Тарифы Услуги Сим-карты

Оптоволоконная связь. Волоконно-оптические линии связи


Волоконно-оптические ли нии связи (ВОЛС) – система в основе которой лежит оптоволоконный кабель, предназначена для передачи информации в оптическом (световом) диапазоне. В соответствии с ГОСТом 26599-85 термин ВОЛС заменен на ВОЛП (волоко́нно-опти́ческая ли́ния переда́чи), но в повседневном практическом обиходе по прежнему применяется термин ВОЛС, поэтому в данной статье мы будем придерживаться именно его.

Линии связи ВОЛС (если они корректно проведены) по сравнению со всеми кабельными системами отличаются очень высокой надежностью, отличным качеством связи, широкой пропускной способностью, значительно большей протяженностью без усиления и практически 100% защищенностью от электромагнитных помех. В основе системы лежит технология волоконной оптики – в качестве носителя информации используется свет, тип передаваемой информации (аналоговый или цифровой) не имеет значения. В работе преимущественно используется инфракрасный свет, средой передачи служит стекловолокно.

Область применения ВОЛС

Оптоволоконный кабель применяется для обеспечения связи и передачи информации уже более 40 лет, но из за высокой стоимости широко использоваться стал сравнительно недавно. Развитие технологий позволило сделать производство экономичней и стоимость кабеля доступней, а его технические характеристики и преимущества перед другими материалами быстро окупают все понесенные расходы.

В настоящее время, когда на одном объекте используется сразу комплекс слаботочных систем (компьютерная сеть, СКУД, видеонаблюдение, охранная и пожарная сигнализации, охрана периметра, телевидение и др.), обойтись без применения ВОЛС не возможно. Только использование оптоволоконного кабеля делает возможным одновременное применение всех этих систем, обеспечивает корректную стабильную работу и выполнение их функций.

ВОЛС все чаще применяется как основополагающая система при разработке и монтаже , в особенности для многоэтажных зданий, зданий большой протяженности и при объединении группы объектов. Только Волоконно-оптические кабели могут обеспечить соответствующий объем и скорость передачи информации. На основе оптоволокна могут быть реализованы все три подсистемы , в подсистеме внутренних магистралей оптические кабели применяются одинаково часто с кабелями из витых пар, а в подсистеме внешних магистралей они играют доминирующую роль. Различают оптоволоконный кабель для внешней (outdoor cables) и внутренней (indoor cables) прокладки, а так же соединительные шнуры для коммуникаций горизонтальной разводки, оснащения отдельных рабочих мест, объединения зданий.

Не смотря на относительно высокую стоимость, применение оптоволокна становится все более оправдано и находит все более широкое применение.

Преимущества волоконно-оптических линий связи (ВОЛС ) перед традиционными «металлическими» средствами передачи:

  • Широкая полоса пропускания;
  • Незначительное ослабление сигнала, например применительно к сигналу 10МГц оно составит 1,5 дБ/км по сравнению с 30дБ/км для коаксиального кабеля RG6;
  • Исключена возможность возникновения «земляных петель», так как оптоволокно является диэлектриком и создает электрическую (гальваническую) изоляцию между передающим и принимающим концом линии;
  • Высокая надёжность оптической среды: оптические волокна не окисляются, не намокают, не подвержены электромагнитному воздействию
  • Не вызывает помех в соседних кабелях или в других оптоволоконных кабелях, так как носителем сигнала является свет и он полностью остается внутри оптоволоконного кабеля;
  • Стекловолокно абсолютно не чувствительно к внешним сигналам и электромагнитным помехам (ЭМП), не имеет значения рядом с каким блоком питания проходит кабель (110 В, 240 В, 10 000 В переменного тока) или совсем рядом от мегаватного передатчика. Удар молнии на расстоянии 1 см. от кабеля не даст ни каких наводок и не отразится на работе системы;
  • Информационная безопасность - информация по оптическому волокну передаётся «из точки в точку» и подслушать или изменить ее можно только путем физического вмешательства в линию передачи
  • Оптоволоконный кабель легче и миниатюрней – его удобней и проще укладывать чем электрический кабель такого же диаметра;
  • Сделать ответвление кабеля без повреждения качества сигнала не возможно. Любое вмешательство в систему сразу обнаруживается на принимающем конце линии, это особенно важно для систем обеспечения безопасности и видеонаблюдения;
  • Пожаро- и взрывобезопасность при изменении физических и химических параметров
  • Стоимость кабеля снижается с каждым днем, его качество и возможности начинают превалировать над затратами на построение слаботочных на базе ВОЛС

Идеальных и безупречных решений не существует, как и любая система, ВОЛС имеет свои недостатки:

  • Хрупкость стекловолокна – при сильном изгибании кабеля возможна поломка волокон или их замутнение из-за возникновения микротрещин. Для устранения и минимизации этих рисков применяются усиливающие кабель конструкции и оплетки. При монтаже кабеля необходимо соблюдать рекомендации производителя (где, в частности, нормируется минимально допустимый радиус изгиба);
  • Сложность соединения в случае разрыва – требуется специальный инструмент и квалификация исполнителя;
  • Сложная технология изготовления, как самого волокна, так и компонентов ВОЛС;
  • Сложность преобразования сигнала (в интерфейсном оборудовании);
  • Относительная дороговизна оптического оконечного оборудования. Однако, оборудование является дорогим в абсолютных цифрах. Соотношение цены и пропускной способности для ВОЛС лучше, чем для других систем;
  • Замутнение волокна вследствие радиационного облучения (однако, существуют легированные волокна с высокой радиационной стойкостью).

Монтаж систем ВОЛС требует от исполнителя соответствующего уровня квалификации, так как концевая заделка кабеля производится специальными инструментами, с особой точностью и мастерством в отличии от других средств передачи. Настройки маршрутизации и переключения сигналов требуют специальной квалификации и мастерства, поэтому в этой области не стоит экономить и бояться переплатить профессионалам, устранение нарушений в работе системы и последствий не правильного монтажа кабеля обойдется дороже.

Принцип действия оптоволоконного кабеля.

Сама идея передачи информации при помощи света, не говоря уже о физическом принципе работы большинству обывателей не совсем понятно. Мы не будем глубоко вдаваться в эту тему, но постараемся объяснить основной механизм действия оптоволокна и обосновать такие высокие показатели его работы.

Концепция волоконной оптики опирается на фундаментальные законы отражения и преломления света. Благодаря своей конструкции стекловолокно может удерживать световые лучи внутри световода и не дает им «пройти сквозь стены» при передачи сигнала на многие километры. Кроме того не секрет, что скорость света выше.

Волоконная оптика основывается на эффекте преломления при максимальном угле падения, когда имеет место полное отражение. Это явление происходит в том случае, когда луч света выходит из плотной среды и попадает в менее плотную среду под определенным углом. Например, представим себе абсолютно не подвижную гладь воды. Наблюдатель смотрит из под воды и меняет угол обзора. В определенный момент угол обзора становится таким, что наблюдатель не сможет видеть объекты, находящиеся над поверхностью воды. Этот угол называется углом полного отражения. При этом угле наблюдатель будет видеть только объекты, находящиеся под водой, будет казаться, что смотришь в зеркало.

Внутренняя жила кабеля ВОЛС имеет более высокий показатель преломления, чем оболочка и возникает эффект полного отражения. По этой причине луч света, проходя по внутренней жиле, не может выйти за ее пределы.

Существует несколько типов оптоволоконных кабелей:

  • Со ступенчатым профилем – типичный, самый дешевый вариант, распределение света идет «ступеньками» при этом происходит деформация входного импульса, вызванная различной длиной траекторий световых лучей
  • С плавным профилем «многомодовое» – лучи света распространяются с примерно равной скоростью «волнами», длина их путей уравновешена, это позволяет улучшить характеристики импульса;
  • Одномодовое стекловолокно – самый дорогой вариант, позволяет вытянуть лучи в прямую, характеристики передачи импульса становятся практически безупречными.

Оптоволоконный кабель до сих пор стоит дороже чем другие материалы, его монтаж и заделка сложнее, требуют квалифицированных исполнителей, но будущее передачи информации несомненно за развитием именно этих технологий и этот процесс необратим.

В состав ВОЛС входят активные и пассивные компоненты. На передающем конце оптоволоконного кабеля находится светодиод или лазерный диод, их излучение модулировано передающим сигналом. Применительно к видеонаблюдению это будет видеосигнал, для передачи цифровых сигналов логика сохраняется. При передаче инфракрасный диод модулирован по яркости и пульсирует в соответствии с вариациями сигнала. Для принятия и преобразования оптического сигнала в электрический, на принимающем конце, как правило находится фотодетектор.


