Тарифы Услуги Сим-карты

Что такое база данных — понятие база данных в информатике. Базы данных и информационные системы

Давайте на пару минут забудем о современных технологиях и вспомним, как обрабатывались и хранились данные лет двадцать назад. В те времена наиболее популярными типами компьютеров были мэйнфреймы семейства IBM-360/370 (многие из вас, наверное, еще застали их отечественные аналоги серии ЕС, производившиеся странами СЭВ) и мини-ЭВМ типа DEC PDP-11 (у которых также был отечественный аналог - СМ-4/СМ-1420). Как правило, при работе с такими компьютерами использовались неинтеллектуальные терминалы, управляемые все тем же мэйнфреймом или мини-ЭВМ (о такой экзотике, как устройства считывания перфокарт и перфолент, как средства предоставления пользовательского интерфейса, мы, пожалуй, вспоминать не будем).

Надо сказать, обработка данных с помощью мэйнфреймов и мини-ЭВМ имела свои преимущества, в определенной степени утраченные позже, в эпоху персональных компьютеров и настольных СУБД. К ним, в частности, относились:

  • возможность коллективного использования ресурсов и оборудования, например центрального процессора, оперативной памяти, внешних устройств (принтеров, плоттеров, накопителей на магнитной ленте и иных устройств хранения данных и т.д.);
  • централизованное хранение данных.

Серьезным недостатком подобных систем было практическое отсутствие персонализации рабочей среды - все программное обеспечение, включая текстовые редакторы, компиляторы, СУБД, хранилось также централизованно и использовалось коллективно.

Этот недостаток был одной из причин бурного роста индустрии персональных компьютеров - наряду с простотой в эксплуатации и невысокой стоимостью по сравнению с мэйнфреймами и мини-ЭВМ пользователей привлекали возможности персонализации рабочей среды, в особенности возможность выбора наиболее подходящего данному пользователю программного обеспечения. Именно в тот период и начался бурный рост популярности настольных СУБД, таких как dBase (РЕБУС) и, чуть позже, FoxBASE, Paradox, а также некоторых других, ныне благополучно забытых. Надо сказать, в то время происходили процессы заимствования и стандартизации удачных идей и подходов, что особенно заметно отразилось на судьбе такого продукта, как dBase, чей язык программирования и принципы организации данных были заимствованы многими другими производителями в своих продуктах. Впрочем, о dBase и совместимых с ним продуктах мы поговорим чуть позже.

Настольные СУБД как таковые не содержат специальных приложений и сервисов, управляющих данными, - взаимодействие с ними осуществляется с помощью файловых сервисов операционной системы. Нередко подобные СУБД имеют в своем составе и средства разработки, ориентированные на работу с данными формата, характерного для этой СУБД, и позволяющие создать более или менее комфортный пользовательский интерфейс. Что же касается обработки данных - она целиком и полностью осуществляется в пользовательском (клиентском) приложении.

Следующим шагом в развитии настольных СУБД было появление их сетевых многопользовательских версий, позволяющих обрабатывать данные, находящиеся в общедоступном хранилище (например, на сетевом диске) нескольким пользователям одновременно. От чисто настольных СУБД их многопользовательские версии отличаются наличием механизма блокировок частей файлов данных (содержащих одну или несколько записей таблицы), что позволяет обращаться к одному и тому же файлу нескольким пользователям одновременно.

Недостатки подобных СУБД не очевидны и становятся заметны, как правило, при росте хранимых объемов данных и увеличении числа пользователей. Обычно они проявляются в снижении производительности и в возникновении сбоев при обработке данных после некоторого времени использования клиентских приложений. Причина подобных проблем кроется в основном принципе работы таких СУБД и основанных на них информационных систем, заключающемся в обработке данных внутри пользовательского приложения. Например, если с помощью такой системы требуется выполнить запрос согласно какому-либо критерию (например, выбрать заказы, обработанные за последние два часа, из таблицы заказов), то, в лучшем случае (если эта таблица проиндексирована по времени поступления заказа), приложение должно прочесть с сетевого диска весь индекс, найти в нем сведения о местоположении записей в файлах, содержащих таблицу, и затем прочесть эти части файлов. В общем же случае, когда таблица не проиндексирована по данному полю, ее необходимо загрузить с сетевого диска и проанализировать.

Еще одна проблема настольных СУБД заключается в возможности нарушения ссылочной целостности данных, так как единственным механизмом, контролирующим ее, является пользовательское приложение. Поэтому все пользовательские приложения должны содержать соответствующий код и доступ к файлам базы данных из любых других приложений должен быть запрещен. В наиболее популярных настольных СУБД (например, Microsoft Access, Corel Paradox) код, контролирующий стандартную ссылочную целостность, содержится в библиотеках, используемых всеми приложениями, работающими с этой базой данных, а сама база данных при этом может содержать описание правил ссылочной целостности.

Следующим этапом развития СУБД для персональных компьютеров были так называемые серверные СУБД. Им мы посвятим следующую статью данного цикла, а здесь лишь кратко объясним, чем серверные СУБД отличаются от настольных.

Архитектура «клиент/сервер», для которой предназначены серверные СУБД, является в определенной степени возвратом к прежней «мэйнфреймовой» модели, основанной на централизации хранения и обработки данных на одном выделенном компьютере, где функционирует специальное приложение или сервис, называемый сервером баз данных. Сервер баз данных отвечает за работу с файлами базы данных, поддержку ссылочной целостности, резервное копирование, обеспечение авторизованного доступа к данным, протоколирование операций и, конечно, за выполнение пользовательских запросов на выбор и модификацию данных и метаданных. Клиентские приложения, являющиеся источниками этих запросов, функционируют на персональных компьютерах в сети.

Не останавливаясь подробно на достоинствах и недостатках подобной архитектуры, отметим лишь, что при использовании серверных СУБД выполнение запросов производится самим сервером, поэтому клиентские приложения получают от сервера только результаты самого запроса и не требуют передачи всего индекса или всей таблицы, что существенно снижа ет сетевой трафик при обработке запросов. Отметим также, что многие объекты, предназначенные для реализации бизнес-правил, такие как хранимые процедуры и триггеры, доступны лишь в серверных СУБД.

Рассмотрев, какими бывают базы данных, вернемся к настольным СУБД и поговорим о наиболее популярных из них.

Наиболее популярные настольные СУБД

На сегодняшний день известно более двух десятков форматов данных настольных СУБД, однако наиболее популярными, исходя из числа проданных копий, следует признать dBase, Paradox, FoxPro и Access. Из появившихся недавно СУБД следует также отметить Microsoft Data Engine - по существу серверную СУБД, представляющую собой «облегченную» версию Microsoft SQL Server, но предназначенную, тем не менее, для использования главным образом в настольных системах и небольших рабочих группах.

Сведения о производителях перечисленных выше СУБД представлены в следующей таблице.

СУБД Производитель URL
Visual dBase dBase, Inc http://www.dbase2000.com
Paradox Corel http://www.corel.com
Microsoft Access 2000 Microsoft http://www.microsoft.com
Microsoft FoxPro Microsoft http://www.microsoft.com
Microsoft Visual FoxPro Microsoft http://www.microsoft.com
Microsoft Visual FoxPro Microsoft http://www.microsoft.com
Microsoft Data Engine Microsoft http://www.microsoft.com

Далее мы рассмотрим каждую из этих СУБД в отдельности. Начнем с dBase - СУБД, бывшей некогда необычайно популярной и сегодня по-прежнему не забытой, несмотря на то что за время своего существования она сменила несколько хозяев и в настоящее время судьба ее до конца не определена.

dBase и Visual dBase

Первая промышленная версия СУБД dBase - dBase II (принадлежащая тогда компании Ashton-Tate, приобретенной позже компанией Borland) появилась в начале 80-х годов. Благодаря простоте в использовании, нетребовательности к ресурсам компьютера и, что не менее важно, грамотной маркетинговой политике компании-производителя этот продукт приобрел немалую популярность, а с выходом следующих его версий - dBase III и dBase III Plus (1986 г.), оснащенных весьма комфортной по тем временам средой разработки и средствами манипуляции данными, быстро занял лидирующие позиции среди настольных СУБД и средств создания использующих их приложений.

Хранение данных в dBase основано на принципе «одна таблица - один файл» (эти файлы обычно имеют расширение *.dbf). MEMO-поля и BLOB-поля (доступные в поздних версиях dBase) хранятся в отдельных файлах (обычно с расширением *.dbt). Индексы для таблиц также хранятся в отдельных файлах. При этом в ранних версиях этой СУБД требовалась специальная операция реиндексирования для приведения индексов в соответствие с текущим состоянием таблицы.

