Тарифы Услуги Сим-карты

Что такое HTTP. Особенности работы HTTP протокола

Цель лекции: сформировать представление о функционировании протокола HTTP/HTTPS.

HTTP (HyperText Transfer Protocol) – один из наиболее важных протоколов, который обеспечивает передачу данных через интернет. Протокол HTTP находится на седьмом, прикладном уровне модели OSI и работает на основе протокола TCP.

Поскольку протокол HTTP находится на прикладном уровне, прикладные приложения могут использовать непосредственно его для организации сетевого взаимодействия. Кроме того, протокол HTTP является важнейшей частью веб-приложений. В этом случае браузер, используя возможности HTTP, взаимодействует с сервером для получения необходимых данных.

Протокол HTTP предполагает передачу данных в режиме "запрос-ответ" . При этом в рамках такого взаимодействия могут передаваться данные практически любого типа – обычный текст, гипертекст (HTML), таблицы стилей, клиентские сценарии, изображения, документы в различных форматах, бинарная информация и т.д.

В рамках протокола HTTP всегда четко выделяется клиент и сервер. Клиент всегда является инициатором взаимодействия. Сервер, в свою очередь, прослушивает все входящие соединения и обрабатывает каждое из них. Поскольку HTTP-взаимодействие функционирует по схеме "запрос-ответ", то для инициации сеанса передачи данных необходимо сгенерировать HTTP-запрос. В рамках этого запроса клиент описывает то, какой ресурс он хочет получить от сервера, а также указывает различные дополнительные параметры. После этого запрос отправляется серверу и тот, в свою очередь, обрабатывает запрос и генерирует HTTP-ответ, в котором содержится служебная информация и содержимое того ресурса, который был запрошен. В целом схематически процесс можно изобразить следующим образом.


HTTP-запрос и HTTP-ответ сходны по своей структуре и называются HTTP-сообщениями . Фактически, все взаимодействие в рамках протокола HTTP сводится к пересылке HTTP-сообщений. Каждое HTTP-сообщение является обычной текстовой информацией, представленной в определенном формате. Давайте поподробнее рассмотрим формат HTTP-сообщения.

Каждое HTTP-сообщение состоит из нескольких строк. Первой строкой всегда идет приветственная строка, она существенно различается для HTTP-запроса и HTTP-ответа. Обычно в ней содержится общая информация о запросе. После первой строки в HTTP-сообщении присутствуют HTTP-заголовки – каждый заголовок с новой строки. HTTP-заголовки присутствуют как в HTTP-запросе, так и в HTTP-ответе. Смысл HTTP-заголовков заключается в уточнении HTTP-сообщения для того, чтобы принимающая это HTTP-сообщение сторона могла наиболее точно обработать входящее сообщение. Количество заголовков HTTP-сообщения является переменным и зависит от конкретного HTTP-сообщения. Если отправляющая сторона считает, что этот HTTP-заголовок необходим в этом HTTP-сообщении, то она добавляет его, если нет – то не добавляет. Каждый HTTP-заголовок начинается с новой строки. HTTP-заголовок состоит из имени и значения, имя заголовка определяет его предназначение. После набора HTTP-заголовков следует пустая строка, после которой идет тело HTTP-сообщения. Таким образом, общую структуру HTTP-сообщения можно представить следующим образом.


HTTP-запрос формируется на клиенте и отправляется на сервер с целью получения информации от него. В нем содержится информация о ресурсе, который необходимо загрузить, а также дополнительные сведения. Первая строка содержит метод запроса (который мы рассмотрим далее в этой лекции), имя ресурса (с указанием относительного пути на сервере), а также версию протокола. Например, вид приветственной строки может быть определен как "GET /images/corner1.png HTTP/1.1 ". Такой запрос обращается к серверу с требованием выдать методом GET изображение, расположенное в папке "images " и имеющее название "corner1.png ". HTTP-заголовки имеют важное значение для HTTP-запроса, поскольку в них указывается уточняющая информация о запросе – версия браузера, возможности клиента принимать сжатое содержимое, возможности кэширования и другие важные параметры, которые могут влиять на формирование ответа. В теле HTTP-запроса обычно содержится информация, которую необходимо передать на сервер. Например, если требуется загрузить файл на сервер, то содержимое файла будет находится в теле HTTP-запроса. Однако, размещение данных в теле HTTP-запроса допускается не для всех HTTP-методов. Например, тело HTTP-запроса всегда пустое, если используется метод GET . Таким образом, стандартный HTTP-запрос может выглядеть следующим образом.


