характеризует фактическую скорость передачи данных. Однако в большинстве последовательных протоколов данные являются только частью более сложного кадра или пакета, включающего в себя биты адреса источника, адреса получателя, обнаружения ошибок и коррекции кода, а также прочую информацию или биты управления. В кадре протокола данные называются полезной информацией (payload). Биты, не являющиеся данными, называются служебными (overhead). Иногда количество служебных бит может быть существенным - от 20% до 50%, в зависимости от общего числа полезных бит, передаваемых по каналу.

К примеру, кадр протокола Ethernet, в зависимости от количества полезных данных, может иметь до 1542 байт или октетов. Полезных данных может быть от 42 до 1500 октетов. При максимальном числе полезных октетов служебных будет только 42/1542, или 2.7%. Их было бы больше, если полезных байт было бы меньше. Это соотношение, известное также под названием эффективность протокола, обычно выражают в процентах количества полезных данных от максимального размера кадра:

Эффективность протокола = количество полезных данных/размер кадра = 1500/1542 = 0.9727 или 97.3%

Как правило, чтобы показать истинную скорость передачи данных по сети, фактическая скорость линии увеличивается на коэффициент, зависящий от количества служебной информации. В One Gigabit Ethernet фактическая скорость линии равна 1.25 Гб/с, тогда как скорость передачи полезных данных составляет 1 Гб/с. Для 10-Gbit/s Ethernet эти величины равны, соответственно, 10.3125 Гб/с и 10 Гб/с. При оценке скорости передачи данных по сети также могут использоваться такие понятия, как пропускная способность, скорость передачи полезных данных или эффективная скорость передачи данных.

Скорость передачи в бодах

Термин «бод» происходит от фамилии французского инженера Эмиля Бодо (Emile Baudot), который изобрел 5-битовый телетайпный код. Скорость передачи в бодах выражает количество изменений сигнала или символа за одну секунду. Символ - это одно из нескольких изменений напряжения, частоты или фазы.

Двоичный формат NRZ имеет два представляемых уровнями напряжения символа, по одному на каждый 0 или 1. В этом случае скорость передачи в бодах или скорость передачи символов - то же самое, что и битрейт. Однако на интервале передачи можно иметь более двух символов, в соответствии с чем на каждый символ отводится несколько бит. При этом данные по любому каналу связи могут передаваться только с помощью модуляции.

Когда средство передачи не может обработать исходный сигнал, на первый план выходит модуляция. Конечно, речь идет о беспроводных сетях. Исходные двоичные сигналы не могут передаваться непосредственно, они должны переноситься на несущую радиочастоту. В некоторых протоколах кабельной передачи данных также применяется модуляция, позволяющая повысить скорость передачи. Это называется «широкополосной передачей».
Выше: модулирующий сигнал, исходный сигнал

Используя составные символы, в каждом можно передавать по несколько бит. Например, если скорость передачи символов равна 4800 бод, и каждый символ состоит из двух бит, полная скорость передачи данных будет 9600 бит/с. Обычно количество символов представляется какой-либо степенью числа 2. Если N - количество бит в символе, то число требуемых символов будет S = 2N. Таким образом, полная скорость передачи данных:

R = скорость в бодах × log 2 S = скорость в бодах × 3.32 log 1 0 S

Если скорость в бодах равна 4800, и на символ отводится два бита, количество символов 22 = 4.

Тогда битрейт равен:

R = 4800 × 3.32log(4) = 4800 × 2 = 9600 бит/с

При одном символе на бит, как в случае с двоичным форматом NRZ, скорости передачи в битах и бодах совпадают.

Многоуровневая модуляция

Высокий битрейт можно обеспечить многими способами модуляции. Например, при частотной манипуляции (FSK) в каждом символьном интервале для представления логических 0 и 1 обычно используются две различные частоты. Здесь скорость передачи в битах равна скорости передачи в бодах. Но если каждый символ представляет два бита, то требуются четыре частоты (4FSK). В 4FSK скорость передачи в битах в два раза превышает скорость в бодах.

Еще одним распространенным примером является фазовая манипуляция (PSK). В двоичной PSK каждый символ представляет 0 или 1. Двоичному 0 соответствует 0°, а двоичной 1 - 180°. При одном бите на символ скорость в битах равна скорости в бодах. Однако соотношение числа бит и символов несложно увеличить (см. Таблицу 1).