Формат данных dBase является открытым, что позволило ряду других производителей заимствовать его для создания dBase-подобных СУБД, частично совместимых с dBase по форматам данных. Например, весьма популярная некогда СУБД FoxBase (разработанная Fox Software, Inc. и ныне принадлежащая Microsoft) использовала формат данных dBase для таблиц, однако форматы для хранения MEMO-полей и индексов были своими собственными, несовместимыми с dBase. Очень популярное в начале 90-х годов (и кое-где применяемое до сих пор) средство разработки Clipper компании Nantucket Corp (приобретенной впоследствии компанией Computer Associates) манипулировало как с данными формата dBase III (включая индексные файлы и файлы для MEMO-полей), так и с индексными файлами собственного формата.

Помимо популярного формата данных dBase является родоначальником и некогда популярного семейства языков программирования, получившего называние xBase. Все языки этого семейства, использующиеся и в FoxBase, и в Clipper, и в некоторых более поздних средствах разработки, таких как канувший в Лету CA Visual Objects фирмы Computer Associates, содержат сходный набор команд для манипуляции данными и являются по существу интерпретируемыми языками. В роли интерпретатора команд xBase выступает обычно либо среда разработки приложения на этом языке, либо среда времени выполнения, которую можно поставлять вместе с приложением. Отметим, что для скрытия исходного текста xBase-приложения подобные СУБД обычно содержат утилиты для псевдокомпиляции кода, который затем поставляется вместе со средой времени выполнения. В случае Clipper среда времени выполнения содержится в самом исполняемом файле (и сам Clipper формально считается компилятором), но тем не менее этот язык по существу также является интерпретируемым.

Обладавшие немалым сходством в синтаксисе и поддерживаемом наборе команд во времена широкого применения DOS, языки семейства xBase, тем не менее, имеют немало различий, особенно в поздних версиях «наследников», использовавших их СУБД. Как правило, все они имеют собственные объектные расширения, и поэтому в настоящее время говорить об их совместимости между собой практически не приходится.

Отметим, однако, что для работы с данными формата dBase (или иных dBase-подобных СУБД) совершенно необязательно пользоваться диалектами xBase. Доступ к этим данным возможен с помощью ODBC API (и соответствующих драйверов) и некоторых других механизмов доступа к данным (например, Borland Database Engine, некоторых библиотек других производителей типа СodeBase фирмы Sequenter), и это позволяет создавать приложения, использующие формат данных dBase, практически с помощью любого средства разработки, поддерживающего один из этих механизмов доступа к данным.

После покупки dBase компанией Borland этот продукт, получивший впоследствии название Visual dBase, приобрел набор дополнительных возможностей, характерных для средств разработки этой компании и для имевшейся у нее другой настольной СУБД - Paradox. Среди этих возможностей были специальные типы полей для графических данных, поддерживаемые индексы, хранение правил ссылочной целостности внутри самой базы данных, а также возможность манипулировать данными других форматов, в частности серверных СУБД, за счет использования BDE API и SQL Links.

В настоящее время Visual dBase принадлежит компании dBase, Inc. Его последняя версия - Visual dBase 7.5 имеет следующие возможности:

  • Средства манипуляции данными dBase и FoxPro всех версий.
  • Средства публикации данных в Internet и создания Web-клиентов.
  • Ядро доступа к данным Advantage Database Server фирмы Extended Systems и ODBC-драйвер для доступа к данным этой СУБД.
  • Средства публикации отчетов в Web.
  • Средства генерации исполняемых файлов и дистрибутивов.

В настоящее время к Visual dBase в качестве дополнения может быть приобретен компонент dConnections, позволяющий осуществить доступ к данным Oracle, Sybase, Informix, MS SQL Server, DB2, InterBase из Visual dBase 7.5 и приложений, созданных с его помощью.

Компания dBase, Inc объявила также о проекте dBASE Open Source, целью которого является разработка сообществом пользователей dBase новых компонентов и классов с целью включения их в последующую версию dBase (получившую название dBase 2000). Иными словами, имеется тенденция превращения dBase (или его частей) в некоммерческий продукт с доступными исходными текстами.

Paradox

Paradox был разработан компанией Ansa Software, и первая его версия увидела свет в 1985 году. Этот продукт был впоследствии приобретен компанией Borland. С июля 1996 года он принадлежит компании Corel и является составной частью Corel Office Professional.

В конце 80-х - начале 90-х годов Paradox, принадлежавший тогда компании Borland International, был весьма популярной СУБД, в том числе и в нашей стране, где он одно время занимал устойчивые позиции на рынке средств разработки настольных приложений с базами данных.

Принцип хранения данных в Paradox сходен с принципами хранения данных в dBase - каждая таблица хранится в своем файле (расширение *.db), MEMO- и BLOB-поля хранятся в отдельном файле (расширение *.md), как и индексы (расширение *.px).

Однако, в отличие от dBase, формат данных Paradox не является открытым, поэтому для доступа к данным этого формата требуются специальные библиотеки. Например, в приложениях, написанных на C или Pascal, использовалась некогда популярная библиотека Paradox Engine, ставшая основой Borland Database Engine. Эта библиотека используется ныне в приложениях, созданных с помощью средств разработки Borland (Delphi, C++Builder), в некоторых генераторах отчетов (например, Crystal Reports) и в самом Paradox. Существуют и ODBC-драйверы к базам данных, созданным различными версиями этой СУБД.

Отметим, однако, что отсутствие «открытости» формата данных имеет и свои достоинства. Так как в этой ситуации доступ к данным осуществляется только с помощью «знающих» этот формат библиотек, простое редактирование подобных данных по сравнению с данными открытых форматов типа dBase существенно затруднено. В этом случае возможны такие недоступные при использовании «открытых» форматов данных сервисы, как защита таблиц и отдельных полей паролем, хранение некоторых правил ссылочной целостности в самих таблицах - все эти сервисы предоставляются Paradox, начиная с первых версий этой СУБД.

По сравнению с аналогичными версиями dBase ранние версии Paradox обычно предоставляли разработчикам баз данных существенно более расширенные возможности, такие как использование деловой графики в DOS-приложениях, обновление данных в приложениях при многопользовательской работе, визуальные средства построения запросов, на основе интерфейса QBE - Query by Example (запрос по образцу), средства статистического анализа данных, а также средства визуального построения интерфейсов пользовательских приложений с автоматической генерацией кода на языке программирования PAL (Paradox Application Language).

Windows-версии СУБД Paradox, помимо перечисленных выше сервисов, позволяли также манипулировать данными других форматов, в частности dBase и данными, хранящимися в серверных СУБД. Такую возможность пользователи Paradox получили благодаря использованию библиотеки Borland Database Engine и драйверов SQL Links. Это позволило использовать Paradox в качестве универсального средства управления различными базами данных (существенно облегченная версия Paradox 7 под названием Database Desktop по-прежнему входит в состав Borland Delphi и Borland C++Builder именно с этой целью). Что же касается базового формата данных, используемого в этом продукте, то он обладает теми же недостатками, что и все форматы данных настольных СУБД, и поэтому при возможности его стараются заменить на серверную СУБД, даже сохранив сам Paradox как средство разработки приложений и манипуляции данными.

Текущая версия данной СУБД - Paradox 9, поставляется в двух вариантах - Paradox 9 Standalone Edition и Paradox 9 Developer’s Edition. Первый из них предназначен для использования в качестве настольной СУБД и входит в Corel Office Professional, второй - в качестве как настольной СУБД, так и средства разработки приложений и манипуляции данными в серверных СУБД. Обе версии содержат:

  • Средства манипуляции данными Paradox и dBase.
  • Средства создания форм, отчетов и приложений.
  • Средства визуального построения запросов.
  • Средства публикации данных и отчетов в Internet и создания Web-клиентов.
  • Corel Web-сервер.
  • ODBC-драйвер для доступа к данным формата Paradox из Windows-приложений.
  • Средства для доступа к данным формата Paradox из Java-приложений.

Помимо этого Paradox 9 Developer’s Edition содержит:

  • Run-time-версию Paradox для поставки вместе с приложениями.
  • Средства создания дистрибутивов.
  • Драйверы SQL Links для доступа к данным серверных СУБД.

Отметим, однако, что популярность этого продукта как средства разработки в последнее время несколько снизилась, хотя в мире эксплуатируется еще немало информационных систем, созданных с его помощью.

Microsoft FoxPro и Visual FoxPro

FoxPro ведет свое происхождение от настольной СУБД FoxBase фирмы Fox Software. Разрабатывая FoxBase в конце 80-х годов, эта компания преследовала цель создать СУБД, функционально совместимую с dBase с точки зрения организации файлов и языка программирования, но существенно превышающую ее по производительности. Одним из способов повышения производительности являлась более эффективная организация индексных файлов, нежели в dBase, - по формату индексных файлов эти две СУБД несовместимы между собой.

По сравнению с аналогичными версиями dBase, FoxBase и более поздняя версия этого продукта, получившая название FoxPro, предоставляли своим пользователям несколько более широкие возможности, такие как использование деловой графики, генерация кода приложений, автоматическая генерация документации к приложениям и т.д.