В приведенном HTTP-запросе клиент обращается к серверу "microsoft.com ", запрашивает ресурс "images/corner.png " и указывает, что он способен принимать сжатое содержимое по алгоритму "gzip " или "deflate ", его языком является английский язык и указывает версию своего браузера. Как было отмечено ранее, количество и набор заголовков может существенно отличаться. Можно привести другой пример HTTP-запроса.


Этот запрос отличается от предыдущего тем, что в нем используется метод POST , который также загружает данные на сервер. При этом сами данные содержаться в теле HTTP-запроса после пустой строки.

HTTP-ответ генерируется веб-сервером в ответ на поступивший HTTP-запрос. По своей структуре он схож с HTTP-запросом, но имеет определенные отличия. Главное отличие содержится в первой строке. Вместо имени запрашиваемого ресурса и метода запроса в ней указывается статус ответа. Статус указывает на то, насколько успешно выполнился HTTP-запрос. Например, в случае, если документ найден на сервере и может быть выдан клиенту, то статус имеет значение "ОК ", которое говорит о том, что запрос выполнился успешно. Однако, могут появляться исключительные ситуации – например, документ отсутствует на сервере или у пользователя отсутствуют права на получение ресурса. Набор всевозможных статусных сообщений HTTP-ответа мы рассмотрим далее в этой лекции. Таким образом, первая строка HTTP-ответа может принимать значение "HTTP/1.1 200 OK ". HTTP-заголовки в HTTP-ответе также являются важным элементом. Они характеризуют содержимое, которое передается клиенту. Например, в этих HTTP-заголовках может содержаться информация о типе содержимого (HTML-документ, изображение и т.д.), длине содержимого (размер в байтах), дате модификации, режиме кэширования и др. Все эти заголовки влияют на способ отображения данных на клиенте, а также устанавливают правила хранения данных в клиентском кэше. Типичный вид HTTP-ответа может быть следующим.


В приведенном примере сервер указывает, что ресурс найден, его тип – HTML-документ, а также указывает размер и дату модификации. После пустой строки идет содержимое HTML-документа, т.е. по сути то, что запрашивал клиент. Как и в случае с HTTP-запросом, в HTTP-ответе количество заголовков может изменяться на усмотрение веб-сервера.

При рассмотрении структуры HTTP-запроса было затронуто понятие метода HTTP-запроса . Метод HTTP-запроса определяет каким образом будет обрабатываться указанный HTTP-запрос, т.е. в каком-то смысле определяет его семантику. Поскольку HTTP-запросы могут иметь самый разнообразный смысл, то указание метода является важной частью построения HTTP-запроса. HTTP-запросы могут иметь следующие значения: запрос ресурса от сервера, создание или изменение ресурса на сервере, удаление ресурса на сервере и т.д.

Наиболее распространенными методами HTTP-запроса являются следующие типы методов:

GET позволяет получить информацию от сервера, тело запроса всегда остается пустым;
HEAD аналогичен GET , но тело ответа остается всегда пустым, позволяет проверить доступность запрашиваемого ресурса и прочитать HTTP-заголовки ответа;
POST позволяет загрузить информацию на сервер, по смыслу изменяет ресурс на сервере, но зачастую используется и для создания ресурса на сервере, тело запроса содержит изменяемый/создаваемый ресурс;
PUT аналогичен POST , но по смыслу занимается созданием ресурса, а не его изменением, тело запроса содержит создаваемый ресурс;
DELETE удаляет ресурс с сервера.

Кроме указанных методов HTTP, существует еще большое количество других методов, определенных в спецификации протокола HTTP. Однако, несмотря на это, браузерами зачастую используются только методы GET и POST . Тем не менее, другие прикладные приложения могут использовать HTTP-методы по своему усмотрению.

Как мы увидели ранее, в составе HTTP-ответа содержится статусный код или код возврата . Этот статус показывает состояние HTTP-ответа, которое получено от сервера. Этот механизм является необходимым при функционировании протокола HTTP, поскольку при обработке запроса могут встречаться различные нестандартные ситуации. Все статусные коды являются трехзначными числами. Кроме того, в составе HTTP-ответа может присутствовать текстовое описание состояния. Все статусные коды делятся на пять групп.

Каждая группа статусных кодов идентифицирует ситуацию, в которой оказался запрос. Группа определяется первым разрядом статусного кода. Например, статусные коды группы 2xx говорят об успехе выполнения HTTP-запроса. Наиболее используемые статусные коды приведены в таблице ниже.