К активным компонентам относятся мультиплексоры, регенераторы, усилители, лазеры, фотодиоды и модуляторы.

Мультиплексор – объединяет несколько сигналов в один, таким образом для одновременной передачи нескольких сигналов реального времени можно использовать один оптоволоконный кабель. Эти устройства незаменимы в системах с недостаточным или ограниченным числом кабелей.

Существует несколько типов мультиплексоров, они различаются по своим техническим характеристикам, функциям и области применения:

  • спектрального разделения (WDM) – самые простые и дешевые устройства, передает по одному кабелю оптические сигналы от одного или нескольких источников, работающих на различных длинах волн;
  • частотного-модулирования и частотного мультиплексирования (FM-FDM) – устройства достаточно невосприимчивые к шуму и искажениям, с хорошими характеристиками и схемами средней степени сложности, имеют 4,8 и 16 каналов, оптимальны для видеонаблюдения.
  • Амплитудной модуляции с частично подавленной боковой полосой (AVSB-FDM) – с качественной оптоэлектроникой позволяют передавать до 80 каналов, оптимальны для абонентского телевидения, но дороговаты для видеонаблюдения;
  • Импульсно-кодовой модуляции (PCM – FDM)– дорогостоящее устройство, полностью цифровое применяется для распространения цифрового видео и и видеонаблюдения;

На практике часто применяются комбинации этих методов. Регенератор - устройство, осуществляющее восстановление формы оптического импульса, который, распространяясь по волокну, претерпевает искажения. Регенераторы могут быть как чисто оптическими, так и электрическими, которые преобразуют оптический сигнал в электрический, восстанавливают его, а затем снова преобразуют в оптический.

Усилитель -усиливает мощность сигнала до требуемого уровня напряжения тока, может быть оптическим и электрическим, осуществляет оптико-электронное и электронно-оптическое преобразование сигнала.

Светодиоды и Лазеры - источник монохромного когерентного оптического излучения (света для кабеля). Для систем с прямой модуляцией, одновременно выполняет функции модулятора, преобразующего электрический сигнал в оптический.

Фотоприёмник (Фотодиод) - устройство, принимающее сигнал на другом конце оптоволоконного кабеля и осуществляющее оптоэлектронное преобразование сигнала.

Модулятор - устройство, модулирующее оптическую волну, несущую информацию по закону электрического сигнала. В большинстве систем эту функцию выполняет лазер, однако в системах с непрямой модуляцией для этого используются отдельные устройства.

К пассивным компонентам ВОЛС относятся:

Оптоволоконный кабель выполняет функции среды для передачи сигнала. Наружная оболочка кабеля может быть изготовлена из различных материалов: поливинилхлорида, полиэтилена, полипропилена, тефлона и других материалов. Оптический кабель может иметь бронирование различного типа и специфические защитные слои (например, мелкие стеклянные иглы для защиты от грызунов). По конструкции может быть:


Оптическая муфта - устройство, используемое для соединения двух и более оптических кабелей.

Оптический кросс - устройство, предназначенное для оконечивания оптического кабеля и подключения к нему активного оборудования.

Спайки – предназначены для постоянного или полупостоянного сращивания волокон;

Разъемы – для повторного присоединения или отключения кабеля;

Ответвители – устройства, распределяющием оптическую мощность нескольких волокон в одно;

Коммутаторы – устройства, перераспределяющие оптические сигналы под ручным или электронным контролем

Монтаж волоконно-оптических линий связи, его особенности и порядок.

Стекловолокно очень прочный, но хрупкий материал, хотя благодаря защитной оболочке, с ним можно обращаться практически как с электрическим. Однако при монтаже кабеля следует соблюдать требования производителей по:

  • «Максимальному растяжению» и «максимальному разрывному усилию», выраженному в ньютонах (около 1000 Н или 1кН). В оптическом кабеле основное напряжение приходится на силовую конструкцию (укрепленный пластик, сталь, кевлар или их комбинация). Каждый тип конструкции имеет свои индивидуальные показатели и степень защиты, если натяжение превышает предусмотренный уровень, то оптоволокно может быть повреждено.
  • «Минимальному радиусу изгиба» – делать изгибы более плавными, избегать резких сгибов.
  • «Механической прочности», она выражается в Н/м (ньютоны/метры) – защита кабеля от физических нагрузок (на него можно наступить или даже наехать транспортом. Следует быть предельно осторожными и особо обезопасить места пересечения и соединения, нагрузка сильно увеличивается из-за малой зоны контакта.

Оптический кабель обычно поставляется намотанным на деревянные барабаны с прочным пластиковым защитным слоем или деревянными планками по окружности. Внешние слои кабеля наиболее уязвимы, поэтому при монтаже необходимо помнить о весе барабана, беречь его от ударов, падений, предпринимать меры безопасности при складировании. Лучше всего хранить барабаны горизонтально, если же они все-таки лежат вертикально, то их края (ободы) должны соприкасаться.

Порядок и особенности монтажа оптоволоконного кабеля:

  1. До начала монтажа необходимо осмотреть барабаны с кабелем на предмет повреждений, вмятин, царапин. При любом подозрении кабель лучше сразу отложить в сторону для последующего детального изучения или отбраковки. Короткие куски (меньше 2 км.) на непрерывность волокна можно проверить на просвет любым фонариком. Волоконный кабель для инфракрасной передаче так же хорошо передает обычный свет.
  2. Далее изучить трассу на предмет потенциальных проблем (острые углы, забитые кабельные каналы и т.д.), при их наличии внести в маршрут изменения для минимизации рисков.
  3. Распределить кабель по маршруту таким образом, чтобы точки соединения и подключения усилителей находились в доступных, но защищенных от неблагоприятных факторов местах. Важно, чтобы в местах будущих соединений оставался достаточный запас кабеля. Открытые концы кабеля должны быть защищены водонепроницаемыми колпаками. Для минимизации напряжения на изгиб и повреждений от проезжающего транспорта используются трубы. На обоих концах кабельной линии оставляют часть кабеля, его длина зависит от планируемой конфигурации).
  4. При прокладке кабеля под землей его дополнительно защищают от повреждений в локальных точках нагрузки, таких как контакт с неоднородным материалом засыпки, неровностями траншеи. Для этого кабель в траншее укладывают на слой песка 50-150 см. и сверху засыпают таким же слоем песка 50-150 см. Дно траншеи должно быть ровным, без выступов, при закапывании следует удалять камни, которые могут повредить кабель. Следует отметить, что повреждения кабеля могут возникнуть как сразу, так и в процессе эксплуатации (уже после засыпки кабеля), например от постоянного давления, не убранный камень может постепенно продавить кабель. Работы по диагностике и поиску и устранению нарушений уже закопанного кабеля обойдутся намного дороже, чем аккуратность и соблюдение мер предосторожности при монтаже. Глубина траншеи зависит от типа почвы и ожидаемой нагрузки на поверхности. В твердой породе глубина составит 30 см., в мягкой или под дорогой 1 м. Рекомендуемая глубина составляет 40-60 см., при толщине песчаной подстилки от 10 до 30 см.
  5. Чаще всего применяется укладка кабеля в траншею или в лоток прямо с барабана. При монтаже очень длинных линий, барабан помещается на транспортное средство, по мере продвижения машины кабель укладывается на свое место, при этом не стоит торопиться, темп и порядок размотки барабана регулируется вручную.
  6. При укладке кабеля в лоток самое главное не превышать критический радиус изгиба и механической нагрузки. Кабель следует укладывать в одной плоскости, не создавать точек сосредоточенных нагрузок, избегать на трассе резких углов, давления и пересечения с другими кабелями и трассами, не изгибать кабель.
  7. Протяжка оптоволоконного кабеля через кабельные каналы аналогична протяжке обычного кабеля, но не стоит прилагать излишних физических усилий и нарушать спецификации производителя. При использовании скоби хомутов помните, что нагрузка должна ложиться не на внешнюю оболочку кабеля, а на силовую конструкцию. Для уменьшения трения можно использовать тальк или гранулы из полистирола, по поводу применения других смазок необходимо консультироваться с производителем.
  8. В случаях, если кабель уже имеет концевую заделку, при монтаже кабеля следует быть особенно внимательными, что бы не повредить разъемы, не загрязнить их и не подвергать чрезмерной нагрузке в зоне соединения.
  9. После укладки кабель в лотке закрепляется нейлоновыми стяжками, он не должен сползать или провисать. Если особенности поверхности не позволяют использовать специальные кабельные крепления, допустимо применение хомутов, но с особой осторожностью, чтобы не повредить кабель. Рекомендуется применение хомутов с пластиковым защитным слоем, для каждого кабеля следует использовать отдельный хомут и ни в коем случае не стягивать вместе несколько кабелей. Между конечными точками крепления кабеля лучше оставить небольшую слабину, а не класть кабель в натяг, иначе он будет плохо реагировать на колебания температуры и вибрации.
  10. Если при монтаже оптоволокно все-таки было повреждено, пометьте участок и оставьте достаточный запас кабеля для последующего сращивания.