Впоследствии этот продукт был приобретен компанией Microsoft. Его последние версии (начиная с версии 3.0, выпущенной в 1995 году) получили название Visual FoxPro. С каждой новой версией этот продукт оказывался все более и более интегрирован с другими продуктами Microsoft, в частности с Microsoft SQL Server, - в состав Visual FoxPro в течение нескольких последних лет входят средства переноса данных FoxPro в SQL Server и средства доступа к данным этого сервера из Visual FoxPro и созданных с его помощью приложений. Хотя формат данных FoxPro также модифицировался с каждой новой версией, приобретая такие возможности, как хранение правил ссылочной целостности и некоторых бизнес-правил в самой базе данных, миграции приложений Visual FoxPro на серверные платформы уделялось значительно большее внимание.

Последняя версия этого продукта - Visual FoxPro 6.0, доступна и отдельно, и как составная часть Microsoft Visual Studio 6.0. Отличительной особенностью этой настольной СУБД от двух рассмотренных выше является интеграция этого продукта с технологиями Microsoft, в частности поддержка COM (Component Object Model - компонентная объектная модель, являющаяся основой функционирования 32-разрядных версий Windows и организации распределенных вычислений в этой операционной системе), интеграция с Microsoft SQL Server, возможности создания распределенных приложений, основанных на концепции Windows DNA (Distributed interNet Applications).

Visual Fox Pro 6.0 предоставляет следующие возможности:

  • Средства публикации данных в Internet и создания Web-клиентов.
  • Средства создания ASP-компонентов и Web-приложений.
  • Средства создания COM-объектов и объектов для Microsoft Transaction Server, позволяющих создавать масштабируемые многозвенные приложения для обработки данных.
  • Средства доступа к данным серверных СУБД, базирующиеся на использовании OLE DB (набор COM-интерфейсов, позволяющий осуществить унифицированный доступ к данным из разнообразных источников, в том числе из нереляционных баз данных и иных источников, например Microsoft Exchange).
  • Средства доступа к данным Microsoft SQL Server и Oracle, включая возможность создания и редактирования таблиц, триггеров, хранимых процедур
  • Средства отладки хранимых процедур Microsoft SQL Server.
  • Средство визуального моделирования компонентов и объектов, являющиеся составными частями приложения - Visual Modeller.
  • Средство для управления компонентами приложений, позволяющее осуществлять их повторное использование.

Итак, тенденции развития этого продукта очевидны: из настольной СУБД Visual FoxPro постепенно превращается в средство разработки приложений в архитектуре «клиент/сервер» и распределенных приложений в архитектуре Windows DNA. Впрочем, эти тенденции в определенной степени характерны для всех наиболее популярных настольных СУБД - мы уже убедились, что и dBase, и Paradox также позволяют осуществлять доступ к наиболее популярным серверным СУБД.

Microsoft Access

Первая версия СУБД Access появилась в начале 90-х годов. Это была первая настольная реляционная СУБД для 16-разрядной версии Windows. Популярность Access значительно возросла после включения этой СУБД в состав Microsoft Office.

В отличие от Visual FoxPro, фактически превратившегося в средство разработки приложений, Access ориентирован в первую очередь на пользователей Microsoft Office, в том числе и не знакомых с программированием. Это, в частности, проявилось в том, что вся информация, относящаяся к конкретной базе данных, а именно таблицы, индексы (естественно, поддерживаемые), правила ссылочной целостности, бизнес-правила, список пользователей, а также формы и отчеты хранятся в одном файле, что в целом удобно для начинающих пользователей.

Последняя версия этой СУБД - Access 2000 входит в состав Microsoft Office 2000 Professional и Premium, а также доступна как самостоятельный продукт. В состав Access 2000 входят:

  • Средства манипуляции данными Access и данными, доступными через ODBC (последние могут быть «присоединены» к базе данных Access).
  • Средства создания форм, отчетов и приложений; при этом отчеты могут быть экспортированы в формат Microsoft Word или Microsoft Excel, а для создания приложений используется Visual Basic for Applications, общий для всех составных частей Microsoft Office.
  • Средства публикации отчетов в Internet.
  • Средства создания интерактивных Web-приложений для работы с данными (Data Access Pages).
  • Средства доступа к данным серверных СУБД через OLE DB.
  • Средства создания клиентских приложений для Microsoft SQL Server.
  • Средства администрирования Microsoft SQL Server.

Поддержка COM в Access выражается в возможности использовать элементы управления ActiveX в формах и Web-страницах, созданных с помощью Access. В отличие от Visual FoxPro создание COM-серверов с помощью Access не предполагается.

Иными словами, Microsoft Access может быть использован, с одной стороны, в качестве настольной СУБД и составной части офисного пакета, а с другой стороны, в качестве клиента Microsoft SQL Server, позволяющего осуществлять его администрирование, манипуляцию его данными и создание приложений для этого сервера.

Помимо манипуляции данными Microsoft SQL Server, Access 2000 позволяет также в качестве хранилища данных использовать Microsoft Data Engine (MSDE), представляющий собой по существу настольный сервер баз данных, совместимый с Microsoft SQL Server. Об этом продукте, относительно новом по сравнению с остальными, рассмотренными в данном обзоре, речь пойдет в следующем разделе данной статьи.

Microsoft Data Engine

MSDE представляет собой СУБД, базирующуюся на технологиях Microsoft SQL Server, но предназначенную для использования в настольных системах или в сетевых приложениях с объемом данных до 2 Гбайт и небольшим количеством пользователей. По существу MSDE является облегченной версией Microsoft SQL Server, не содержащей средств администрирования, и к настольным СУБД может быть отнесена весьма условно.

В Microsoft Access пользователь может выбрать, какой механизм доступа к данным следует применять: Microsoft Jet - стандартный набор библиотек доступа к данным или MSDE (в этом случае управление базой данных осуществляется с помощью отдельного процесса). Возможно преобразование имеющихся баз данных Access в базу данных MSDE из среды разработки Access.

Базы данных MSDE полностью совместимы с базами данных Microsoft SQL Server и могут при необходимости управляться этим сервером. Как большинство серверных СУБД, эти базы данных поддерживают транзакции, позволяют создавать триггеры и хранимые процедуры (недоступные в базах данных Access), использовать механизмы защиты данных, предоставляемые операционной системой. Помимо этого при большом числе пользователей и большом объеме данных приложения, использующие MSDE, отличаются более высокой производительностью, так как обработка запросов происходит внутри процесса, управляющего базой данных, а не внутри клиентского приложения, что позволяет снизить сетевой трафик, связанный с передачей данных от сервера к клиенту.

MSDE входит в состав Microsoft Office 2000 Premium или Developer, а также доступна на Web-сайте Microsoft для зарегистрированных пользователей Visual Studio 6.0 Professional, Enterprise Edition либо любого из средств разработки, являющегося частью Visual Studio 6.0 Professional или Enterprise Edition. MSDE может свободно распространяться в составе приложений, созданных с помощью любого из средств разработки, входящего в состав Visual Studio 6.0 или Office 2000 Developer.

Заключение

В данной статье мы рассмотрели наиболее популярные на сегодняшний день настольные СУБД и проследили историю их развития. Мы увидели, что развитие тех из настольных СУБД, что сумели сохранить свою популярность на протяжении многих лет, подчинялось вполне определенным закономерностям. Все эти СУБД:

  • приобрели визуальные средства проектирования форм, отчетов и приложений в момент появления ранних Windows-версий;
  • стали предоставлять доступ к данным серверных СУБД к моменту появления первых 32-разрядных версий;
  • приобрели средства публикации данных в Internet и в той или иной степени поддерживают создание приложений для редактирования данных с помощью Web-браузеров;
  • начали предоставлять возможность хранить описания правил ссылочной целостности внутри базы данных.

Помимо этого все современные СУБД, за исключением Corel Paradox, в качестве альтернативы собственному формату данных позволяют использовать для создания настольных приложений облегченные серверы баз данных, предназначенные для использования на одном компьютере или в рамках небольшой рабочей группы. Иными словами, история развития настольных СУБД отражает современные тенденции развития информационных систем, такие как создание распределенных систем с использованием Internet или Intranet, применение средств быстрой разработки приложений и массовый перенос приложений, использующих базы данных, включая настольные приложения, в архитектуру «клиент/сервер».

Следующая статья данного цикла будет посвящена архитектуре «клиент/сервер» и серверным СУБД, таким как IB Database, Microsoft SQL Server, Oracle, Sybase и Informix.

КомпьютерПресс 4"2000

Аннотация: В лекции рассматривается общий смысл понятий базы данных (БД) и системы управления базами данных (СУБД). Даются основные понятия, относящиеся к базе данных такие, как алгоритм, кортеж, объект, сущность. Основные требования, предъявляемые к банку данных. Определения БД и СУБД.