Код Описание
1xx Информационные коды
2xx Успешное выполнение запроса
200 Запрос был обработан успешно
201 Объект создан
202 Информация принята
203 Информация, которая не заслуживает доверия
204 Нет содержимого
205 Сбросить содержимое
206 Частичное содержимое (например, при "докачке" файлов)
3xx Перенаправление (чтобы выполнить запрос, нужны какие-либо действия)
300 Несколько вариантов на выбор
301 Ресурс перемещен на постоянной основе
302 Ресурс перемещен временно
303 Смотрите другой ресурс
304 Содержимое не изменилось
305 Используйте прокси-сервер
4xx Проблема связана не с сервером, а с запросом
400 Некорректный запрос
401 Нет разрешения на просмотр ресурса
402 Требуется оплата
403 Доступ запрещен
404 Ресурс не найден
405 Недопустимый метод
406 Неприемлемый запрос
407 Необходима регистрация на прокси-сервере
408 Время обработки запроса истекло
409 Конфликт
410 Ресурса больше нет
411 Необходимо указать длину
412 Не выполнено предварительное условие
413 Запрашиваемый элемент слишком велик
414 Идентификатор ресурса (URI ) слишком длинный
415 Неподдерживаемый тип ресурса
5xx Ошибки на сервере
500 Внутренняя ошибка сервера
501 Функция не реализована
502 Дефект шлюза
503 Служба недоступна
504 Время прохождения через шлюз истекло
505 Неподдерживаемая версия HTTP

Эти и другие статусные коды используются для передачи информации о статусе запроса от клиента к серверу.

Отличительной особенностью протокола HTTP является то, что в рамках этого протокола информация передается в виде текста. Это означает, что работать с таким протоколом достаточно просто. Кроме того, инженеры по безопасности даже при строгом режиме безопасности оставляют открытым именно протокол HTTP. Поэтому реализация сетевого взаимодействия в рамках протокола HTTP является одним из перспективных направлений.

Однако, несмотря на простоту протокола, существует проблема утечки передаваемой информации. Поскольку информация передается в виде обычного текста, то перехват такой информации осуществляется достаточно просто. В некоторых ситуациях эта проблема не является критичной. Однако, для веб-приложений, работающих с конфиденциальной информацией это достаточно существенный недостаток.

По этой причине существует модификация этого протокола – HTTPS , т.е. протокол HTTP с поддержкой шифрования.

Как известно, существуют классические криптостойкие алгоритмы шифрования, которые шифруют данные на основе существующего ключа. Для шифрования и расшифровки данных используется один и тот же ключ – если кто-либо знает ключ к зашифрованной информации, то он может расшифровать ее. Ключ – это обычная последовательность бит определенной длины. Чем больше длина ключа, тем сложнее взломать алгоритм шифрования. Таким образом, для того, чтобы защитить свою информацию, необходимо хранить в секрете ключ шифрования. Однако, каким образом это обеспечить в рамках взаимодействия по протоколу HTTP? Ведь если передавать этот ключ в открытом виде, то смысл шифрования пропадает. В этом случае используют дополнительно другой вид шифрования – ассиметричный. В этом случае существует пара ключей – открытый и закрытый. С помощью открытого ключа можно только зашифровать информацию, а с помощью закрытого – расшифровать. Обычно при таком подходе закрытый ключ хранится в секрете, а открытый ключ является общедоступным. Однако, ассиметричный алгоритм работает медленнее, чем симметричный, поэтому его используют для первоначального обмена симметричными ключами. Давайте рассмотрим весь алгоритм работы зашифрованного соединения по HTTP.


При обращении клиента к серверу по защищенному каналу сервер хранит открытый и закрытый ключ. В начальный момент времени сервер передает клиенту открытый ключ ассиметричного шифрования. Клиент случайным образом генерирует ключ симметричного шифрования и шифрует его с помощью открытого ключа, полученного от сервера. После этого клиент отправляет зашифрованный ключ на сервер и в этот момент времени клиент и сервер имеют одинаковые ключи для симметричного шифрования. Далее идет HTTP-взаимодействие, которое шифруется с помощью этого симметричного ключа. Симметричный ключ остается в секрете и не может быть перехвачен, поскольку закрытый ключ (которым можно расшифровать первое сообщение, содержащее симметричный ключ) остается в секрете на сервере. Таким образом, обеспечивается конфиденциальность и целостность передаваемых данных по протоколу HTTP

Краткие итоги

Все веб-приложения работают на основе протокола HTTP. Протокол HTTP передает текстовую информацию и работает в режиме "запрос-ответ". HTTP-запрос и HTTP-ответ имеют строго определенную структуру – привественная строка, заголовки и тело сообщения. Количество HTTP-заголовков переменное. HTTP-заголовки от тела сообщения отделяет пустая строка. Каждый HTTP-запрос отправляется на сервер в рамках HTTP-метода. HTTP-метод определяет семантику запроса (получить ресурс, добавить, изменить, удалить и т.д.). В HTTP-ответе кроме служебной информации и полезных данных, отправляется статус запроса, который информирует клиента об успешности выполнения запроса. Все статусные коды делятся на группы. Поскольку данные, передаваемые по протоколу HTTP можно перехватить, то он не обеспечивает конфиденциальности передаваемой информации. Если подобный уровень безопасности необходим, то нужно использовать протокол HTTPS, который обеспечивает шифрование передаваемой информации на основе комбинирования симметричного и ассиметричного алгоритмов шифрования.