В принципе, прокладка оптоволоконного кабеля не сильно отличается от монтажа обычного кабеля. Если соблюдать все указанные нами рекомендации, то проблем при монтаже и эксплуатации не возникнет и Ваша система будет работать долго, качественно и надежно.

Пример типового решения по прокладке линии ВОЛС

Задача – организовать систему ВОЛС между двумя отдельно стоящими зданиями производственного корпуса и административного здания. Расстояние между зданиями 500 м.

Смета на монтаж системы ВОЛС
№п/п Наименование оборудования, материалов, работ Ед. из-я Кол-во Цена за ед. Сумма, в руб.
I. Оборудование системы ВОЛС, в том числе: 25 783
1.1. Кросс оптический настенный (ШКОН) 8 портов шт. 2 2600 5200
1.2. Медиаконвертер 10/100-Base-T / 100Base-FX, Tx/Rx: 1310/1550нм шт. 2 2655 5310
1.3. Муфта оптическая проходная шт. 3 3420 10260
1.4. Ящик коммутационный 600х400 шт. 2 2507 5013
II. Кабельные трассы и материалы системы ВОЛС, в том числе: 25 000
2.1. Оптический кабель с внешним тросом 6кН, центральный модуль, 4 волокна, одномодовый G.652. м. 200 41 8200
2.2. Оптический кабель с внутренним несущим тросом, центральный модуль, 4 волокна, одномодовый G.652. м. 300 36 10800
2.3. Прочие расходные материалы (разъемы, саморезы, дюбеля, изоляционная лента, крепления и т.п.) компл. 1 6000 6000
III. ИТОГО СТОИМОСТЬ ОБОРУДОВАНИЯ И МАТЕРИАЛОВ (п.I+п.II) 50 783
IV. Транспортно-заготовительные расходы, 10% *п.III 5078
V. Работы по монтажу и коммутации оборудования, в том числе: 111 160
5.1. Монтаж перетяжки ед. 4 8000 32000
5.2. Прокладка кабеля м. 500 75 37500
5.3. Монтаж и сварка разъемов ед. 32 880 28160
5.4. Монтаж коммутационного оборудования ед. 9 1500 13500
VI. ВСЕГО ПО СМЕТЕ (п.III+п.IV+п.V) 167 021

Пояснения и комментарии:

  1. Общая протяженность трассы 500 м., в том числе:
    • от забора до производственного корпуса и административного здания составляет по 100 м. (итого 200 м.);
    • вдоль забора между зданиями 300 м.
  2. Монтаж кабеля осуществляется открытым способом, в том числе:
    • от зданий до забора (200 м.) по воздуху (перетяжка) с применением специализированных для прокладки ВОЛС материалов;
    • между зданиями (300 м.) по забору из железобетонных плит, кабель закрепляется по середине полотна забора при помощи металлических клипс.
  3. Для организации ВОЛС используется специализированный самонесущий (встроенный трос) бронированный кабель.

Технологический век дал нам много ярких изобретений и открытий, но, по-видимому, именно возможность передачи информации на большие расстояния внесла один из наиболее весомых вкладов в развитие технологий. Носители, по которым передаются данные, прошли долгий путь развития от медной проволоки столетие назад до современных оптоволоконных кабелей. В результате многократно увеличились объемы информации, скорости и расстояния ее передачи, что расширило пределы технологического развития во всех областях.

Современные оптоволоконные кабели из стекла с малыми потерями обеспечивают практически неограниченную полосу пропускания и имеют массу других преимуществ над ранее созданными носителями. Простейшая оптоволоконная система передачи информации между двумя точками состоит из трех основных элементов: оптического передатчика, оптоволоконного кабеля и оптического приемника (рис. 1).

Рис. 1. Схема простейшей оптоволоконной системы передачи информации

Оптический передатчик преобразует аналоговый или цифровой электрический сигнал в соответствующий ему световой сигнал. Источником света может быть либо светодиод, либо твердотельный лазер. Чаще всего используются источники света с длиной волны 850, 1300 и 1550 нанометров.

Оптоволоконный кабель состоит из одного или нескольких стеклянных волокон, которые для света работают как волноводы (световоды). По конструкции оптоволоконный кабель похож на электрический, но содержит специальные элементы для защиты находящихся внутри него световодов. Соединение многокилометровых кабелей выполняется с помощью разъемных и неразъемных оптических соединителей.

Оптический приемник преобразует световой сигнал в копию исходного электрического сигнала. В качестве чувствительного элемента оптического приемника используется либо лавинный фотодиод, либо (чаще) PIN-фотодиод.

Оптоволоконные системы передачи информации - оптические приемник и передатчик, связанные оптоволоконным кабелем - имеют много преимуществ над обычными медными проводами и коаксиальными кабелями:

Почему оптоволоконные системы обладают этими полезными свойствами? Прочитав эту брошюру и поняв принципы, лежащие в основе оптоволоконной технологии, вы получите ответ на этот вопрос. Каждому из трех компонентов оптоволоконных систем - передатчикам, приемникам и кабелям - посвящен свой раздел.

Оптические передатчики

Оптический передатчик преобразует электрический сигнал в модулированный световой поток, предназначенный для передачи по оптоволокну. В зависимости от типа сигнала могут использоваться различные способы модуляции - включение и выключение света или его плавное изменение между заданными уровнями пропорционально входному сигналу. На рис. 2 эти два основных способа модуляции показаны на графиках зависимости интенсивности света от времени.


Рис. 2. Основные методы модуляции светового потока

Чаще всего в оптических передатчиках в качестве источника света используются светоизлучающие диоды (светодиоды) и полупроводниковые лазеры (лазерные диоды). Для использования в оптоволоконных системах эти устройства изготавливаются в корпусах, позволяющих подвести оптоволокно максимально близко к зоне, излучающей свет. Это необходимо для того, чтобы направить как можно больше света в световод. Иногда излучатель оборудован микроскопической сферической линзой, позволяющей собрать весь свет «до последней капли» и направить его в волокно. В некоторых случаях стеклянная нить присоединяется непосредственно к поверхности излучающего свет кристалла.

Чаще всего в оптических передатчиках в качестве источника света используются светоизлучающие диоды (светодиоды) и полупроводниковые лазеры (лазерные диоды).

У светодиодов площадь излучающего элемента довольно велика, и поэтому они излучают не так эффективно, как лазеры. Однако светодиоды широко используются на линиях связи малой и средней длины. Светодиоды гораздо дешевле лазеров, имеют почти линейную зависимость интенсивности излучения от величины электрического тока, интенсивность их излучения слабо зависит от температуры. Лазеры, напротив, имеют очень малую площадь излучающей поверхности и могут отдавать в оптоволокно гораздо большую мощность, чем светодиоды. Они тоже линейны по току, но очень сильно подвержены влиянию температуры и для достижения необходимой стабильности требуют применения более сложных электронных схем. Поскольку лазеры довольно дороги, они в основном используются там, где требуется передача данных на большие расстояния.

Поскольку лазеры довольно дороги, они в основном используются там, где требуется передача данных на большие расстояния.

Применяемые в оптоволоконной связи светодиоды и лазеры излучают в инфракрасной части спектра электромагнитных волн и поэтому их свет невидим человеческим глазом без применения специальных средств. Длина волны излучения выбрана с учетом максимальной прозрачности материала световодов и наивысшей чувствительности фотодиодов. Наиболее часто используемые сейчас длины волн - 850, 1300 и 1550 нанометров. Для всех трех длин волн выпускаются как светодиоды, так и лазеры.

Как уже было сказано, световой поток светодиодов и лазеров модулируется одним из двух способов: «включено-выключено» или линейным непрерывным изменением интенсивности. На рис. 3 показаны упрощенные схемы, реализующие оба способа модуляции. Для управления излучателем используется транзистор, на базу которого поступает предварительно сформированный цифровой сигнал. Максимальная частота модуляции при этом определяется электронной схемой и свойствами излучателя. Со светодиодами легко достижимы частоты в несколько сотен мегагерц, с лазерами - в тысячи мегагерц. На схеме не показан узел термостабилизации (светодиодам он обычно вообще не требуется).

Линейная модуляция осуществляется с помощью схемы на основе операционного усилителя (рис. 3B). Модулирующий сигнал подается на инвертирующий вход усилителя, постоянное смещение поступает на неинвертирующий вход. Здесь также не показана схема термостабилизации.