Цель лекции: Уяснить разницу между базой данных и системой управления базой данных. Ознакомиться с основными требованиями, которые предъявляются к банку данных и основными определениями, относящимися к БД и СУБД.

Рассмотрим общий смысл понятий базы данных (БД) и системы управления базами данных (СУБД).

С самого начала развития вычислительной техники образовались два основных направления использования ее.

Первое направление - применение вычислительной техники для выполнения численных расчетов, которые слишком долго или вообще невозможно производить вручную. Становление этого направления способствовало интенсификации методов численного решения сложных математических задач, развитию класса языков программирования, ориентированных на удобную запись численных алгоритмов, становлению обратной связи с разработчиками новых архитектур ЭВМ.

Второе направление, это использование средств вычислительной техники в автоматических или автоматизированных информационных системах . В самом широком смысле информационная система представляет собой программный комплекс, функции которого состоят в поддержке надежного хранения информации в памяти компьютера, выполнении специфических для данного приложения преобразований информации и/или вычислений, предоставлении пользователям удобного и легко осваиваемого интерфейса. Обычно объемы информации, с которыми приходится иметь дело таким системам, достаточно велики, а сама информация имеет достаточно сложную структуру. Классическими примерами информационных систем являются банковские системы , системы резервирования авиационных или железнодорожных билетов, мест в гостиницах и т.д.

На самом деле, второе направление возникло несколько позже первого. Это связано с тем, что на заре вычислительной техники компьютеры обладали ограниченными возможностями в части памяти. Понятно, что можно говорить о надежном и долговременном хранении информации только при наличии запоминающих устройств, сохраняющих информацию после выключения электрического питания. Оперативная память этим свойством обычно не обладает. В начале, использовались два вида устройств внешней памяти: магнитные ленты и барабаны. При этом емкость магнитных лент была достаточно велика, но по своей физической природе они обеспечивали последовательный доступ к данным. Магнитные же барабаны (они больше всего похожи на современные магнитные диски с фиксированными головками) давали возможность произвольного доступа к данным, но были ограниченного размера.

Легко видеть, что указанные ограничения не очень существенны для чисто численных расчетов. Даже если программа должна обработать (или произвести) большой объем информации, при программировании можно продумать расположение этой информации во внешней памяти, чтобы программа работала как можно быстрее.

С другой стороны, для информационных систем, в которых потребность в текущих данных определяется пользователем, наличие только магнитных лент и барабанов неудовлетворительно. Представьте себе покупателя билета, который стоя у кассы должен дождаться полной перемотки магнитной ленты. Одним из естественных требований к таким системам является средняя быстрота выполнения операций.

Именно требования к вычислительной технике со стороны не численных приложений вызвали появление съемных магнитных дисков с подвижными головками , что явилось революцией в истории вычислительной техники. Эти устройства внешней памяти обладали существенно большей емкостью, чем магнитные барабаны, обеспечивали удовлетворительную скорость доступа к данным в режиме произвольной выборки, а возможность смены дискового пакета на устройстве позволяла иметь практически неограниченный архив данных.

С появлением магнитных дисков началась история систем управления данными во внешней памяти. До этого каждая прикладная программа, которой требовалось хранить данные во внешней памяти, сама определяла расположение каждой порции данных на магнитной ленте или барабане и выполняла обмены между оперативной и внешней памятью с помощью программно-аппаратных средств низкого уровня (машинных команд или вызовов соответствующих программ операционной системы). Такой режим работы не позволяет или очень затрудняет поддержание на одном внешнем носителе нескольких архивов долговременно хранимой информации. Кроме того, каждой прикладной программе приходилось решать проблемы именования частей данных и структуризации данных во внешней памяти.

Историческим шагом стал переход к использованию систем управления файлами. С точки зрения прикладной программы файл - это именованная область внешней памяти, в которую можно записывать и из которой можно считывать данные. Правила именования файлов, способ доступа к данным, хранящимся в файле, и структура этих данных зависят от конкретной системы управления файлами и, возможно, от типа файла. Система управления файлами берет на себя распределение внешней памяти, отображение имен файлов в соответствующие адреса внешней памяти и обеспечение доступа к данным.

Любая задача обработки информации и принятия решений может быть представлена в виде схемы, показанной на рис. 1.1 .


Рис. 1.1.

Определение основных терминов

Дадим определения основных терминов. В качестве составных частей схемы выделяются информация (входная и выходная) и правила ее преобразования.

Правила могут быть в виде алгоритмов, процедур и эвристических последовательностей.

Алгоритм - последовательность правил перехода от исходных данных к результату. Правила могут выполняться компьютером или человеком.
Данные - совокупность объективных сведений.
Информация - сведения, неизвестные ранее получателю информации, пополняющие его знания, подтверждающие или опровергающие положения и соответствующие убеждения. Информация носит субъективный характер и определяется уровнем знаний субъекта и степенью его восприятия. Информация извлекается субъектом из соответствующих данных.
Знания - совокупность фактов, закономерностей и эвристических правил, с помощью которых решается поставленная задача.

Последовательность операций обработки данных называют информационной технологией (ИТ). В силу значительного количества информации в современных задачах она должна быть упорядочена. Существует два подхода к упорядочению.

  1. Данные связаны с конкретной задачей (технология массивов) - упорядочение по использованию. Вместе с тем алгоритмы более подвижны (могут чаще меняться), чем данные. Это вызывает необходимость переупорядочения данных, которые к тому же могут повторяться в различных задачах.
  2. В связи с этим предложена другая, широко используемая технология баз данных, представляющая собой упорядочение по хранению.

Под базой данных (БД) понимают совокупность хранящихся вместе данных при наличии такой минимальной избыточности, которая допускает их использование оптимальным образом для одного или нескольких приложений. Целью создания баз данных , как разновидности информационной технологии и формы хранения данных, является построение системы данных, не зависящих от принятых алгоритмов (программного обеспечения), применяемых технических средств и физического расположения данных в ЭВМ; обеспечивающих непротиворечивую и целостную информацию при нерегламентируемых запросах. БД предполагает многоцелевое ее использование (несколько пользователей, множество форм документов и запросов одного пользователя).

База знаний (БЗ) представляет собой совокупность БД и используемых правил, полученных от лиц, принимающих решения ( ЛПР ).

Наряду с понятием "база данных" существует термин " банк данных ", который имеет две трактовки.

  1. В настоящее время данные обрабатываются децентрализовано (на рабочих местах) с помощью персональных компьютеров (ПК). Первоначально же использовалась централизованная обработка на больших ЭВМ. В силу централизации базу данных называли банком данных и потому часто не делают различия между базами и банками данных.
  2. Банк данных - база данных и система управления ею (СУБД). СУБД (например, FoxPro) представляет собой приложение для создания баз данных как совокупности двумерных таблиц.
Банк данных (БнД) - это система специально организованных данных, программных, языковых, организационных и технических средств, предназначенных для централизованного накопления и коллективного многоцелевого использования данных.
Базы данных (БД) - это именованная совокупность данных, отображающая состояние объектов и их отношения в рассматриваемой предметной области. Характерной чертой баз данных является постоянство: данные постоянно накапливаются и используются; состав и структура данных, необходимы для решения тех или иных прикладных задач, обычно постоянны и стабильны во времени; отдельные или даже все элементы данных могут меняться - но и это есть проявления постоянства - постоянная актуальность.
Система управления базами данных (СУБД) - это совокупность языковых и программных средств, предназначенных для создания, ведения и совместного использования БД многими пользователями.

Иногда в составе банка данных выделяют архивы. Основанием для этого является особый режим использования данных, когда только часть данных находится под оперативным управлением СУБД. Все остальные данные обычно располагаются на носителях, оперативно не управляемых СУБД. Одни и те же данные в разные моменты времени могут входить как в базы данных, так и в архивы. Банки данных могут не иметь архивов, но если они есть, то в состав банка данных может входить и система управления архивами.

Эффективное управление внешней памятью являются основной функцией СУБД . Эти обычно специализированные средства настолько важны с точки зрения эффективности, что при их отсутствии система просто не сможет выполнять некоторые задачи уже по тому, что их выполнение будет занимать слишком много времени. При этом ни одна из таких специализированных функций не является видимой для пользователя. Они обеспечивают независимость между логическим и физическим уровнями системы: прикладной программист не должен писать программы индексирования, распределять память на диске и т. д.