Вашему вниманию предлагается описание основных аспектов протокола HTTP - сетевого протокола, с начала 90-х и по сей день позволяющего вашему браузеру загружать веб-страницы. Данная статья написана для тех, кто только начинает работать с компьютерными сетями и заниматься разработкой сетевых приложений, и кому пока что сложно самостоятельно читать официальные спецификации.

HTTP - широко распространённый протокол передачи данных, изначально предназначенный для передачи гипертекстовых документов (то есть документов, которые могут содержать ссылки, позволяющие организовать переход к другим документам).

Аббревиатура HTTP расшифровывается как HyperText Transfer Protocol , «протокол передачи гипертекста». В соответствии со спецификацией OSI , HTTP является протоколом прикладного (верхнего, 7-го) уровня. Актуальная на данный момент версия протокола, HTTP 1.1, описана в спецификации RFC 2616 .

Протокол HTTP предполагает использование клиент-серверной структуры передачи данных. Клиентское приложение формирует запрос и отправляет его на сервер, после чего серверное программное обеспечение обрабатывает данный запрос, формирует ответ и передаёт его обратно клиенту. После этого клиентское приложение может продолжить отправлять другие запросы, которые будут обработаны аналогичным образом.

Задача, которая традиционно решается с помощью протокола HTTP - обмен данными между пользовательским приложением, осуществляющим доступ к веб-ресурсам (обычно это веб-браузер) и веб-сервером. На данный момент именно благодаря протоколу HTTP обеспечивается работа Всемирной паутины.

Также HTTP часто используется как протокол передачи информации для других протоколов прикладного уровня, таких как SOAP, XML-RPC и WebDAV. В таком случае говорят, что протокол HTTP используется как «транспорт».

API многих программных продуктов также подразумевает использование HTTP для передачи данных - сами данные при этом могут иметь любой формат, например, XML или JSON.

Как правило, передача данных по протоколу HTTP осуществляется через TCP/IP-соединения. Серверное программное обеспечение при этом обычно использует TCP-порт 80 (и, если порт не указан явно, то обычно клиентское программное обеспечение по умолчанию использует именно 80-й порт для открываемых HTTP-соединений), хотя может использовать и любой другой.

Как отправить HTTP-запрос?

Самый простой способ разобраться с протоколом HTTP - это попробовать обратиться к какому-нибудь веб-ресурсу вручную. Представьте, что вы браузер, и у вас есть пользователь, который очень хочет прочитать статьи Анатолия Ализара.

Предположим, что он ввёл в адресной строке следующее:

Http://alizar.habrahabr.ru/

Соответственно вам, как веб-браузеру, теперь необходимо подключиться к веб-серверу по адресу alizar.habrahabr.ru.

Для этого вы можете воспользоваться любой подходящей утилитой командной строки. Например, telnet:

Telnet alizar.habrahabr.ru 80

Сразу уточню, что если вы вдруг передумаете, то нажмите Ctrl + «]», и затем ввод - это позволит вам закрыть HTTP-соединение. Помимо telnet можете попробовать nc (или ncat) - по вкусу.

После того, как вы подключитесь к серверу, нужно отправить HTTP-запрос. Это, кстати, очень легко - HTTP-запросы могут состоять всего из двух строчек.

Для того, чтобы сформировать HTTP-запрос, необходимо составить стартовую строку, а также задать по крайней мере один заголовок - это заголовок Host, который является обязательным, и должен присутствовать в каждом запросе. Дело в том, что преобразование доменного имени в IP-адрес осуществляется на стороне клиента, и, соответственно, когда вы открываете TCP-соединение, то удалённый сервер не обладает никакой информацией о том, какой именно адрес использовался для соединения: это мог быть, например, адрес alizar.habrahabr.ru, habrahabr.ru или m.habrahabr.ru - и во всех этих случаях ответ может отличаться. Однако фактически сетевое соединение во всех случаях открывается с узлом 212.24.43.44, и даже если первоначально при открытии соединения был задан не этот IP-адрес, а какое-либо доменное имя, то сервер об этом никак не информируется - и именно поэтому этот адрес необходимо передать в заголовке Host.

Стартовая (начальная) строка запроса для HTTP 1.1 составляется по следующей схеме:

Например (такая стартовая строка может указывать на то, что запрашивается главная страница сайта):

Ну и, конечно, не забывайте, что любая технология становится намного проще и понятнее тогда, когда вы фактически начинаете ей пользоваться.