Рис. 3. Методы модуляции светового потока светодиодов
и полупроводниковых лазеров

В цифровом сигнале, для передачи которого используется модуляция «включено-выключено», логические уровни могут кодироваться различными способами. В наиболее простом из них логической единице соответствует наличие света, логическому нулю - его отсутствие. Кроме того, применяются широтно-импульсная и частотно-импульсная модуляция. При широтно-импульсной модуляции используется непрерывный поток импульсов, двумя различными длительностями которых кодируются логические уровни сигнала. При частотно-импульсной модуляции все импульсы имеют одинаковую длительность, но частота их следования меняется в зависимости от передаваемого логического уровня.


Рис 4. Различные методы оптической передачи аналоговой
и цифровой информации

В цифровом сигнале, для передачи которого используется модуляция «включено-выключено», логические уровни могут кодироваться различными способами. В наиболее простом из них логической единице соответствует наличие света, логическому нулю - его отсутствие.

Для аналоговой модуляции также существует несколько методов. Простейший из них - линейная модуляция, где интенсивность источника света прямо связана с величиной передаваемого сигнала. В других методах передаваемый сигнал вначале модулирует высокочастотную несущую (а в некоторых случаях и несколько несущих), а затем этот сложный сигнал управляет яркостью источника света.

На рис. 4 показана зависимость интенсивности света от времени для этих методов модуляции.

Частота света (который тоже является электромагнитным излучением) весьма велика - порядка миллионов гигагерц. Полоса частот излучателей света (лазеров и светодиодов) достаточно широка, но, к сожалению, современная технология не дает возможности селективного использования этой полосы, как это делается при передаче информации по радио. В оптическом передатчике происходит включение и выключение всей полосы частот сразу, как это делалось в первых искровых передатчиках на заре эры радио. Со временем ученые преодолеют это препятствие и станет возможной «когерентная передача», что определит дальнейшее развитие оптоволоконной технологии.

Световоды

Ввод света в оптическое волокно

Чем выше мощность излучателя, тем больше света попадает в световод.

После того, как передатчик преобразовал входной электрический сигнал в нужным образом модулированный свет, его необходимо ввести в оптическое волокно. Как уже говорилось, для этого существует два способа: прямое соединение излучающего элемента со световодом, и размещение световода в непосредственной близости от излучателя. При использовании второго способа количество света, которое попадет в оптоволокно, зависит от четырех факторов: интенсивности излучения, площади излучающего элемента, входного угла световода и потерь на отражение и рассеяние. Кратко рассмотрим все эти факторы.

Интенсивность излучения светодиода или лазера зависит от его конструкции и обычно выражается как общая мощность излучения при определенном токе. Иногда эта цифра указывается как реальная мощность, передаваемая в оптоволокно конкретного типа. При прочих равных условиях чем выше мощность излучателя, тем больше света попадает в световод.

Отношение площадей излучающего элемента и сердцевины оптоволокна определяет долю общей мощности, которая попадает в световод - чем меньше это отношение, тем больше света окажется в волокне.

Только тот свет, который вошел в оптоволокно под углом, меньшим или равным входному, будет распространяться по световоду.

Входной угол оптоволокна характеризуют его числовой апертурой (numerical aperture, NA), которая определяется как синус половины входного угла. Типовые значения NA лежат в диапазоне от 0,1 до 0,4, что соответствует входному углу от 11 до 46 градусов. Только тот свет, который вошел в оптоволокно под углом, меньшим или равным входному, будет распространяться по световоду.

Потери. Кроме потерь от загрязнений на поверхности оптоволокна, всегда существуют неизбежные потери интенсивности света, вызванные отражением на входе в световод и выходе из него. Это так называемые френелевские потери (по имени французского физика О. Ж. Френеля), которые составляют примерно 4% общей интенсивности на каждой границе раздела стекло-воздух. При необходимости для снижения этих потерь на соединяемые стеклянные поверхности наносят немного специального оптического геля.

Типы оптического волокна

Сейчас используется два типа оптического волокна: со ступенчатым и плавным изменением показателя преломления вдоль радиуса (профилем). На рис. 5 показано, что свет распространяется по таким световодам по-разному.


Рис 5. Распространение света по оптоволокну со ступенчатым и плавным профилями показателя преломления

Оптоволокно характеризуется толщиной сердцевины и оболочки, которую выражают в микрометрах. Сейчас наиболее распространены три типоразмера оптоволокна общего назначения, хотя существуют и другие типоразмеры для специальных применений. Это многомодовые световоды 50/125 и 62,5/125 мкм и одномодовые 8-10/125 мкм.

Как показано на рисунке, волокно со ступенчатым профилем показателя преломления состоит из сердцевины, изготовленной из стекла с малыми оптическими потерями, окруженной стеклянной оболочкой с более низким показателем преломления. Такое различие показателей преломления заставляет свет отражаться от границы между сердцевиной и оболочкой на всем пути распространения. Оптоволокно с плавным профилем состоит из стекла только одного сорта, но оно обработано так, что его показатель преломления плавно уменьшается от центра к периферии. В результате световод, подобно протяженной линзе, постоянно отклоняет распространяющийся по нему свет к центру.

Оптоволокно характеризуется толщиной сердцевины и оболочки, которую выражают в микрометрах. Сейчас наиболее распространены три типоразмера оптоволокна общего назначения, хотя существуют и другие типоразмеры для специальных применений. Это многомодовые световоды 50/125 и 62,5/125 мкм и одномодовые 8-10/125 мкм. Первые два типоразмера обычно используются вместе со светодиодными излучателями на линиях передачи малой и средней длины. Оптоволокно с сердцевиной 8-10 мкм чаще всего применяется в телекоммуникационных системах большой протяженности совместно с лазерными оптическими передатчиками.

Потери в оптическом волокне

Кроме потерь интенсивности сигнала в соединении излучателя и световода, потери происходят также и при распространении света по оптоволокну. Сердцевина оптического волокна делается из сверхчистого стекла с очень низкими потерями. Стекло должно иметь высочайшую прозрачность, поскольку по изготовленному из него волокну свет должен проходить километры. Давайте посмотрим на обычное оконное стекло. Оно прозрачно, но только потому, что его толщина всего 3-4 мм. Достаточно взглянуть на торец стеклянной пластины и увидеть его зеленую окраску, чтобы понять, как сильно она поглощает свет даже на длине в десяток-другой сантиметров. Легко представить, как же мало света пройдет через стометровую толщу оконного стекла!

Большинство световодов общего назначения дает на длине волны 850 нм потери от 4 до 6 децибел на километр (то есть на одном километре теряется от 60 до 75% света). На длине волны 1300 нм по- тери снижаются до 3-4 дБ/км (50-60%), а на 1550 нм они еще меньше - не является чем-то необычным значение 0,5 дБ/км (10%).

Большинство световодов общего назначения дает на длине волны 850 нм потери от 4 до 6 децибел на километр (то есть на одном километре теряется от 60 до 75% света). На длине волны 1300 нм потери снижаются до 3-4 дБ/км (50-60%), а на 1550 нм они еще меньше - не является чем-то необычным значение 0,5 дБ/км (10%).

Основной причиной потерь является поглощение света неоднородностями и рассеяние на них. Другая причина потерь в оптоволокне - его чрезмерный изгиб, при котором часть света выходит из сердцевины. Во избежание таких потерь радиус изгиба оптоволоконного кабеля при прокладке должен быть не менее 2,5 см (а чаще и еще больше).

Полоса пропускания оптоволокна

Однако полоса пропускания оптоволокна для модулированного сигнала ограничена, и тем сильнее, чем длиннее световод.


Чем меньше мод в излучении, тем шире полоса пропускания оптоволокна.

Перечисленные выше потери не зависят от частоты модуляции, то есть уровень потерь в 3 дБ означает, что до получателя не дойдет 50% света независимо от того, модулирован он сигналом 10 Гц или 100 МГц. Однако полоса пропускания оптоволокна для модулированного сигнала ограничена, и тем сильнее, чем длиннее световод. Причину этого ограничения поясняет рис. 6. Свет, вошедший в оптоволокно под малым углом к его оси (M1) распространяется по более короткому пути, чем тот, который входит под углом, близким к предельному входному (M2). В результате различные лучи, исходящие от одного и того же источника (называемые модами), приходят к даль- нему концу световода не одновременно, что приводит к эффекту размывания - уширению коротких импульсов. Это ограничивает максимальную частоту сигнала, передаваемого по оптоволоконному кабелю. Говоря кратко, чем меньше мод в излучении, тем шире полоса пропускания оптоволокна. Чтобы уменьшить число распространяющихся мод, сердцевину волокна делают тоньше. Одномодовое волокно с диаметром сердцевины от 8 до 10 мкм имеет значительно более широкую полосу пропускания, чем многомодовые волокна с диаметром 50 и 62,5 мкм, по которым может одновременно распространяться большое число мод излучения.