Основные требования, предъявляемые к банкам данных

Развитие теории и практики создания информационных систем, основанных на концепции баз данных, создание унифицированных методов и средств организации и поиска данных позволяют хранить и обрабатывать информацию о все более сложных объектах и их взаимосвязях, обеспечивая многоаспектные информационные потребности разных пользователей. Основные требования, предъявляемые к банкам данных, можно сформулировать так:

  • Многократное использование данных: пользователи должны иметь возможность использовать данные различным образом.
  • Простота: пользователи должны иметь возможность легко узнать и понять, какие данные имеются в их распоряжении.
  • Легкость использования: пользователи должны иметь возможность осуществлять (процедурно) простой доступ к данным, при этом все сложности доступа к данным должны быть скрыты в самой системе управления базами данных.
  • Гибкость использования: обращение к данным или их поиск должны осуществляться с помощью различных методов доступа.
  • Быстрая обработка запросов на данные: запросы на данные должны обрабатываться с помощью высокоуровневого языка запросов , а не только прикладными программами, написанными с целью обработки конкретных запросов.
  • Язык взаимодействия конечных пользователей с системой должен обеспечивать конечным пользователям возможность получения данных без использования прикладных программ.

База данных - это основа для будущего наращивания прикладных программ: базы данных должны обеспечивать возможность быстрой и дешевой разработки новых приложений.

  • Сохранение затрат умственного труда: существующие программы и логические структуры данных не должны переделываться при внесении изменений в базу данных.
  • Наличие интерфейса прикладного программирования: прикладные программы должны иметь возможность просто и эффективно выполнять запросы на данные; программы должны быть изолированными от расположения файлов и способов адресации данных.
  • Распределенная обработка данных: система должна функционировать в условиях вычислительных сетей и обеспечивать эффективный доступ пользователей к любым данным распределенной БД, размещенным в любой точке сети.
  • Адаптивность и расширяемость: база данных должна быть настраиваемой, причем настройка не должна вызывать перезаписи прикладных программ. Кроме того, поставляемый с СУБД набор предопределенных типов данных должен быть расширяемым - в системе должны иметься средства для определения новых типов и не должно быть различий в использовании системных и определенных пользователем типов.
  • Контроль целостности данных: система должна осуществлять контроль ошибок в данных и выполнять проверку взаимного логического соответствия данных.
  • Восстановление данных после сбоев: автоматическое восстановление без потери данных транзакции. В случае аппаратных или программных сбоев система должна возвращаться к некоторому согласованному состоянию данных.
  • Вспомогательные средства должны позволять разработчику или
  • Лингвистические средства;
  • Программные средства;
  • Технические средства;
  • Организационно-административные подсистемы и нормативно-методическое обеспечение.

Организационно-методические средства - это совокупность инструкций, методических и регламентирующих материалов, описаний структуры и процедуры работы пользователя с СУБД и БД.

Пользователи БД и СУБД

Пользователей (СУБД) можно разделить на две основные категории: конечные пользователи ; администраторы баз данных .

Особо следует поговорить об администраторе базы данных (АБД). Естественно, что база данных строится для конечного пользователя (КП). Однако первоначально предполагалось, что КП не смогут работать без специалиста-программиста, которого назвали администратором базы данных. С появлением СУБД они взяли на себя значительную часть функций АБД, особенно для БД с небольшим объемом данных. Однако для крупных централизованных и распределенных баз данных потребность в АБД сохранилась. В широком плане под АБД понимают системных аналитиков, проектировщиков структур данных и информационного обеспечения, проектировщиков технологии процессов обработки, системных и прикладных программистов, операторов, специалистов в предметной области и по техническому обслуживанию. Иными словами, в крупных базах данных это могут быть коллективы специалистов. В обязанности АБД входит:

  1. анализ предметной области, статуса информации и пользователей;
  2. проектирование структуры и модификация данных;
  3. задание и обеспечение целостности;
  4. защита данных;
  5. обеспечение восстановления БД;
  6. сбор и статистическая обработка обращений к БД, анализ эффективности функционирования БД;
  7. работа с пользователем.

Краткие итоги

Базы данных (БД) - это именованная совокупность данных, отображающая состояние объектов и их отношения в рассматриваемой предметной области.

Система управления базами данных (СУБД) - это совокупность языковых и программных средств, предназначенных для создания, ведения и совместного использования БД многими пользователями.

Основные требования, предъявляемые к банкам данных: многократное использование данных, простота, легкость использования, гибкость использования, быстрая обработка запросов на данные, язык взаимодействия.

Пользователей (СУБД) можно разделить на две основные категории: конечные пользователи; администраторы баз данных.

Вопросы для самопроверки

  • Дайте определение базы данных.
  • Дайте определение банка данных.
  • Назовите две трактовки банка данных.
  • Что такое система управления базой данных?
  • Основные требования, предъявляемые к банку данных.
  • Что такое данные, информация, знания?
  • Пользователи СУБД и БД?
  • Основные функции администратора БД.
  • Что обеспечивает возможность быстрой и дешевой разработки новых приложений?

Федеральное агентство по образованию

Государственное Общеобразовательное Учреждение

Среднепрофессионального Обучения

«Тульский экономический колледж»

По дисциплине «Информатика»

На тему: «База данных. Понятие базы данных. Виды баз данных. Объекты для работы с базами данных. Типы данных в базах и таблицах Access. Основные элементы и понятия баз данных»

Подготовила студентка 2 курса

группы 216-БП

Храмова Анна

Проверил преподаватель:

Васильева И.В.

Щёкино,2007

С О Д Е Р Ж А Н И Е:

1. Введение…………………………………………...…………….……2

2. Понятие базы данных………………………………………………..3

3. Виды базы данных………………………………………….………4-5

4. Объекты для работы с базами данных…………………………...6-7

5. Типы данных в базах………………………………………………….8

6. Типы данных в таблицах Access……………………………………9

7. Основные элементы и понятия баз данных…………………..10-15

8. Тест…………………………………………………………….…16-17

9. Ответы на тест……………………………………………...…….…18

10. Вопросы для самопроверки………………………………..........19

11. Список используемой литературы……………………………….20

12. Презентация……………………………………………………21-33

13. Рецензия………………………………………………..…………..34

В В Е Д Е Н И Е:

Мы познакомились с работой Excel и знаем, что это приложение создано специально для решения задач обработки табличных данных.

Существуют системы (приложения) для решения иных классов задач. В частности, очень большую роль играют сейчас программы (приложения, системы), цепь которых – хранение данных и выдача данных по запросу пользователя.

Использование ЭВМ именно для решения этого класса задач становится всё более массовым явлением.

Смело можно сказать, что такие задачи и необходимость их решения существуют в любой фирме, на любом предприятии.

Основное понятие для подобного круга задач – база данных. Так называется файл или группа файлов стандартной структуры, служащая для хранения данных.

Для разработки программ, систем программ, работающих с базами данных, используются специальные средства – системы управления базами данных (СУБД).

СУБД включает, как правило, специальный язык программирования и все прочие средства, необходимые для разработки указанных программ.

В настоящее время наиболее известными СУБД являются FOXPRO и ACCESS. Последняя входит в состав профессионального пакета MS Office 97.

Это современные системы с большими возможностями, предназначенные для разработки сложных программных комплексов, и знакомство с ними для пользователя ЭВМ исключительно полезно, но в рамках настоящего пособия осуществить его затруднительно.

Понятие базы данных

База данных (БД) – это совокупность массивов и файлов данных, организованная по определённым правилам, предусматривающим стандартные принципы описания, хранения и обработки данных независимо от их вида.

База данных (БД) – совокупность организованной информации, относящейся к определённой предметной области, предназначенная для длительного хранения во внешней памяти компьютера и постоянного применения.

Виды БД:

1.Фактографическая – содержит краткую информацию об объектах некоторой системы в строго фиксированном формате;

2.Документальная – содержит документы самого разного типа: текстовые, графические, звуковые, мультимедийные;

3.Распределённая – база данных, разные части которой хранятся на различных компьютерах, объединённых в сеть;

4.Централизованная – база данных, хранящихся на одном компьютере;

5.Реляционная – база данных с табличной организацией данных.

Одно из основных свойств БД – независимость данных от программы, использующих эти данные.

Работа с базой данных требует решения различных задач, основные из них следующие:

Создание базы, запись данных в базу, корректировка данных, выборка данных из базы по запросам пользователя.

Задачи этого списка называются стандартными.

Следующее понятие, связанное с базой данных: программа для работы с базой данных – это программа, которая обеспечивает решение требуемого комплекса задач. Любая подобная программа должна уметь решать все задачи стандартного набора.

База данных в разных системах имеет различную структуру.

В ПВЭМ обычно используются реляционные БД – в таких базах файл является по структуре таблицей. В ней столбцы называются полями, строки – записями.

Примером БД может служить расписание движения поездов или автобусов. Здесь каждая строчка – запись отражает данные строго одного объекта. База включает поля: номер рейса, маршрута следования, время отправления и т.д.

Классическим примером БД является и телефонный справочник. Запрос к базе данных – это предписание, указывающее, какие данные пользователь желает получить из базы.

Некоторые запросы могут представлять собой серьёзную задачу, для решения которой потребляется составлять сложную программу. Например, запрос к базе – автобусному расписанию: определить разницу в среднем интервале отправления автобусов из Ростова в Таганрог и из Ростова в Шахты.