Удачи и плодотворного обучения!

Теги: Добавить метки

В скором времени интернет перейдёт на протокол HTTP/2, который значительно оптимизирует работу сайтов, а весь мир перейдёт на новые стандарты работы в глобальной сети, новые стандарты безопасности и, в конечном счёте, стандарты скорости передачи информации. Всё это обеспечивается при помощи протокола HTTP/2 — улучшенной версии классического протокола http, на котором до сих пор работает практически весь мировой интернет. Описание нового алгоритма передачи данных в Сети.

Что это такое и зачем он нужен

HTTP, или HyperText Transfer Protocol, или протокол передачи гипертекста – набор правил и протоколов, по которым сегодня работает глобальная паутина. Он формирует правила для передачи графических файлов, текстовых сообщений, звуковых и мультимедийных файлов — иначе говоря, правила подачи визуального отображения информации в интернете. HTTP/2 – это новое поколение данных протоколов, ведь HTTP/1.1 служит с 1999 года, и с тех пор большинство современных сайтов уже не может довольствоваться поддержкой устаревшей технологии HTTP. Переход на новую версию не заставляет себя ждать.

Чем отличается http/2 от http

Разработка новой версии протокола связана с улучшением параметров производительности, защиты и простоты в эксплуатации. Всё это достигается за счёт уменьшения задержки обработки браузером основных производственных операций в интернете. При разработке помогают такие возможности как управление потоком, позволяющее контролировать скорость передачи данных, или как обработка ошибок.

При этом HTTP/2 — это лишь расширение для HTTP1, замены которого, пока что не планируется. Вторая версия протокола будет совместима с первой версией. Все преимущества новой версии со временем будут только дополнятся и улучшаться, регулярно будут вноситься изменения, HTTP/2 будет постоянно эволюционировать. Обновлённый протокол будет содержать алгоритм всех вариантов шифрования, доступных при старой версии, но со временем более подходящие варианты шифрования определённо будут открыты.

Следует понимать, что со времени появления HTTP1.1 прошло много времени, веб претерпел огромные изменения и необъятно расширился, поэтому необходимо залатать все те дыры, которые возникли за более чем десятилетний промежуток времени со времён разработки первой версии.

Возможности

Данный протокол серьёзно оптимизирует работу веб-сайтов за счёт нескольких преимуществ:

  • постоянные соединения : ранее для запроса любого отдельного URL требовалось создавать отдельные TCP-соединения, теперь существует одно соединение на все;
  • приоритеты потоков : можно устанавливать приоритетность на серверах — какие ресурсы для вас важнее;
  • сжимание заголовков : можно сжать размер HTTP-заголовка;
  • пуш-отправка данных : сервер способен отправлять вам те или иные данные ещё до запроса.

Мультиплексирование

Мультиплексирование — это метод в HTTP2 , при помощи которого возможно отправлять сразу несколько запросов, при этом ответы получаются асинхронно через единое соединение. Мультиплексирование — это сердце протокола http2. Оно позволяет вам одновременно посылать больше одного запроса, не запуская для каждого отдельное соединение.

При работе с http1, при загрузке странички, загружается HTML-страница, система видит, что ей нужны какие-то файлы: CSS, изображения, javasсriрt и т.п. Ваш браузер сначала прогружает страницу, а уже потом делает запрос на CSS. После этого запрашивается скрипт. Затем картинка и так далее. Вы можете работать только с одним из них по по очереди.

После отправки запроса система ждёт до тех пор, пока ответ не будет получен . Это не проблема браузера, но проблема самого протокола, так как браузеру необходимо ждать ответа не все эти запросы, а это занимает время. Поэтому одной из основных проблем в Интернете сегодня является медленность сети при контакте между сервером и непосредственно клиентом. Время при этом может составлять миллисекунды, что может и не особо много, но при сложении они в целом тормозят браузер — особенно учитывая то, что структура сайтов постоянно усложняется, а доступ в Интернет становится все более мобильным (с меньшей задержкой по сравнению с обычным интернетом).

HTTP / 2 позволяет отправлять сразу несколько запросов в одном и том же соединении, игнорируя всю эту последовательность. Все эти запросы проходят через Интернет на сервер параллельно. Сервер отвечает на каждый, а затем возвращает.

ВАЖНО: в HTTP/1.1 присутствует так так называемая конвейерная обработка, так же дающая возможность отправлять более одного запроса одновременно. Но она гораздо менее функциональна по сравнению с мультиплексированием.

Приоритетность

Возможность приоритизации — еще одно новшество в HTTP/2. Теперь каждому запросу может быть назначен приоритет . Существует два способа присвоения приоритета: по весу или на основе зависимостей.