Рис. 6. Полоса частот модуляции, пропускаемых оптоволокном,
ограничивается существованием различных путей распространения света

Типовая полоса пропускания для обычных волоконных световодов составляет несколько мегагерц на километр для волокна с очень большим диаметром сердцевины, несколько сотен мегагерц на километр для стандартного многомодового волокна и тысячи мегагерц для одномодовых оптических волокон. С ростом длины кабеля полоса пропускания пропорционально снижается. Например, кабель, имеющий полосу 500 МГц на длине 1 км, при длине 2 км сможет обеспечить полосу в 250 МГц, а при 5 км - лишь в 100 МГц.

Очень широкая полоса пропускания одномодовых световодов позволяет практически не обращать внимания на их длину. Однако для многомодовых волокон этот фактор важен, поскольку нередко частотный диапазон передаваемых сигналов превосходит полосу пропускания кабелей.

Конструкция оптоволоконного кабеля

Типовая полоса пропускания для обычных волоконных световодов составляет несколько мегагерц на километр для волокна с очень большим диаметром сердцевины, несколько сотен мегагерц на километр для стандартного многомодового волокна и тысячи мегагерц для одномодовых оптических волокон. С ростом длины кабеля полоса пропускания пропорционально снижается.

Оптоволоконные кабели выпускаются разного диаметра и конструкции. Как и в случае коаксиальных, конструкция оптоволоконных кабелей определяется его предназначением. Внешне оптоволоконный кабель похож на коаксиальный. На рис. 7 схематично показано устройство стандартного оптоволоконного кабеля.

Оптоволокно имеет защитное покрытие, предохраняющее его от повреждений в производственном процессе. Оно помещается в облегающую его поливинилхлоридную трубку, где может свободно изгибаться при прокладке вокруг углов стен и в кабельных каналах.

Эта трубка окружена оплеткой из кевлара, принимающей на себя основное механическое усилие, которое действует на кабель при прокладке. Наконец, внешняя оболочка из поливинилхлорида защищает весь кабель и предотвращает проникновение влаги внутрь.

Кабели такой конструкции пригодны для прокладки внутри зданий, где не требуется значительная стойкость к внешним воздействиям. Существуют кабели практически для любого варианта прокладки, например, для прямой укладки в грунт, армированные устойчивой к грызунам внешней оболочкой из стали и сертифицированные UL негорючие кабели для прокладки над фальшпотолками. Выпускаются и многожильные кабели с цветовой кодировкой.


Рис. 7. Устройство стандартного оптоволоконного кабеля

Другие типы световодов

Пластмассовые световоды применяются для передачи данных на очень малые расстояния внутри электронного оборудования совместно с недорогими светодиодами. Одно из стандартных применений таких световодов - оптическая развязка цепей управления в высоковольтных источниках питания.

Еще два типа световодов - кварцевые с сердцевиной очень большого диаметра и целиком изготовленные из пластмассы - обычно не используются в телекоммуникациях. Кварцевые световоды используются для передачи мощных световых потоков, например в лазерной хирургии. Пластмассовые световоды применяются для передачи данных на очень малые расстояния внутри электронного оборудования совместно с недорогими светодиодами. Одно из стандартных применений таких световодов - оптическая развязка цепей управления в высоковольтных источниках питания.

Оптические соединители

С помощью оптических соединителей оптоволоконные кабели подключаются к оборудованию или соединяются между собой. Они похожи на электрические разъемы по функциям и внешнему виду, но требу- ют очень высокой точности изготовления. В оптическом разъемном соединении необходимо прецизионное совмещение и центровка сердцевины обоих волокон. Поскольку их диаметр весьма мал (например, 50 мкм), требования к точности очень высоки: допуск имеет порядок одного микрона.

Сейчас используются оптические разъемы множества различных типов. Разъем SMA, использовавшийся еще до изобретения одномодовых волокон, до недавнего времени оставался наиболее распространенным. На рис. 8 показаны детали конструкции этого разъема.


Рис. 8. Конструкция разъема SMA

Следует иметь в виду, что многомодовые разъемы ST будут корректно работать только с многомодовыми световодами.

Для многомодовых волокон сейчас чаще всего применяется разъем ST, разработанный компанией AT&T. В нем применен байонетный фиксатор, а общие потери меньше, чем в SMA. Подобранная пара разъемов ST обеспечивает уровень потерь менее 1 дБ (20%) и не требует дополнительных направляющих втулок или других подобных элементов. Специальный выступ, не дающий разъему поворачиваться, гарантирует, что при соединении оптические волокна всегда будут устанавливаться в одно и то же положение друг относительно друга, что обеспечивает стабильность характеристик разъемного соединения.

Разъемы ST выпускаются как для многомодовых, так и для одномодовых световодов - основное различие состоит в величине допусков. Следует иметь в виду, что многомодовые разъемы ST будут корректно работать только с многомодовыми световодами. Более дорогие одномодовые разъемы ST можно использовать как с одномодовыми, так и с многомодовыми световодами. Процедуры установки разъемов ST и SMA на кабель сходны и занимают примерно одинаковое время. На рис. 9 показаны основные элементы ставшего промышленным стандартом разъема ST.


Рис. 9. Основные элементы разъема ST

Неразъемные соединения световодов

Хотя для соединения двух световодов можно использовать оптические разъемы, существуют другие методы, обеспечивающие значительно более низкие потери. Два наиболее распространенных - механическое соединение и сварное соединение. Оба обеспечивают уровень потерь от 0,15 до 0,1 дБ (3-2%).

Для механического соединения концы световодов освобождаются от оболочек, их торцы очищаются и точно совмещаются с использованием специального механического приспособления. На место соединения наносится оптический гель, снижающий до минимума потери на отражение. Совмещенные концы световодов удерживаются на месте запорным механизмом.

Оптические приемники

Основная задача оптического приемника - преобразование модулированного светового потока, поступающего из оптоволокна, в копию исходного электрического сигнала, поданного на передатчик.

Основная задача оптического приемника - преобразование модулированного светового потока, поступающего из оптоволокна, в копию исходного электрического сигнала, поданного на передатчик. В качестве детектора в приемнике обычно используется PIN- или лавинный фотодиод, который устанавливается на оптическом соединителе (подобном используемому для источников света). У фотодиодов обычно довольно большой чувствительный элемент (несколько микрометров в диаметре), поэтому требования к точности позиционирования оптического волокна не такие жесткие, как для передатчиков.

Важно использовать приемники только с тем типоразмером волокна, для которого они предназначены, иначе может возникнуть перегрузка усилителя.

Интенсивность излучения, выходящего из оптоволокна, достаточно мала, и в оптических приемниках устанавливаются внутренние усилители с большим коэффициентом усиления. Поэтому важно использовать приемники только с тем типоразмером волокна, для которого они предназначены, иначе может возникнуть перегрузка усилителя. Если, например, пара передатчик-приемник, предназначенная для одномодового оптоволокна, используется с многомодовым, то в приемник поступит слишком много света, что вызовет его насыщение и серьезное искажение выходного сигнала. Аналогично, при использовании одномодового волокна с передатчиком и приемником, рассчитанными на многомодовое, до приемника дойдет мало света, и выходной сигнал будет содержать много шума или вообще не появится. Единственный случай, когда несоответствие приемника и передатчика типу волокна может оказаться полезным - чрезмерные потери в световоде. Тогда дополнительные 5-15 дБ, которые даст замена одномодового волокна на многомодовое, спасут положение и позволят получить работоспособную систему. Однако это экстремальная ситуация, и такое решение не рекомендуется для нормального применения.

Следует помнить, что электронные приемники сигнала, в отличие от оптоволоконного кабеля, восприимчивы к электромагнитным помехам, поэтому при работе с ними следует использовать стандартные меры защиты - экранирование, заземление и т.п.

Как и передатчики, оптические приемники выпускаются в аналоговом и цифровом вариантах. В них обоих используется аналоговый предварительный усилитель, за которым включен аналоговый или цифровой выходной каскад.

На рис. 10 показана функциональная схема простого аналогового оптического приемника. Первый каскад - операционный усилитель, включенный как преобразователь тока в напряжение. Слабый ток, генерируемый фотодиодом, преобразуется здесь в напряжение, амплитуда которого обычно составляет несколько милливольт. В следующем каскаде, представляющим собой простой усилитель напряжения, сигнал усиливается до необходимого уровня.