Таблица 1. Двоичная фазовая манипуляция.

Биты

Фазовый сдвиг (градусов)

Например, в квадратурной PSK на один символ приходится два бита. При использовании такой структуры и двух бит на бод скорость передачи в битах превышает скорость в бодах в два раза. При трех битах на один бод модуляция получит обозначение 8PSK, и восемь различных фазовых сдвигов будут представлять три бита. А при 16PSK 16 фазовых сдвигов представляют 4 бита.

Одной из уникальных форм многоуровневой модуляции является квадратурная амплитудная модуляция (QAM). Для создания символов, представляющих множество битов, QAM использует комбинацию различных уровней амплитуд и смещений фаз. Например, 16QAM кодирует четыре бита на символ. Символы представляют собой сочетание различных уровней амплитуды и фазовых сдвигов.

Для наглядного отображения амплитуды и фазы несущей для каждого значения 4-битного кода используется квадратурная диаграмма, имеющая также романтическое название «сигнальное созвездие» (Рисунок 2). Каждая точке соответствует определенная амплитуда несущей и фазовый сдвиг. В общей сложности 16 символов кодируются четырьмя битами на символ, в результате чего битрейт превышает скорость передачи в бодах в 4 раза.

Почему несколько бит на бод?

Передавая больше одного бита на бод можно отправлять данные с высокой скоростью по более узкому каналу. Следует напомнить, что максимально возможная скорость передачи данных определяется пропускной способностью канала передачи.
Если рассмотреть наихудший вариант чередования нулей и единиц в потоке данных, то максимальная теоретическая скорость передачи C в битах для данной полосы пропускания B будет равна:

Или полоса пропускания при максимальной скорости:

Для передачи сигнала со скоростью 1 Мб/с требуется:

B = 1/2 = 0.5 МГц или 500 кГц

При использовании многоуровневой модуляции с несколькими битами на символ максимальная теоретическая скорость передачи данных будет равна:

Здесь N - количество символов в символьном интервале:

log 2 N = 3.32 log10N

Полоса пропускания, требуемая для обеспечения желаемой скорости при заданном количестве уровней, вычисляется следующим образом:

Например, полоса пропускания, необходимая для достижения скорости передачи 1 Мб/с при двух битах на один символ и четырех уровнях, может быть определена как:

log 2 N = 3.32 log 10 (4) = 2

B = 1/2(2) = 1/4 = 0.25 МГц

Количество символов, необходимых для получения желаемой скорости передачи данных в фиксированной полосе пропускания, может быть вычислено как:

3.32 log 10 N = C/2B

Log 10 N = C/2B = C/6.64B

N = log-1 (C/6.64B)

Используя предыдущий пример, количество символов, необходимых для передачи со скоростью 1 Мб/с по каналу 250 кГц, определится следующим образом:

log 10 N = C/6.64B = 1/6.64(0.25) = 0.60

N = log-1 (0.602) = 4 символа

Эти расчеты предполагают, что в канале отсутствуют шумы. Для учета шума нужно применить теорему Шеннона-Хартли:

C = B log 2 (S/N + 1)

C -пропускная способность канала в битах в секунду,
В - полоса пропускания канала в герцах,
S/N -отношение сигнал/шум.

В форме десятичного логарифма:

C = 3.32B log 10 (S/N + 1)

Какова максимальная скорость в канале 0.25 МГц с отношением S/N равным 30 дБ? 30 дБ переводится в 1000. Следовательно, максимальная скорость:

C = 3.32B log 10 (S/N + 1) = 3.32(0.25) log 10 (1001) = 2.5 Мб/с

Теорема Шеннона-Хартли конкретно не утверждает, что для достижения этого теоретического результата должна применяться многоуровневая модуляция. Используя предыдущую процедуру, можно узнать, сколько бит требуется на один символ:

log 10 N = C/6.64B = 2.5/6.64(0.25) = 1.5

N = log-1 (1.5) = 32 символа

Использование 32 символов подразумевает пять бит на символ (25 = 32).