При первой концепции каждому потоку присваивается вес. На основе этого веса сервер перераспределяет нагрузку меж потоками.

Второй и первичный подход HTTP/2 предполагает, что браузер сначала запрашивает сервер для возврата определенного контента на основе типа; к примеру, браузер может сначала запросить файлы CSS или JS, затем HTML, а затем изображения.

В HTTP/2 приоритезация не является обязательной, но предпочтительна, поскольку мультиплексирование не будет работать так, как предполагается. Загрузки могут быть даже медленнее , чем в HTTP/1.1. Ресурсы с наиболее низкими приоритетами будут монополизировать пропускную способность, что снижает производительность.

Что даёт приоритезация:

  • Более эфективная работа в сети.
  • Сокращение временных затрат.
  • Ускорение времени загрузки веб-страниц.
  • Оптимизация передачи данных между сервером-клиентом .

Сжатие заголовков

Сегодня веб-страницы — это в первую очередь сочетание огромного количества различных элементов: картинок, java-script, CSS и т.п. Каждый раз, когда браузер запрашивает один из таких элементов, он при этом отсылает соответствующий HTTP-заголовок. Сервер при этом присоединяет заголовок к запрошенным элементам. Это потребляет значительные ресурсы .

В HTTP/2 заголовки сжимаются . Это уменьшает объем обмена информацией между сервером и браузером. Вместо алгоритмов gziр/deflate используется HPACK, как самый удобный и простой подход к сжиманию заголовков. Это также уменьшает уязвимость от атак BREACH. Использование HPACK даёт множество преимуществ:.

  • Снятие дополнительной нагрузки и расхода ресурсов.
  • Сокращение индивидуального размера передающихся данных после сокращения заголовка.
  • Неуязвимость перед атаками безопасности .

Server push

HTTP/2 Server Push — это одна из функций повышения производительности, включенных в версию 2 протокола HTTP. Это позволяет веб-серверу заранее предоставлять информацию клиенту (ещё до запроса), которую он в будущем может запросить. HTTP/2 Server Push основан на том, что клиент, требующий ту или иную информацию, в будущем затребует другую информацию. Иначе говоря, идёт игра не опережение

Как работает Push на примере: Ваш браузер запрашивает веб-траницу (index.html в нашем примере), а сервер возвращает вам три объекта: index.html, а также два дополнительных объектоа: scripts.js и styles.css, которые хранятся в специальном кеше, зарезервированном для этой цели. Затем клиент анализирует index.html и понимает, что для загрузки страницы нужны три объекта: scripts.js, styles.css и image.jpg. Первые два уже находятся в кеше браузера, поскольку они были сохранены сервером, поэтому клиенту просто нужно запросить image.jpg на сервере, чтобы отобразить страницу.

Данная функция имеет многочисленные плюсы:

  • Ресурсы клиента сохраняются в кэше .
  • Сохраненные ресурсы могут повторно использоваться на иных веб-сайтах.
  • Клиент всегда может отказаться от своих ресурсов чтобы сохранить эффективность кэш-хранилища, или вообще отключить функцию push-сервера.

Протокол осуществляет мультиплексинг и приоритезацию потока встраиваемых данных , для того чтобы сделать передачу данных более эффективной и производительной, что очевидно если посмотреть на другие потоки запросов-ответов.

Ssl и шифрование

Переходя на HTTPS/2, вы автоматом переходите на HTTPS , то есть на защищённый режим работы в сети. При этом это единственный режим, в котором будет работать веб-браузер. HTTPS будет шифровать абсолютно весь интернет-трафик и потребует наличия сертификата (сегодня обычный DV-сертификат вы можете найти не потратив ни копейки, к примеру через WoSign SSL certificate, или через Lets Encrypt, хотя Google может прекратить доверие их сертификатам в любой момент, поэтому нужно внимательно следить за повесткой дня).

Бинарность

HTTP/2 – это бинарный протокол.Бинарные протоколы более эффективны для анализа и уменьшения кол-ва ошибок, чем текстовые протоколы, в которых люди пишут запросы вручную через TELNET. Бинарность ускоряет передачу данных и меньше нагружает клиента, делая реализацию задач гораздо проще.

Бинарность новой версии протокола необходима для того, чтобы упростить формирование пакетов, как и их распознавания. Дни HTTP/1.1 во многом стали сочтены потому, что стало понятно, что определять начало и конец пакета стало слишком времязатратно. Пользуясь преимуществами и новшествами данного протокола мы избегаем бесконечных повторений и записей одного и того же, оптимизируя таким образом собственную работу.

Помимо этого, теперь можно очень просто разделить часть связанную с самим протоколом и с пакетом данных, в отличие от устаревшего HTTP1, где это всё было спонтанно перемешано.