Функциональная схема цифрового оптического приемника показана на рис. 11. Как и в случае аналогового приемника, первый каскад представляет собой преобразователь тока в напряжение. Его выходной сигнал поступает на компаратор напряжения, который выдает чистый цифровой сигнал с малой длительностью перепадов. Регулятор уровня срабатывания компаратора, если он есть, используется для точной настройки симметрии восстановленного цифрового сигнала.

Часто в приемники для наиболее точного воспроизведения входного сигнала добавляются дополнительные каскады, которые работают как линейные усилители для коаксиальных кабелей, преобразователи протоколов и т.п. Следует помнить, что электронные приемники сигнала, в отличие от оптоволоконного кабеля, восприимчивы к электромагнитным помехам, поэтому при работе с ними следует использовать стандартные меры защиты - экранирование, заземление и т.п.


Рис. 10. Простейший аналоговый оптический приемник


Рис. 11. Простейший цифровой оптический приемник

Разработка оптоволоконной системы

При разработке оптоволоконной системы следует учитывать множество факторов, каждый из которых вносит свой вклад в конечную цель - гарантию того, что в приемник поступит достаточное количество света. Без достижения этой цели система не будет работать правильно. На рис. 12 указаны многие из этих факторов.


Рис. 12. Важнейшие параметры, которые необходимо учитывать
при разработке оптоволоконной системы

При инженерной разработке оптоволоконной системы рекомендуется использовать следующую пошаговую процедуру:

  1. Выбор приемника и передатчика, подходящих для того типа сигнала, который необходимо передавать (аналоговый, цифровой, видеосигнал, RS-232, RS-422, RS-485 и т.д.).
  2. Определение имеющихся источников питания (переменное напряжение, постоянное напряжение и др.).
  3. Определение, при необходимости, специальных требований (например, импедансов, полосы пропускания, специальных разъемов и диаметра волокна и т.п.).
  4. Расчет общих потерь в системе (в децибелах): суммирование потерь в кабелях, в разъемных и неразъемных соединениях. Эти характеристики можно получить у производителей электронных устройств и оптоволоконных кабелей.
  5. Сравнение полученной цифры потерь с допустимым значением уровня сигнала на входе приемника. Следует подстраховаться, добавив запас как минимум в 3 дБ на всю систему.
  6. Проверка соответствия полосы пропускания системы потребностям передачи нужного типа сигнала. Если расчеты покажут, что полоса пропускания окажется недостаточной для передачи сигнала на нужное расстояние, то следует либо выбрать другой приемник и передатчик (другую длину волны), либо рассмотреть возможность использования более дорогого и качественного оптоволоконного кабеля с меньшими потерями.

Контрольный перечень параметров, необходимых для разработки оптоволоконной системы передачи данных

Назначение (краткое описание задачи):
Параметры аналогового сигнала:
Входное напряжение
Входной импеданс
Выходное напряжение
Выходной импеданс
Отношение сигнал/шум
Полоса пропускания
Разъемы
Другие данные
Параметры цифрового сигнала:
Тип интерфейса (RS-232, 422, 485 и т.п.)
Скорость передачи данных
Способ связи (по постоянному или переменному току)
Допустимая частота битовых ошибок
Разъемы
Другие данные
Требования к источнику питания:
Напряжение
Ток
Переменное или постоянное напряжение
Разъемы
Другие данные

Требования к оптоволоконной линии:
Длина линии
Длина волны света
Допустимые потери
Оптические разъемы
Тип оптоволокна
Диаметр оптоволокна
Условия монтажа
Общие требования:
Размер корпуса
Способ монтажа
Характеристики окружающей среды
Диапазон рабочих температур
Диапазон температур хранения
Другие данные
Дополнительные комментарии:

Слайд Связь

Связь в технике - передача информации (сигналов) на расстояние.

Типы связи

В зависимости от того, какие явления использовались для кодирования сообщений, можно выделять связь при помощи:

  • электронов - электросвязь (проводная и радиосвязь)
  • излучения фотонов - современное оптоволокно, некоторые виды сигнальных вышек, сигналы фонариком на азбуке Морзе, атмосферная и космическая лазерная связь
  • последовательностей символов из красителей на материале - письмо на бумаге.
  • рельефа или изменения формы материала - оптический диск

В зависимости от среды передачи данных линии связи разделяются на:

  • спутниковые
  • воздушные
  • наземные
  • подводные
  • подземные

В зависимости от того, что переносит сообщение, по физическим принципам, лежащим в основе линий связи, можно выделить следующие типы связи:

  • Проводная и кабельная связь - передача ведётся вдоль направляющей среды.
    • Связь по электрическому кабелю
    • Волоконно-оптическая связь
    • Спутниковая связь - связь с применением космического ретранслятора(ов)
    • Радиорелейная связь - связь с применением наземного ретранслятора(ов)
    • базовых станций
  • Курьерская связь
    • Голубиная почта

В зависимости от того, подвижны источники/получатели информации или нет, различают стационарную (фиксированную ) и подвижную связь (мобильную , связь с подвижными объектами - СПО).



По типу передаваемого сигнала различают аналоговую и цифровую связь.

Сигнал

В зависимости от того, какая информация передаётся, различают аналоговую и цифровую связь. Аналоговая связь - это передача непрерывных сообщений (например, звука или речи). Цифровая связь - это передача информации в дискретной форме (цифровом виде). Однако, дискретные сообщения могут передаваться аналоговыми каналами и наоборот. В настоящее время цифровая связь вытесняет аналоговую (происходит цифровизация),

Линия связи

Линия связи (ЛС)- физическая среда, по которой передаются информационные сигналы аппаратуры передачи данных и промежуточной аппаратуры.

Это и совокупность технических устройств, обеспечивающих передачу сообщений любого вида от отправителя к получателю. Она осуществляется с помощью электрических сигналов, распространяющихся по проводам, или радиосигналов.

Проводные линии связи

Цепь связи - проводники/волокно используемые для передачи одного сигнала. В радиосвязи то же понятие имеет название ствол . Различают кабельную цепь - цепь в кабеле и воздушную цепь - подвешена на опорах.

Проводные линии электросвязи делятся на кабельные, воздушные и оптоволоконные. Кабельные линии прокладывались под землей. Однако вследствие несовершенства конструкции подземные кабельные линии связи уступили место воздушным. Обычный городской телефонный кабель состоит из пучка тонких медных или алюминиевых проводов, изолированных друг от друга и заключенных в общую оболочку. Кабели состоят из разного числа пар проводов, каждая из которых используется для передачи телефонных сигналов. Стремление расширить спектр передаваемых частот и увеличить пропускную способность линий многоканальных систем привело к созданию новых типов кабелей, так называемых коаксиальных . Они используются для передачи телевизионных сигналов высокой частоты, а также для междугородней и международной телефонной связи. Одним проводом в коаксиальном кабеле служит медная или алюминиевая трубка (или оплетка), а другим - вложенная в нее центральная медная жила. Они изолированы друг от друга и имеют одну общую ось. Такой кабель имеет малые потери, почти не излучает электромагнитных волн и поэтому не создает помех. Эти кабели допускают передачу энергии при частоте токов до нескольких миллионов герц и позволяют производить по ним передачу телевизионных программ на большие расстояния.

Рис. Коаксиальный кабель

Оптоволоконные линии связи

В качестве проводных линий связи используются в основном телефонные линии и телевизионные кабели. Наиболее развитой является телефонная проводная связь. Но ей присущи серьезные недостатки: подверженность помехам, затухание сигналов при передаче их на значительные расстояния и низкая пропускная способность. Всех этих недостатков лишены оптоволоконные линии - вид связи, при котором информация передается по оптическим диэлектрическим волноводам ("оптическому волокну").

Оптическое волокно считается самой совершенной средой для передачи больших потоков информации на большие расстояния. Оно изготовлено из кварца, основу которого составляет двуокись кремния - широко распространенного и недорогого материала, в отличие от меди. Оптическое волокно очень компактное и легкое, оно имеет диаметр всего около 100 мкм.

Оптоволоконные линии отличают от традиционных проводных линий:

  • очень высокая скорость передачи информации (на расстояние более 100 км без ретрансляторов);
  • защищенность передаваемой информации от несанкционированного доступа;
  • высокая устойчивость к электромагнитным помехам;
  • стойкость к агрессивным средам;
  • возможность передавать по одному волокну одновременно до 10 миллионов телефонных разговоров и одного миллиона видеосигналов;
  • гибкость волокон;
  • малые размеры и масса;
  • искро-, взрыво- и пожаробезопасность;
  • простота монтажа и укладки;
  • низкая себестоимость;
  • высокая долговечность оптических волокон - до 25 лет.