Примеры измерения скорости передачи в бодах

Практически все высокоскоростные соединения используют какие-либо формы широкополосной передачи. В Wi-Fi в схемах модуляции с мультиплексированием с ортогональным частотным разделением каналов (OFDM) применяются QPSK, 16QAM и 64QAM.

То же самое верно для WiMAX и технологии сотовой связи Long-Term Evolution (LTE) 4G. Передаче сигналов аналогового и цифрового телевидения в системах кабельноого ТВ и высокоскоростного доступ в Интернет основана на 16QAM и 64QAM, в то время как в спутниковой связи используют QPSK и различные версии QAM.

Для систем наземной мобильной радиосвязи, обеспечивающих общественную безопасность, недавно были приняты стандарты модуляции речевой информации и данных с помощью 4FSK. Этот сужающий полосу пропускания способ разработан для сокращения полосы с 25 кГц на канал до 12.5 кГц, и, в конечном счете, до 6.25 кГц. В результате в том же спектральном диапазоне можно разместить больше каналов для других радиостанций.

Телевидение высокой четкости в США использует метод модуляции, называемый eight-level vestigial sideband (8-уровневая передача сигналов с частично подавленной боковой полосой), или 8VSB. В этом методе отводится три бита на символ при 8 уровнях амплитуды, что позволяет передавать 10,800 тыс. символов в секунду. При 3 битах на символ полная скорость будет равна 3 × 10,800,000 = 32.4 Мб/с. В сочетании с методом VSB, который передает только одну полную боковую полосу частот и часть другой, видео- и аудиоданные высокой четкости могут передаваться по телевизионному каналу шириной 6 МГц.

Мы живем в эпоху стремительно развивающихся цифровых технологий. Современную реальность уже трудно представить без персональных компьютеров, ноутбуков, планшетов, смартфонов и прочих электронных гаджетов, которые функционируют не изолированно друг от друга, а объединены в локальную сеть и подключены к глобальной сети

Важной характеристикой всех этих устройств является пропускная способность сетевого адаптера, определяющая скорость передачи данных в локальной или глобальной сети. Кроме этого, имеют значение скоростные характеристики канала передачи информации. В электронных устройствах нового поколения возможно не только чтение текстовой информации без сбоев и зависаний, но и комфортное воспроизведение мультимедийных файлов (картинки и фотографии в высоком разрешении, музыка, видео, онлайн-игры).

В чем измеряется скорость передачи данных?

Чтобы определить этот параметр, надо знать время, за которые были переданы данные, и количество переданной информации. Со временем все понятно, а что такое количество информации и как его можно измерить?

Во всех электронных устройствах, являющихся по сути компьютерами, хранимая, обрабатываемая и передаваемая информация кодируется в двоичной системе нулями (нет сигнала) и единицами (есть сигнал). Один нуль или одна единица – это один бит, 8 бит составляют один байт, 1024 байт (два в десятой степени) – один килобайт, 1024 килобайта – один мегабайт. Далее идут гигабайты, терабайты и более крупные единицы измерения. Данные единицы обычно используются для определения объема информации, хранящейся и обрабатываемой на каком-либо конкретном устройстве.

Количество же передаваемой от одного устройства к другому информации измеряют в килобитах, мегабитах, гигабитах. Один килобит – это тысяча бит (1000/8 байт), один мегабит – тысяча килобит (1000/8 мегабайт) и так далее. Скорость, с которой передаются данные, принято указывать в количестве информации, проходящей за одну секунду (число килобит в секунду, мегабит в секунду, гигабит в секунду).

Скорость передачи данных по телефонной линии

В настоящее время для подключения к глобальной сети по телефонной линии, которая изначально была единственным каналом подключения к Интернету, используется преимущественно модемная технология ADSL. Она способна превратить аналоговые телефонные линии в средства высокоскоростной передачи данных. Интернет-соединение достигает скорости 6 мегабит в секунду, а максимальная скорость передачи данных по телефонной линии по древним технологиям не превышала 30 килобит в секунду.

Скорость передачи данных в мобильных сетях

Стандарты 2g, 3g и 4g используются в мобильных сетях.

2g пришел на замену 1g в связи с необходимостью перехода аналогового сигнала на цифровой в начале 90-х годов. На мобильных телефонах, поддерживавших 2g, стало возможно пересылать графическую информацию. Максимальная скорость передачи данных 2g превысила показатель 14 килобит в секунду. В связи с появлением мобильного интернета была также создана сеть 2,5g.