Итак, вот основные преимущества бинарного протокола :

  • Очень небольшие дополнительные расходы во время анализа данных .
  • Гораздо меньшая подверженность ошибкам, по сравнению с предыдущей версией протокола.
  • Большая лёгкость в освоении сетевого пространства.
  • Большая эффективность в применении сетевых ресурсов.
  • Ликвидация всех дыр в безопасности и шифровании и регулярных атак, которые были связаны с тем, что HTTP/1.1 базируется на текстовой основе.
  • Сами по себе уникальные возможности HTTP/2, такие как push, мультиплексинг, выстраивание приоритетов, управление потоками, а также оптимизация работы в сети.
  • Упрощение обработки команд и их реализации .
  • Ускорение передачи данных между клиентом и сервером.
  • Существенное снижение сетевых задержек и увеличение пропускной способности.

Поддержка браузерами

На сегодняшний день абсолютное большинство актуальных браузеров: как десктопных, так и мобильных, поддерживают технологию HTTP/2. Первыми из них стали такие гиганты, как Google Chrome и Mozzila Firefox, которые поддерживают данный протокол уже много лет. Позже, видимо следуя их примеру, компания Apple в 2014-м году добавила в свой браузер Сафари поддержку технологии. После этого уже и менее крупные браузеры стали работать в данном направлении. При этом браузер IE Explorer требует версии Windows не меньше 8, чтобы работать с данным протоколом.

Мобильные браузеры не отстают, и уже подключили протокол в большинство существующих платформ . Это касается Андроид-браузера, Хром для Андроида и iOS, Сафари, начиная с iOS 8 — данные мобильные браузеры уже поддерживают HTTP/2. При этом, с течением времени и прониканием технологии в повседневность, зона распространения также постоянно расширяется.

Поисковая оптимизация (SEO)

Безусловно, большинство тех, кто владеет или когда-то владел собственным ресурсом поймут, . Одним из важнейших факторов по которым сайты ранжируются для поисковиков — это средняя скорость, с которой сайты подгружаются.

Таким образом, ресурсы работающие по новой версии протокола HTTP, будут получать бонус в ранжировании как раз за счёт скорости прогрузки сайта, ведь . Ещё один плюс заключается в том, что при переходе на http2 вы автоматически переходите на HTTPS, и в итоге также получаете бонус в ранжировании поисковых систем также и использование HTTPS.

Оптимизация сайтов

Для предыдущей версии протокола использовались различные оптимизации — это было необходимо, чтобы обойти дыры и ограничения, существующие в HTTP/1. Некоторые из этих оптимизационных решений могут работать и в обновленной версии протокола, но от многих придётся отказаться, либо, как минимум, модифицировать. Хотя часть из них вообще попросту не потребуется, ведь новая версия протокола — это просто расширение старой версии, сайты в любом случае будут работать со всеми старыми оптимизациями. Вот на какие нужно обратить внимание:

  1. Объединение картинок в CSS-спрайты . В первой версии протокола эффективно объединять маленькие и средние изображения в один спрайт, т.к. требуется единственное соединение. Зато если картинка только одна — прогрузить спрайт придётся полностью. В HTTP2 благодаря мультиплексу есть возможность многочисленных запросов и удобнее загружать несколько маленьких картинок одновременно. Хотя иногда по прежнему рекомендуется объединять изображения в спрайт, чтобы улучшить качество сжатия и загрузочный объём.
  2. Возможность встраивания картинок в тело страницы при помощи data: URI . Это ещё одно распространённое решение проблемы с множественными запросами в старой версии протокола: картинки встраивались в CSS через data: URI. Размер файла при этом может заметно увеличиться, зато потребуется не так много соединений. В HTTP2 данный подход всё ещё может быть актуален, однако не послужит увеличению производительности.
  3. Объединение файлов JS и CSS в единый файл . Таким образом когда загружается страница, сразу загружаются таблицы стилей и код javascript. Помимо этого, браузер кэширует весь этот файл и даже минимальные изменения в коде потребуют перезагрузки всего файла. Мультиплексирование полностью решает данную проблему и избавляет от этого неудобства.
  4. Доменный шардинг . В старой версии http кол-во открытых соединений ограничено. Если необходимо загрузить множество ресурсов сразу, то часто можно прибегнуть к их получению с разных доменов.либо поддоменов основного домена. HTTP/2 создаёт возможность создавать столько ресурсов, сколько заблагорассудится, фактически избавляя от необходимости в данной функции, при этом доменный шардинг отрицательно сказывается на производительности из-за множества открытых TCP-соединений.