Рис. Оптоволоконный кабель (поперечный разрез)

В настоящее время обмен информацией между континентами осуществляется главным образом через подводные оптоволоконные кабели, а не через спутниковую связь. При этом главной движущей силой развития подводных оптоволоконных линий связи является Интернет.

Рис. Оптоволоконная сеть "Транстелеком"

Канал связи может быть:

  • симплексный - то есть допускающей передачу данных только в одном направлении, пример - радиотрансляция, телевидение;
  • полудуплексный поочерёдно ;
  • дуплексным - то есть допускающей передачу данных в обоих направлениях одновременно , пример - телефон.

Разделение (уплотнение) каналов:

Создание нескольких каналов на одной линии связи обеспечивается с помощью разнесения их по частоте, времени, кодам, адресу, длине волны.

  • частотное разделение каналов (ЧРК, FDM) - разделение каналов по частоте, каждому каналу выделяется определённый диапазон частот
  • временное разделение каналов (ВРК, TDM) - разделение каналов во времени, каждому каналу выделяется квант времени (таймслот)
  • кодовое разделение каналов (КРК, CDMA) - разделение каналов по кодам, каждый канал имеет свой код наложение которого на групповой сигнал позволяет выделить информацию конкретного канала.
  • спектральное разделение каналов (СРК, WDM) - разделение каналов по длине волны

Беспроводные линии связи

Радиосвязь - для передачи используются радиоволны в пространстве.

    • ДВ-, СВ-, КВ- и УКВ-связь без применения ретрансляторов
    • Спутниковая связь - связь с применением космических ретрансляторов
    • Радиорелейная связь - связь с применением наземных ретрансляторов
    • Сотовая связь - связь с использованием сети наземных базовых станций

Система связи состоит из оконечного оборудования , источника и получателя сообщения, и устройств преобразования сигнала (УПС) с обеих концов линии. Оконечное оборудование обеспечивает первичную обработку сообщения и сигнала, преобразование сообщений из вида в котором их предоставляет источник (речь, изображение и т. п.) в сигнал (на стороне источника, отправителя) и обратно (на стороне получателя), усиление и т. п. УПС может обеспечивает защиту сигнала от искажений.

Виды современной связи

Почта

Почта (русск. Почта (info) ; от лат. posta ) - вид связи и учреждение для транспортировки известий (например, писем и открыток) и мелких товаров, иногда и людей. Осуществляет регулярную пересылку почтовых отправлений - письменной корреспонденции, периодических изданий, денежных переводов, бандеролей, посылок - преимущественно при помощи транспортных средств.

Почтовая организация в России традиционно является государственным предприятием. Сеть почтовых отделений - крупнейшая организационная сеть в стране.

Письмо - средство сохранения информации, например на бумаге. Перед отправкой письма на конверте нужно нанести почтовые индексы отправителя и получателя в соответствии с нанесенным на нем трафаретом.

Рис. Почтовый конверт с трафаретом почтового индекса

Рис. Почтовый конверт РФ с нанесенным почтовым индексом

Авиапо́чта , или авиацио́нная по́чта (англ. airmail ), - вид почтовой связи, при котором почтовые отправления транспортируются воздушным путём с помощью авиации.

Рис. Конверт авиапочты Российской федерации

Голуби́ная по́чта - один из способов почтовой связи, при котором доставка письменных сообщений производится с помощью почтовых голубей.

Киберпочт@

Главное преимущество электронной почты – скорость доставки независимо от географического положения отправителя письма и получателя. Но и отправитель, и получатель для этого должны иметь компьютеры и доступ к электронной почте.

А если у отправителя эти возможности есть, а у получателя нет? В США государственная почтовая служба обеспечивает доставку электронного письма до ближайшего к адресату отделения связи. Там оно распечатывается и в конверте доставляется почтальоном получателю. Сегодня авиапочта доставляет обычное письмо из России в США за 3-4 недели. Новое комбинированное (электронное – обычное) письмо может быть доставлено за 48 часов. В России также существует план оснащения почтовых отделений доступом к Интернету и электронной почте. Этот проект носит название «Киберпочт@». Во всех почтовых отделениях будут открыты «интернет-салоны» – пункты коллективного доступа в Интернет. В таком салоне можно будет отправить электронное письмо, содержащее любой текст, документ, рисунок, фотографию. Это письмо будет отправлено в ближайшее к получателю почтовое отделение, распечатано, автоматически запечатано в конверт и доставлено почтальоном по любому адресу в течение 48 часов. В интернет-салоне консультант поможет вам научиться пользоваться электронной почтой и сделает цифровую фотографию. Первый такой интернет-салон уже существует на московском почтамте. Стоимость одной страницы такого комбинированного письма – 12 рублей, а на дискете – 6 рублей за 2 Кбайта.

Частью проекта «Киберпочт@» является так называемая «Гибридная почта». Это гибрид современного Интернета и «традиционного почтальона». Теперь любой человек может принести в почтовое отделение обыкновенное, написанное на бумаге письмо. Там его введут в компьютер и передадут по электронной почте в ближайшее к адресату почтовое отделение. В нем это письмо распечатают на принтере, и почтальон отнесет его адресату. Тогда письмо дойдет в любой город страны не позднее, чем через 48 часов, так как из процесса доставки исчезает самый долгий этап – перевозка письма, написанного на бумаге из города в город. Так письмо по скорости доставки сравняется с телеграммой. Но стоимость такого письма во много раз меньше, чем телеграммы. Ведь стоимость только одного слова телеграммы при передаче по России составляет 80 коп., а стоимость одной страницы гибридного письма формата А4 и числом знаков 2000 составляет всего 12 руб. При этом на странице формата А4 помещается несколько сотен слов!

Письмо может быть закрытым, т.е. получателю письмо доставляется в конверте, или открытым, т.е. письмо доставляется без конверта.
Можно сдавать письма по Гибридной почте, как на бумаге, так и на магнитном носителе.

Позднее к проекту «Гибридная почта» присоединили дополнение и для пользователей, владеющих Интернетом и электронной почтой. Оно позволяет им отправить электронное письмо адресату, не владеющему электронной почтой. Это письмо попадает в ближайшее к адресату почтовое отделение, в нем распечатывается и запечатывается в конверт. Этот конверт почтальон относит адресату - получателю письма. Этим существенно сокращается время его доставки.

Пневмати́ческая по́чта , или пневмопо́чта (от греч. πνευματικός - воздушный) , - система перемещения штучных грузов под действием сжатого или, наоборот, разрежённого воздуха. Закрытые пассивные капсулы (контейнеры) перемещаются по системе трубопроводов, перенося внутри себя нетяжёлые грузы, документы.

Рис. Терминал пневмопочты

Используется в организациях для пересылки оригиналов документов, например, в банках, складах и библиотеках, наличных денег в супермаркетах и кассах банков, анализов, историй болезней, рентгеновских снимков в лечебных учреждениях, а так же проб и образцов на промышленных предприятиях.

Телегра́ф (от др.-греч. τῆλε - «далеко» + γρᾰ́φω - «пишу») - средство для передачи сигнала по проводам или другим каналам электросвязи. В России телеграфная связь существует и поныне. В некоторых странах сочли телеграф устаревшим видом связи и свернули все операции по отправлению и доставке телеграмм. В Нидерландах телеграфная связь прекратила работу в 2004 году. В январе 2006 года старейший американский национальный оператор Western Union объявил о полном прекращении обслуживания населения по отправке и доставлению телеграфных сообщений. В то же время в Канаде, Бельгии, Германии, Швеции, Японии некоторые компании все ещё поддерживают сервис по отправлению и доставке традиционных телеграфных сообщений.

Телегра́ф (от др.-греч. τῆλε - «далеко» + γρᾰ́φω - «пишу») - средство для передачи сигнала по проводам или другим каналам электросвязи.

Телегра́мма - сообщение, посланное по телеграфу, одному из первых видов связи, использующему электрическую передачу информации.

Рис. Телеграмма

Телефонная связь

Телефо́н (от греч. τῆλε - далеко и φωνή - голос) - устройство для передачи и приёма звука на расстояние посредством электрических сигналов.Телефонная связь применяется для передачи и приема человеческой речи.

В волоконно-оптических системах передачи (ВОСП) информация передается электромагнитными волнами высокой частоты, около 200 ТГц, что соответствует ближнему инфракрасному диапазону оптического спектра 1500 нм. Волноводом, переносящим информационные сигналы в ВОСП, является оптическое волокно (ОВ), которое обладает важной способностью передавать световое излучение на большие расстояния с малыми потерями. Потери в ОВ количественно характеризуются затуханием. Скорость и дальность передачи информации определяются искажением оптических сигналов из-за дисперсии и затухания. Волоконно-оптическая сеть - это информационная сеть, связующими элементами между узлами которой являются волоконно-оптические линии связи. Технологии волоконно-оптических сетей помимо вопросов волоконной оптики охватывают также вопросы, касающиеся электронного передающего оборудования, его стандартизации, протоколов передачи, вопросы топологии сети и общие вопросы построения сетей.