В 2002 году в Японии была разработана сеть третьего поколения, но массовое производство мобильных телефонов с поддержкой 3g началось значительно позже. Максимальная скорость передачи данных по 3g выросла на порядки и достигла 2 мегабит в секунду.

Обладатели новейших смартфонов имеют возможность воспользоваться всеми преимуществами сети 4g. Ее усовершенствование продолжается до сих пор. Она позволит людям, проживающим в малых населенных пунктах, свободно получать доступ в Интернет и сделает его значительно выгоднее подключения со стационарных устройств. Максимальная скорость передачи данных 4g просто огромная – 1 гигабит в секунду.

К тому же поколению, что и 4g, принадлежат сети lte. Стандарт lte является первой, самой ранней версией 4g. Следовательно, максимальная скорость передачи данных в lte существенно ниже и составляет 150 мегабит в секунду.

Скорость передачи данных по оптоволоконному кабелю

Передача информации по оптоволоконному кабелю на сегодняшний день является самой быстрой в компьютерных сетях. В 2014 году в Дании учеными была достигнута максимальная скорость передачи данных по оптоволокну 43 терабита в секунду.

Через несколько месяцев ученые из США и Нидерландов продемонстрировали скорость 255 терабит в секунду. Величина колоссальная, но это далеко не предел. В 2020 году планируется достижение показателя 1000 терабит в секунду. Скорость передачи данных по оптоволокну практически не ограничена.

Скорость загрузки информации по Wi-Fi

Wi-Fi – торговая марка, обозначающая беспроводные компьютерные сети, объединенные стандартом IEEE 802.11, в которых информация передается по радиоканалам. Теоретически максимальная скорость передачи данных wifi составляет 300 мегабит в секунду, а в реальности у лучших моделей роутеров она не превышает 100 мегабит в секунду.

Преимуществами Wi-Fi являются возможность беспроводного подключения к Интернету с помощью одного роутера сразу нескольких устройств и низкий уровень радиоизлучения, который на порядок меньше, чем у сотовых телефонов в момент их использования.

Количество информации, передаваемой по каналу в единицу времени, называют скоростью передачи информации .

Скорость передачи информации по каналам связи оценивается числом бит информации, передаваемых к ее получателю в течение одной секунды (бит/ с ).

Заметим, что на первых этапах развития электросвязи каждое изменение информационного параметра несущего сигнала давало получателю один бит информации и скорость передачи оценивалась в бодах (например, она использовалась для оценки скорости передачи телеграфных данных, в которых каждый «элементарный» сигнал переносил один бит информации). Сегодня же скорость передачи оценивают в бит/сек , так как каждое изменение информационного параметра сигнала современных средств передачи данных может переносить информацию в несколько бит.

Если от источника В по каналу связи передается s символов в единицу времени, а среднее количество информации на один символ равно H(B) , то скорость передачи информации: С = s H(B).

В случае цифровых сигналов (при условии их равновероятности и независимости) максимум энтропии для источника В с числом символов алфавита m определяется формулой H(B) max = log 2 m .

Максимально возможную скорость передачи информации называют пропускнойспособностью канала связи. Она определяться величиной

G= C max = s log 2 m .

Переменные формулы пропускной способности зависят от ряда физических характеристик линии связи, мощности источника сообщений и шумов в канале связи.

Пропускная способность определяется не только физическими характеристики проводящей среды (симметричные, коаксиальные или волоконно-оптические кабели, витая пара и др.), но и спектром передаваемых сигналов. К числу наиболее важных физических характеристик линий связи относят затухание и полосу пропускания .

Параметры линий связи обычно оценивают применительно к сигналам синусоидальной формы. Если подать на один конец линии связи (не имеющей усилителей) синусоидальный сигнал фиксированной частоты и амплитуды, то на другом конце мы получим ослабленный сигнал, т.е. имеющий меньшую амплитуду.

Затухание характеризует уменьшение амплитуды или мощности сигнала при прохождении по линии связи сигнала определенной частоты или диапазона частот. Для проводных кабелей измеряется в децибелах на метр и вычисляется по формуле:

А=10 lg 10 P вых /Р вх,

где P вых и Р вх - соответственно мощность сигнала на входе и выходе линии в 1 м.