Объекты для работы с базами данных

Для создания приложения, позволяющего просматривать и редактировать базы данных, нам потребуется три звена:

набор данных

источник данных

визуальные элементы управления

В нашем случае эта триада реализуется в виде:

Table

DataSource

DBGrid

Table подключается непосредственно к таблице в базе данных. Для этого нужно установить псевдоним базы в свойстве DataBaseName и имя таблицы в свойстве TableName, а затем активизировать связь: свойство Active = true.

Однако, поскольку Table является невизуальным компонентом, хотя связь с базой и установлена, пользователь не в состоянии увидеть какие – либо данные. Поэтому необходимо добавить визуальные компоненты, отображающие эти данные. В нашем случае это сетка DBGrid. Сетка сама по себе «не знает», какие данные ей нужно отображать, её нужно подключить к Table, что и делается через компонент – посредник DataSource.

А зачем нужен компонент – посредник? Почему бы сразу не подключаться к Table?

Допустим, несколько визуальных компонентов – таблица, поля ввода и т.п. подключены к таблице. А нам нужно быстро переключить их все на другую подобную таблицу. С DataSource это сделать несложно - достаточно просто поменять свойство DataSet, а вот без DataSource пришлось бы менять указатели у каждого компонента.

Приложения баз данных – нить, связывающая БД и пользователя:

БД – набор данных – источник данных – визуальные компоненты – пользователь

Набор данных:

Table (таблица, навигационный доступ)

Query (запрос, реляционный доступ)

Визуальные компоненты:

Сетки DBGrid , DBCtrlGrid

Навигатор DBNavigator

Всяческие аналоги Lable , Edit и т.д.

Компоненты подстановки

Типы данных в базах

В Access можно определить следующие типы полей:

Текстовый – текстовая строка; максимальная длина задаётся параметром «размер», но не может быть больше 255

Поле МЕМО – текст длиной до 65535 символов

Числовой – в параметре «Размер поля» можно задать поле: байт, целое, дейсвительное и т.п.

Дата/время – поле, хранящее данные о времени.

Денежный – специальный формат для финансовых нужд, по сути являющийся числовым

Счётчик – автоинкрементное поле. При добавлении новой записи внутренний счётчик таблицы увеличивается на единицу и записывается в данное поле новой записи. Таким образом, значения этого поля гарантированно различны для разных записей. Тип предназначен для ключевого поля

Логический – да или нет, правда или ложь, включен или выключен

Объект OLE – в этом поле могут храниться документы, картинки, звуки и т.п. Поле является частным случаем BLOB – полей ( Binary Large Object ), встречающихся в различных базах данных

Подстановка

Типы данных в таблицах Access :

Текстовый

Поле МЕМО

Числовой

Дата\время

Денежный

Счётчик

Логический

Объект OLE

Не надо забывать про индексы.

Связывать таблицы.

Связь с обеспечением целостности контролирует каскадное удаление и модификацию данных.

Монопольный доступ к БД нужен для того, чтобы производить в ней фундаментальные изменения.

Основные понятия и элементы баз данных

Базы данных понадобились тогда, когда возникла потребность хранить большие объёмы однотипной информации, уметь её оперативно использовать. Базами данных (в широком понимании этого слова) пользовались на протяжении всей истории жрецы, чиновники, купцы, ростовщики, алхимики.

Основное требование к базам данных – удобство доступа к данным, возможность оперативно получить исчерпывающую информацию по любому интересующему вопросу (важно не только то, что информация содержится в базе, важно то, насколько она хорошо структирована и целостна).

Лишь только появились и распространились компьютеры, почти сразу на них возложили тяжёлый и кропотливый труд по обработке и структурированию данных, появились базы данных (БД) в их нынешнем понимании.

Согласно современным требованиям к базам данных, информация, содержащаяся в них, должна быть:

непротиворечивой (не должно быть данных, противоречащих друг другу);

неизбыточной (следует избегать ненужного дублирования информации в базе, избыточность может привести к противоречивости – например, если какие – то данные изменяют, а их копию в другой части базы забыли изменить);

целостной (все данные должны быть связаны, не должно быть ссылок на несуществующие в базе данные)

Реляционная модель баз данных была предложена Эдгаром Коддом в конце 70-х годов. В рамках этой модели база данных представляет собой набор таблиц, связанных друг с другом отношениями. При достаточной простоте (а значит, и удобстве реализации на компьютере) данная модель обладает гибкостью, позволяющей описывать сложно структурированные данные. Кроме того, для этой модели достаточно глубоко проработано теоретическое обоснование, что также даёт возможность эффективнее использовать компьютер при создании базы данных и работе с ней. В плане правил связи в реляционной модели реализуется отношение «один–ко–многим» связи между таблицами. Это значит, что одной записи в главной таблице соответствует несколько записей в подчинённой таблице (в том числе может не соответствовать ни одной записи). Другие типы связей: «один-к-одному», «много-к-одному» и «много-ко-многим» - можно свести к данному типу «один-ко-многим». Реляционные базы данных состоят из связанных таблиц.

Таблица представляет собой двумерный массив, в котором хранятся данные. Столбцы таблицы (в рамках принятых обозначений БД) называются полями, строки – записями. Количество полей таблицы фиксировано, количество записей – нет. Фактически таблица – нефиксированный массив записей с одинаковой структурой полей в каждой записи. Добавить в таблицу новую запись не составляет труда, а то время как добавление нового поля влечёт за собой рестрктуризацию всей таблицы и может вызвать определённые трудности. В качестве значений полей в записях могут храниться числа, строки, картинки и т.д. Таблицы баз данных хранятся на жёстком диске (на локальном компьютере или на сервере баз данных – в зависимости от типа БД). Одной таблице соответствуют обычно несколько файлов – один основной и несколько вспомогательных. Тонкости организации таблиц зависят от используемого формата (dBase, Paradox, InterBase, Microsoft Access и т.д.)

Ключ – поле или комбинация полей таблицы, значения в которых однозначно определяют запись. Ключ потому так и называется, что, имея значения ключевых полей, можно однозначно получить доступ к нужной записи. Таким образом, ключи чрезвычайно полезны для связи таблиц. Записывая значения ключа в отведённые поля подчинённой таблицы и тем самым, задавая ссылку, обеспечиваем связь двух записей – записи в главной таблице и записи в подчинённой таблице. В одной записи подчинённой таблицы может находиться и несколько ссылок на записи главной таблицы. Например, в школьном журнале может быть таблица – список дежурств, где в каждой записи содержатся фамилии и имена (ключ их двух полей) нескольких дежурных. Так осуществляется связь различных записей главной таблицы и реализуется достаточно сложная структура данных. В школьной практике в качестве ключевых полей используются имена и фамилии, но в БД лучше отводить специальные ключевые поля – индивидуальные номера (коды) записей. Это гарантированно уберегает от возможных проблем с однофамильцами. В школе же, где не требуется такая компьютерная чёткость, появление в одном классе двух учеников с одинаковыми именами и фамилиями – очень редкое событие, поэтому можно простить подобное техническое упущение. Кроме связывания, ключи могут использоваться для прямого доступа к записям, ускорения работы с таблицей.

Индекс – поле, так же, как и ключ, специально выделенное в таблице, данные в котором, однако, могут повторяться. Они также служат для ускорения доступа и, кроме того, для сортировки и выборок.

Нормальные формы были придуманы, скорее, для автоматизации процесса создания баз данных, нежели как руководство тем, кто создаёт их вручную (автоматическое проектирование больших баз данных может производиться с помощью специальных систем программ – средств (CASE). Реально при ручной разработке проектировщик сразу же задумывает необходимую структуру, планирует нужные таблицы, а не идёт от одной большой таблицы. Нормальные формы фактически формализуют интуитивно понятые требования к организации данных, помогая, прежде всего, избежать избыточного дублирования данных.

Первая нормальная форма:

информация в полях неделимая (к примеру, имя и фамилия должны быть разными полями, а не одним);

в таблице нет повторяющихся групп полей

Вторая нормальная форма:

выполнена первая форма;

любое неключевое поле однозначно идентифицируется ключевыми полями (фактически, требование наличия ключа)

Третья нормальная форма:

выполнена вторая форма

неключевые поля должны однозначно идентифицироваться только ключевыми полями (это значит, что данные, не зависящие от ключа, должны быть вынесены в отдельную таблицу)

Требование третьей нормальной формы имеет тот смысл, что таблицу с полями (Имя, Фамилия, Класс, Классный руководитель) необходимо разбить на две таблицы (Имя, Фамилия, Класс) и (Класс, Классный руководитель), поскольку поле Класс однозначно определяет поле Классный руководитель (а согласно третьей форме, однозначно определять должны только ключи).

Для более глубокого понимания тонкостей проведения операций с записями в таблицах необходимо иметь понятия о способах доступа, транзакциях и бизнес-правилах.