Оптическое волокно в настоящее время считается самой совершенной физической средой для передачи информации, а также самой перспективной средой для передачи больших потоков информации на значительные расстояния. Основания так считать вытекают из ряда особенностей, присущих оптическим волноводам:

  • - широкополосность оптических сигналов, обусловленная чрезвычайно высокой частотой несущей Гц. Это означает, что по оптической линии связи можно передавать информацию со скоростью порядка бит/с (1Тбит/с). Говоря другими словами, по одному волокну можно передать одновременно 10 миллионов телефонных разговоров и миллион видеосигналов. Скорость передачи данных может быть увеличена за счет передачи информации сразу в двух направлениях, так как световые волны могут распространяться в одном волокне независимо друг от друга. Кроме того, в оптическом волокне могут распространяться световые сигналы двух разных поляризаций, что позволяет удвоить пропускную способность оптического канала связи. На сегодняшний день предел по плотности передаваемой информации по оптическому волокну не достигнут;
  • - очень малое (по сравнению с другими средами) затухание светового сигнала в оптическом волокне. Лучшие образцы российского волокна имеют затухание 0,22 дБ/км на длине волны 1,55 мкм, что позволяет строить линии связи длиной до 100 км без регенерации сигналов. Для сравнения, лучшее волокно Sumitomo на длине волны 1,55 мкм имеет затухание 0,154 дБ/км. В оптических лабораториях США разрабатываются еще более «прозрачные», так называемые фторцирконатные оптические волокна с теоретическим пределом порядка 0,02 дБ/км на длине волны 2,5 мкм. Лабораторные исследования показали, что на основе таких волокон могут быть созданы линии связи с регенерационными участками через 4600 км при скорости передачи порядка 1 Гбит/с;
  • - ОВ изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличие от меди;
  • - оптические волокна имеют диаметр около 100 мкм, то есть очень компактны и легки, что делает их перспективными для использования в авиации, приборостроении, в кабельной технике;
  • - так как оптические волокна являются диэлектриками, следовательно, при строительстве систем связи автоматически достигается гальваническая развязка сегментов. В оптической системе они электрически полностью изолированы друг от друга, и многие проблемы, связанные с заземлением и снятием потенциалов, которые до сих пор возникали при соединении электрических кабелей, теряют свою актуальность. Применяя особо прочный пластик, на кабельных заводах изготавливают самонесущие подвесные кабели, не содержащие металла и тем самым безопасные в электрическом отношении. Такие кабели можно монтировать на мачтах существующих линий электропередач, как отдельно, так и встроенные в фазовый провод, экономя значительные средства на прокладку кабеля через реки и другие преграды;
  • - системы связи на основе оптических волокон устойчивы к электромагнитным помехам, а передаваемая по световодам информация защищена от несанкционированного доступа. Волоконно-оптические линии связи нельзя подслушать неразрушающим способом. Всякие воздействия на ОВ могут быть зарегистрированы методом мониторинга (непрерывного контроля) целостности линии;
  • - важное свойство оптического волокна - долговечность. Время жизни волокна, то есть сохранение им своих свойств в определенных пределах, превышает 25 лет, что позволяет проложить волоконно-оптический кабель один раз и, по мере необходимости, наращивать пропускную способность канала путем замены приемников и передатчиков на более быстродействующие.

Но существуют также некоторые недостатки волоконно-оптических технологий:

  • - при создании линии связи требуются высоконадежные активные элементы, преобразующие электрические сигналы в свет, и свет в электрические сигналы. Для соединения ОВ с приемо-передающим оборудованием используются оптические коннекторы (соединители), которые должны обладать малыми оптическими потерями и большим ресурсом на подключение-отключение. Погрешности при изготовлении таких элементов линии связи должны быть порядка доли микрона, т.е. соответствовать длине волны излучения. Поэтому производство этих компонентов оптических линий связи очень дорогостоящее;
  • - другой недостаток заключается в том, что для монтажа оптических волокон требуется прецизионное, а потому дорогое, технологическое оборудование.

Как следствие, при аварии (обрыве) оптического кабеля затраты на восстановление выше, чем при работе с медными кабелями.

Преимущества от применения волоконно-оптических линий связи (ВОЛС) настолько значительны, что, несмотря, на перечисленные недостатки оптического волокна, эти линии связи все шире используются для передачи информации.

Опоры линий электропередачи часто используются не только по своему прямому назначению, но и как инженерные сооружения для подвеса кабелей связи. Ввиду того, что ЛЭП связывают воедино даже самые отдаленные уголки нашей страны, они являются практически идеальным способом организации связи. Для этого на опорах производят подвес различных видов волоконно-оптических кабелей (ВОК).

Мнение эксперта

Главный редактор LinijaOpory

Консультациями в области расчетов и проектирования ВОЛС на ВЛ занимаются наши коллеги. На сайте VOLS-psd.ru Вы можете ознакомиться с перечнем выполняемых расчетов и консультаций, а также узнать условия проектирования ВОЛС по Вашему ТЗ. Ни один вопрос не останется без ответа.

Возможны несколько вариантов строительства ВОЛС на ВЛ. Каждый из них обладает своими преимуществами и недостатками. На нашем сайте Вы сможете найти исчерпывающую информацию о линиях связи данного вида. С каждым годом появляются новые способы подвеса и прокладки ВОК, но есть несколько «классических» вариантов, каждый из которых применяется достаточно часто.

Самонесущий волоконно-оптический кабель связи

Самонесущий оптический кабель (ОКСН) чаще других используется в проектировании и строительстве ВОЛС, так как его подвес может проводиться без снятия напряжения в линии, а это сильно снижает затраты на стройку.

Такой кабель характеризуется небольшим весом и неплохими возможностями к растяжению. Его подвес производят непосредственно на тело опоры или ее траверсу (в зависимости от типа и конструкции опоры).

В настоящее время существует множество специальных приспособлений, предназначенных для подвеса ОКСН. Все они будут рассмотрены на нашем ресурсе.

Оптический кабель, встроенный в грозотрос

Кабель, встроенный в грозозащитный трос (ОКГТ) применяется на линиях высокого и сверхвысокого напряжения. Распространен этот тип кабеля достаточно широко, так как на больших протяженностях трассы ЛЭП он является наиболее приемлемым вариантом.

ОКГТ выполняет как функцию передачи информации, так и классическую функцию защиты линии от перенапряжений. Для строительства ВОЛС на ОКГТ необходимо отключение напряжения линии. При проектировании необходимо учитывать множество факторов, которые влияют на износостойкость и долговечность троса. ОКГТ не создает дополнительных нагрузок на опоры ВЛ.

Оптический кабель, встроенный в фазный провод

Оптический кабель в фазном проводе (ОКФП) — относительно новая технология, которая применяется на территории РФ крайне редко. Это объясняется в первую очередь высокой стоимостью строительных материалов и сложностью монтажа такого провода.

При строительстве ВОЛС с использованием ОКФП напряжение в линии отключают и заменяют существующий фазный провод на кабель связи со сходными характеристиками. Это позволяет достичь как механической, так и электрической симметрии в линии. В настоящее время энергетики позволяют выполнять такие манипуляции редко и только тогда, когда других возможностей подвеса ВОК нет (например, в условиях больших пролетов).

Навивной оптический кабель

При использовании этой технологии по фазному проводу линии пускается специальная машина, которая, перемещаясь по проводу, равномерно накручивает на него ВОК.

В результате навивки ВОК не требует дополнительного крепления на опорах, и увеличивает нагрузки на них лишь незначительно. В современном строительстве эта технология используется достаточно часто на линиях напряжением до 35 кВ. Применение навивных машин требует от монтажников достаточной подкованности в некоторых технических вопросах, однако это окупается результатами работы. Особенно важно применение исправных и работоспособных механизмов в процессе монтажа.

Строительство ВОЛС на ВЛ — перспективное направление связи

Развитие волоконно-оптических сетей передачи данных происходит стремительно и широко. Используются самые разные инженерные сооружения и конструкции кабелей. Для обеспечения долгого и бесперебойного функционирования такие линии проектируются с учетом максимальных нагрузок, наблюдаемых за последние 25 лет.

Помимо того, что для нормирования подвеса ВОК существуют отдельные документы, в Правилах устройства электроустановок также есть соответствующий раздел.