Затухание зависит от частоты сигнала. На рис. 1.13 показана типичная форма амплитудно-частотной характеристики, характеризующей затухание сигналов разной частоты. Чем ниже модуль затухания, тем более качественная линия связи (логарифм числа меньше 1 всегда отрицательное число).

Затухание -важнейший параметр для линий связи в вычислительных сетях, причем стандарты устанавливают стандартные значения величины затухания для различных типов кабелей, применяемых при прокладке вычислительных сетей. Так, кабель в виде витой пары 5 категории для внутренней проводки должен иметь затухание не ниже -23,6 дБ, а 6 категории – не ниже 20,6 на частоте 100 мГц при длине линии 100 м. Типичные значения величины затухания кабелей на основе оптоволокна: от 0,15 до 3 дБ на 1000 м.

Полоса пропускания – непрерывный диапазон частот, для каждой из которых отношение амплитуды выходного сигнала к амплитуде входного не меньше некоторой величины. Часто это отношение берут равным 0,5 (см. рис. 1.13). Измеряется в герцах (Гц). Разность значений крайних частот диапазона называют шириной полосы пропускания .

Фактически, полоса пропускания – это интервал частот, используемый данным каналом связи для передачи сигналов. Для различных расчетов важно знать максимальное значение частоты из данной полосы (n m), поскольку именно ей определяется возможная скорость передачи информации по каналу.

Передатчики сигналов, посылающие сигналы в линию связи (например, адаптер или модем) характеризуются мощностью . Уровень мощности сигнала определяется в децибелах на 1 мВт по формуле (такую единицу мощности обозначают- дБм):

p=10 lgP (дБм), где Р- мощность в мВт.

Важной характеристикой проводных линий связи (например, для коаксиального кабеля) является волновое сопротивление . Это полное (комплексное) сопротивление, которое встречает распространяющаяся по кабелю электромагнитная волна определенной частоты. Измеряется в омах. Для снижения затухания надо чтобы выходное волновое сопротивление передатчика было примерно равно волновому сопротивлению линии связи.


Рис.1.13. Амплитудно- частотная характеристика канала связи

Известно, что сигнал любой формы можно получить, просуммировав несколько сигналов синусоидальной формы с разной частотой и амплитудой. Набор частот, которые надо просуммировать, чтобы получить данный сигнал, называют спектром сигнала. Если какие-то частоты из спектра сильно затухают, то это отражается на форме сигнала. Очевидно, качество передачи сигналов существенно зависит от полосы пропускания. Так, согласно стандартам для качественной передачи телефонных разговоров линия связи должна иметь полосу пропускания не менее 3400 Гц.

Существует связь между полосой пропускания и максимальной пропускной способностью, которую установил К. Шеннон:

G =F log 2 (1 + P c /P ш) бит/сек, где

G – максимальная пропускная способность, F – ширина полосы пропускания в Гц, P с – мощность сигнала, Р ш – мощность шума.

Определение мощности сигнала и шума достаточно сложная задача. Однако существует другая формула, полученная Найквистом для случая дискретных сигналов, которую можно применить, когда известно число состояний информационного параметра:

G =2 F log 2 М (бит/сек),

где F – ширина полосы пропускания в Гц, М – число возможных состояний информационного параметра. Из этой формулы следует, что при М=2 (т.е. когда каждое изменение параметра сигнала несет один бит информации) пропускная способность равна удвоенному значению полосы пропускания.

При влиянии помех (шумов) на передаваемые символы некоторые из них могут искажаться. Тогда, с учетом ранее приведенных формул для энтропии, количество получаемой информации и, соответственно, пропускная способность канала связи уменьшатся.

Для случая передачи равновероятных цифровых символов и одинаковых вероятностях замены при передаче значений 1(0) на ложные 0(1) максимальная пропускная способность C макс = s×=s×, где P ош –вероятность ошибки.

График, иллюстрирующий форму зависимости отношения C макс /s (т.е. количества передаваемой информации на символ) от Р ош, представлен на рис.1.14.


Рис.1.14. Зависимость пропускной способности от ошибок в канале связи