Способы доступа определяют, как технически производятся операции с записями. Способы доступа выбираются программистом во время разработки приложения. Навигационный способ основан на последовательной обработке нужных записей поодиночке. Он обычно используется для небольших локальных таблиц. Реляционный способ основан на обработке сразу набора записей с помощью SQL-запросов. Он используется для больших удалённых БД.

Транзакции определяют надёжность выполнения операций по отношению к сбоям. В транзакцию объединяется последовательность операций, которая либо должна быть выполнена полностью, либо не выполнена совсем. Если во время выполнения транзакции произошёл сбой, то все результаты всех операций, входящих в неё отменяются. Это гарантирует то, что не нарушается корректность базы данных даже в случае технических (а не программных) сбоев.

Бизнес-правила определяют правила проведения операций и представляют механизмы управления БД. Задавая возможные ограничения на значения полей, они также вносят свой вклад в поддержание корректности базы. Несмотря на возможные ассоциации с бизнесом как коммерцией, бизнес-правила не имеют к нему прямого отношения и просто являются правилами управления базами данных.

Корректная БД:

- неизбыточная;

- непротиворечивая;

- целостная

Реляционная БД:

- таблицы;

- связи между таблицами с помощью ключей

- поля (столбцы) – фиксированы;

- записи (строки) – легко добавляются и удаляются

- однозначно определяет запись

Ключи и индексы:

- служат для связи таблиц, прямого доступа, ускорения обработки и т.п.

Нормальные формы:

- служат для борьбы с избыточностью данных;

- много требуют, но из самых благих побуждений

Способы доступа:

-навигационный;

- реляционный

Защита корректности БД:

- транзакции – техническая защита

- бизнес-правила – логическая защита

Т Е С Т

1.Модели баз данных:

А) коммерческие

Б) сетевые

В) объектно-ориентированные

Г) революционные

Д) реляционные

Е) интегральные

2.Виды базы данных:

А) документальные

Б) сетевые

В) графические

Г) реляционные

3.Какая из баз данных содержит документы самого разного типа?

А) распределённая

Б) централизованная

В) фактографическая

Г) документальная

4.Что может являться примером базы данных?

А) пешеход, стоящий на обочине дороги

Б) телефонный справочник

В) расписание уроков

Г) расписание движения поездов или автобусов

5. Что такое ключ?

А) ссылкаБ) кодовое словоВ) программаГ) поле или комбинация полей таблицы

6. Что будет выведено на экран в результате выполнения фрагмента программы?

M:= ‘биология’;
k:= ‘зоо’ + copy (m, 4, 5);
writeln (k);

А) зоологияБ) зооВ) биологияГ) логия 7.Набор данных содержит: А) навигатор DBNavigatorБ) TableВ) Query 8.Выберите верное утверждение: денежный тип полей… А) текстовая строкаБ) текст длиной до 65535 символовВ) специальный формат для финансовых нуждГ) автоинкретное поле 9.Основное требование к данным: А) потребность в хранении больших объёмов однотипной информацииБ) быстрое распространение информацииВ) возвратное удаление информацииГ) удобство доступа к данным и быстрое нахождение нужной информации по интересующему вопросу 10.Какой должна быть информация, находящаяся в требованиях к базам данных? А) целостнойБ) краткойВ) непротиворечивойГ) однотипной

Ответы на тест

Вопросы для самопроверки :

1. Что такое БД?

2. Что является классическим примером БД?

3. Приведите несколько примеров БД

4. Какой вид БД обычно используется в ПВЭМ?

5. Какие виды БД вы знаете?

6. Какие три звена нам потребуются для создания приложения, позволяющего просматривать и редактировать базы данных?

7. Какие типы полей можно определить в Access?

8. Для чего нужен монопольный доступ к БД?

9. Что такое реляционная модель базы БД?

10. Сколько существует нормальных форм в БД? Перечислите их

11. Что такое транзакции?

Л И Т Е Р А Т У Р А :

1. Информатика. Учебное пособие для среднего профессионального образования (+CD)/Под общ. ред. И.А. Черноскутовой – СПб.: Питер, 2005. – 272 с.: ил. стр. 24 - 25

2. Информатика. Учебное пособие для студ. пед. вузов /А.В.Могилёв; Н.И.Пак, Е.К.Хённер; Под ред. Е.К.Хённера. – М., 1999. - 816 с стр. 185 - 187

3. Информатика. Учебник. – 3-е перераб. изд./Под ред. проф. Н.В.Макаровой. – М.: Финансы и статистика, 2000. – 768 с.: ил.

Р Е Ц Е Н З И Я

Эта статья содержит краткие сведения о базах данных: что это, чем они могут быть полезны, каковы функции их отдельных элементов. Здесь используется терминология, свойственная Microsoft Access, однако описываемые понятия применимы по отношению к любым базам данных.

В этой статье:

Что представляет собой база данных?

Базы данных - это инструмент для сбора и структурирования информации. В базе могут храниться данные о людях, товарах, заказах и о многом другом. Многие базы данных изначально представляют собой небольшой список в текстовом редакторе или электронной таблице. По мере увеличения объема данных в списке постепенно появляются несоответствия и излишняя информация. Информация, отображенная в виде списка, становится непонятной. Кроме того, ограничены способы, с помощью которых можно искать и отображать подмножества данных. Как только начинают появляться эти проблемы, мы рекомендуем перенести всю информацию в базу данных, созданную в системе управления базами данных (СУБД), такой как Access.

Компьютерная база данных - это хранилище объектов. В одной базе данных может быть больше одной таблицы. Например, система отслеживания складских запасов, в которой используются три таблицы, - это не три базы данных, а одна. В базе данных Access (если ее специально не настраивали для работы с данными или кодом, принадлежащими другому источнику) все таблицы хранятся в одном файле вместе с другими объектами, такими как формы, отчеты, макросы и модули. Для файлов баз данных, созданных в формате Access 2007 (который также используется в Access 2016, Access 2013 и Access 2010), используется расширение ACCDB, а для баз данных, созданных в более ранних версиях Access, - MDB. С помощью Access 2016, Access 2013, Access 2010 и Access 2007 можно создавать файлы в форматах более ранних версий приложения (например, Access 2000 и Access 2002–2003).

Использование Access позволяет:

    добавлять новую информацию в базу данных, например новый артикул складских запасов;

    изменять информацию, уже находящуюся в базе, например перемещать артикул;

    удалять информацию, например если артикул был продан или утилизирован;

    упорядочивать и просматривать данные различными способами;

    обмениваться данными с другими людьми с помощью отчетов, сообщений электронной почты, внутренней сети или Интернета.

Элементы базы данных Access

Ниже приведены краткие описания элементов стандартной базы данных Access.

Таблицы

Таблица базы данных похожа на электронную таблицу - и там, и там информация расположена в строках и столбцах. Поэтому импортировать электронную таблицу в таблицу базы данных обычно довольно легко. Основное различие заключается в том, как данные структурированы.

Чтобы база данных была как можно более гибкой и чтобы в ней не появлялось излишней информации, данные должны быть структурированы в виде таблиц. Например, если речь идет о таблице с информацией о сотрудниках компании, больше одного раза вводить данные об одном и том же сотруднике не нужно. Данные о товарах должны храниться в отдельной таблице, как и данные о филиалах компании. Этот процесс называется нормализацией .

Строки в таблице называются записями. В записи содержатся блоки информации. Каждая запись состоит по крайней мере из одного поля. Поля соответствуют столбцам в таблице. Например, в таблице под названием "Сотрудники" в каждой записи находится информация об одном сотруднике, а в каждом поле - отдельная категория информации, например имя, фамилия, адрес и т. д. Поля выделяются под определенные типы данных, например текстовые, цифровые или иные данные.

Записи и поля можно описать по-другому. Представьте старый библиотечный карточный каталог. Каждой карточке в шкафу соответствует запись в базе данных. Блоки информации на карточке (автор, название книги и т. д.) соответствуют полям в базе данных.

Дополнительные сведения о таблицах см. в статье Общие сведения о таблицах .

Формы

С помощью форм создается пользовательский интерфейс для ввода и редактирования данных. Формы часто содержат кнопки команд и другие элементы управления, предназначенные для выполнения различных функций. Можно создать базу данных, не используя формы, если просто отредактировать уже имеющуюся информацию в таблицах Access. Тем не менее, большинство пользователей предпочитает использовать формы для просмотра, ввода и редактирования информации в таблицах.

С помощью кнопок команд задаются данные, которые должны появляться в форме, открываются прочие формы и отчеты и выполняется ряд других задач. Например, есть "Форма клиента", в которой вы работаете с данными о клиентах. И в ней может быть кнопка, нажатием которой открывается форма заказа, с помощью которой вы вносите информацию о заказе, сделанном определенным клиентом.

Формы также дают возможность контролировать взаимодействие пользователей с информацией базы данных. Например, можно создать форму, в которой отображаются только определенные поля и с помощью которой можно выполнять только ограниченное число операций. Таким образом обеспечивается защита и корректный ввод данных.

Дополнительные сведения о формах см. в статье Формы .

Отчеты

Отчеты используются для форматирования, сведения и показа данных. Обычно отчет позволяет найти ответ на определенный вопрос, например "Какую прибыль в этом году принесли нам наши клиенты?" или "В каких городах живут наши клиенты?" Отчеты можно форматировать таким образом, чтобы информация отображалась в наиболее читабельном виде.

Отчет можно сформировать в любое время, и в нем всегда будет отображена текущая информация базы данных. Отчеты обычно форматируются таким образом, чтобы их можно было распечатать, но их также можно просматривать на экране, экспортировать в другие программы или вкладывать в сообщения электронной почты.

Запросы

Запросы могут выполнять множество функций в базе данных. Одна из их основных функций - находить информацию в таблицах. Нужная информация обычно содержится в нескольких таблицах, но, если использовать запросы, ее можно просматривать в одной. Кроме того, запросы дают возможность фильтровать данные (для этого задаются критерии поиска), чтобы отображались только нужные записи.

Используются и так называемые "обновляемые" запросы, которые дают возможность редактировать данные, найденные в основных таблицах. При работе с обновляемым запросом помните, что правки вносятся в основные таблицы, а не только в таблицу запроса.

Есть два основных вида запросов: запросы на выборку и на изменение. Запрос на выборку только находит данные и предоставляет к ним доступ. Результаты такого запроса можно просмотреть на экране, распечатать или скопировать в буфер обмена, а также использовать в качестве источника записей для формы или отчета.

С помощью запроса на изменение, как видно из названия, можно выполнять определенные операции с найденными данными: создавать таблицы, добавлять информацию в уже существующие таблицы, а также обновлять или удалять данные.

Дополнительные сведения о запросах см. в статье Знакомство с запросами .

Макросы

Макросы в Access - это нечто вроде упрощенного языка программирования, с помощью которого можно сделать базу данных более функциональной. Например, если к кнопке команды в форме добавить макрос, то он будет запускаться всякий раз при нажатии этой кнопки. Макросы состоят из команд, с помощью которых выполняются определенные задачи: открываются отчеты, выполняются запросы, закрывается база данных и т. д. Используя макросы, можно автоматизировать большинство операций, которые в базе данных вы делаете вручную, и, таким образом, значительно сэкономить время.

Дополнительные сведения о макросах см. в статье Общие сведения о программировании в Access .

Модули

Подобно макросам, модули - это объекты, с помощью которых базу данных можно сделать более функциональной. Но если макросы в Access составляются путем выбора из списка макрокоманд, модули создаются на языке Visual Basic для приложений (VBA). Модули представляют собой наборы описаний, инструкций и процедур. Существуют модули класса и стандартные модули. Модули класса связаны с конкретными формами или отчетами и обычно включают в себя процедуры, которые работают только с этими формами или отчетами. В стандартных модулях содержатся общие процедуры, не связанные ни с каким объектом. Стандартные модули, в отличие от модулей класса, перечисляются в списке Модули в области навигации.

Одной из важнейших областей применения компьютеров является переработка и хранение больших объемов информации в различных сферах деятельности человека: в экономике, банковском деле, торговле, транспорте, медицине, науке и т.д.

Существующие современные информационные системы характеризуются огромными объемами хранимых и обрабатываемых данных, сложной организацией, необходимостью удовлетворять разнообразные требования многочисленных пользователей.

Информационная система - это система, которая реализует автоматизированный сбор, обработку и манипулирование данными и включает технические средства обработки данных, программное обеспечение и обслуживающий персонал.

Цель любой информационной системы - обработка данных об объектах реального мира. Основой информационной системы является база данных. В широком смысле слова база данных - это совокупность сведений о конкретных объектах реального мира в какой-либо предметной области. Под предметной областью принято понимать часть реального мира, подлежащего изучению для организации управления его объектами и, в конечном счете, автоматизации, например, предприятие, вуз и т. д.

Создавая базу данных, пользователь стремится упорядочить информацию по различным признакам и быстро производить выборку с произвольным сочетанием признаков. При этом очень важно выбрать правильную модель данных. Модель данных - это формализованное представление основных категорий восприятия реального мира, представленных его объектами, связями, свойствами, а также их взаимодействиями.

База данных - это информационная модель, позволяющая упорядоченно хранить данные о группе объектов, обладающих одинаковым набором свойств.

Информация в базах данных хранится в упорядоченном виде. Так, в записной книжке все записи упорядочены по алфавиту, а в библиотечном каталоге либо по алфавиту (алфавитный каталог), либо в соответствии с областью знания (предметный каталог).

Система программ, позволяющая создавать БД, обновлять хранимую в ней информацию, обеспечивающая удобный доступ к ней с целью просмотра и поиска, называется системой управления базами данных (СУБД).

  1. Типы баз данных

Группу связанных между собой элементов данных называют обычно записью. Известны три основных типа организации данных и связей между ними: иерархический (в виде дерева), сетевой и реляционный.

Иерархическая БД

В иерархической БД существует упорядоченность элементов в записи, один элемент считается главным, остальные - подчиненными. Данные в записи упорядочены в определенную последовательность, как ступеньки лестницы, и поиск данных может осуществляться лишь последовательным "спуском" со ступеньки на ступеньку. Поиск какого-либо элемента данных в такой системе может оказаться довольно трудоемким из-за необходимости последовательно проходить несколько предшествующих иерархических уровней. Иерархическую БД образует каталог файлов, хранимых на диске; дерево каталогов, доступное для просмотра в Norton Соmmander, - наглядная демонстрация структуры такой БД и поиска в ней нужного элемента (при работе в операционной системе МS-DOS). Такой же базой данных является родовое генеалогическое дерево.

Рисунок 1. Иерархическая модель базы данных

Сетевая БД

Эта база данных отличается большей гибкостью, так как в ней существует возможность устанавливать дополнительно к вертикальным иерархическим связям горизонтальные связи. Это облегчает процесс поиска требуемых элементов данных, так как уже не требует обязательного прохождения всех предшествующих ступеней.

Рисунок 2. Сетевая модель базы данных

Реляционная БД

Наиболее распространенным способом организации данных является третий, к которому можно свести как иерархический, так и сетевой - реляционный (англ. relation - отношение, связь). В реляционной БД под записью понимается строка прямоугольной таблицы. Элементы записи образуют столбцы этой таблицы (поля). Все элементы в столбце имеют одинаковый тип (числовой, символьный), а каждый столбец - неповторяющееся имя. Одинаковые строки в таблице отсутствуют. Преимущество таких БД-наглядность и понятность организации данных, скорость поиска нужной информации. Примером реляционной БД служит таблица на странице классного журнала, в которой записью является строка с данными о конкретном ученике, а имена полей (столбцов) указывают, какие данные о каждом ученике должны быть записаны в ячейках таблицы.

Совокупность БД и программы СУБД образует информационно-поисковую систему, называемую банком данных.

1. По технологии обработки данных базы данных делятся на централизованные и распределенные. Централизованная база данных хранится в памяти одной вычислительной системы. Если эта вычислительная система является компонентом сети ЭВМ, возможен распределенный доступ к такой базе. Этот способ использования баз данных часто применяют в локальных сетях ПК. Распределенная база данных состоит из нескольких, возможно, пересекающихся или даже дублирующих друг друга частей, хранимых в различных ЭВМ вычислительной сети. Работа с такой базой осуществляется с помощью системы управления распределенной базой данных (СУРБД).

Рис. 3. Реляционная модель базы данных

2. По способу доступа к данным базы данных делятся на базы данных с локальным доступом и базы данных с удаленным (сетевым доступом). Системы централизованных баз данных с сетевым доступом предполагают различные архитектуры таких систем: файл-сервер; клиент-сервер.

Файл-сервер

Архитектура систем БД с сетевым доступом предполагает выделение одной из машин сети в качестве центральной (сервер файлов). На такой машине хранится совместно используемая централизованная БД. Все другие машины сети выполняют функции рабочих станций, с помощью которых поддерживается доступ пользовательской системы к централизованной базе данных. Файлы базы данных в соответствии с пользовательскими запросами передаются на рабочие станции, где в основном и производится обработка. При большой интенсивности доступа к одним и тем же данным производительность такой информационной системы падает. Пользователи могут создавать также на рабочих станциях локальные БД, которые используются ими монопольно. Схема обработки информации по принципу файл-сервер изображена на рисунке.

Клиент-сервер

В отличие от предыдущей системы, центральная машина (сервер базы данных), помимо хранения централизованной базы данных, должна обеспечивать выполнение основного объема обработки данных. Запрос на использование данных, выдаваемый клиентом (рабочей станцией), приводит к поиску и извлечению данных на сервере. Извлеченные данные транспортируются по сети от сервера к клиенту. Спецификой архитектуры клиент-сервер является использование языка – запросов SQL.