Как подключить

Для введения протокола в эксплуатацию не потребуется что-то менять в привычном рабочем пространстве: не потребуется менять ни URL страниц, ни делать редиректов, менять ссылки, делать разметок или прописывать какие-то дополнительные данные для защиты. При подключении HTTP2 к сайту просто понадобится включить HTTPS и провести все соответствующие процедуры, ничего более, таким образом будет включено шифрование и обеспечена защита сайта.

Для того чтобы проверить наличие поддержки в браузере протокола HTTP2 можно использовать специальные расширения для браузеров Mozzila Firefox и Google Chrome, а также использовать инструмент проверки скорость на веб-0сайте Айри.рф: после проверки должна загореться одна из плашек — если браузер поддерживает протокол HTTP2, то в итогах проверки появится зеленая плашка [НТTР/2.0]. Существуют и другие интернет-сервисы для проверки поддержки модернизированного протокола, один из них — это сервис от http2.pro.

Заключение

Новая эра, в которой будет доминировать HTTP/2 уже почти на носу: протокол уже поддерживается многими браузерами. Эпоха нового веб будет гораздо более быстрой, более безопасной и очень комфортной для использования, уже можно совершенно точно принять то, что http2 — это тот стандарт, по которому мы будем путешествовать в глобальной сети в ближайшем будущем.

HTTP - это протокол передачи гипертекста между распределёнными системами. По сути, http является фундаментальным элементом современного Web-а. Как уважающие себя веб разработчики, мы должны знать о нём как можно больше.

Давайте взглянем на этот протокол через призму нашей профессии. В первой части пройдёмся по основам, посмотрим на запросы/ответы. В следующей статье разберём уже более детальные фишки, такие как кэширование, обработка подключения и аутентификация.

Также в этой статье я буду, в основном, ссылаться на стандарт RFC 2616 : Hypertext Transfer Protocol -- HTTP/1.1.

Основы HTTP

HTTP обеспечивает общение между множеством хостов и клиентов, а также поддерживает целый ряд сетевых настроек.

В основном, для общения используется TCP/IP, но это не единственный возможный вариант. По умолчанию, TCP/IP использует порт 80, но можно заюзать и другие.

Общение между хостом и клиентом происходит в два этапа: запрос и ответ. Клиент формирует HTTP запрос, в ответ на который сервер даёт ответ (сообщение). Чуть позже, мы более подробно рассмотрим эту схему работы.

Текущая версия протокола HTTP - 1.1, в которой были введены некоторые новые фишки. На мой взгляд, самые важные из них это: поддержка постоянно открытого соединения, новый механизм передачи данных chunked transfer encoding, новые заголовки для кэширования. Что-то из этого мы рассмотрим во второй части данной статьи.

URL

Сердцевиной веб-общения является запрос, который отправляется через Единый указатель ресурсов (URL). Я уверен, что вы уже знаете, что такое URL адрес, однако для полноты картины, решил всё-таки сказать пару слов. Структура URL очень проста и состоит из следующих компонентов:

Протокол может быть как http для обычных соединений, так и https для более безопасного обмена данными. Порт по умолчанию - 80. Далее следует путь к ресурсу на сервере и цепочка параметров.

Методы

С помощью URL, мы определяем точное название хоста, с которым хотим общаться, однако какое действие нам нужно совершить, можно сообщить только с помощью HTTP метода. Конечно же существует несколько видов действий, которые мы можем совершить. В HTTP реализованы самые нужные, подходящие под нужды большинства приложений.

Существующие методы:

GET : получить доступ к существующему ресурсу. В URL перечислена вся необходимая информация, чтобы сервер смог найти и вернуть в качестве ответа искомый ресурс.

POST : используется для создания нового ресурса. POST запрос обычно содержит в себе всю нужную информацию для создания нового ресурса.

PUT : обновить текущий ресурс. PUT запрос содержит обновляемые данные.

DELETE : служит для удаления существующего ресурса.

Данные методы самые популярные и чаще всего используются различными инструментами и фрэймворками. В некоторых случаях, PUT и DELETE запросы отправляются посредством отправки POST, в содержании которого указано действие, которое нужно совершить с ресурсом: создать, обновить или удалить.

Также HTTP поддерживает и другие методы:

HEAD : аналогичен GET. Разница в том, что при данном виде запроса не передаётся сообщение. Сервер получает только заголовки. Используется, к примеру, для того чтобы определить, был ли изменён ресурс.

TRACE : во время передачи запрос проходит через множество точек доступа и прокси серверов, каждый из которых вносит свою информацию: IP, DNS. С помощью данного метода, можно увидеть всю промежуточную информацию.

OPTIONS : используется для определения возможностей сервера, его параметров и конфигурации для конкретного ресурса.

Коды состояния

В ответ на запрос от клиента, сервер отправляет ответ, который содержит, в том числе, и код состояния. Данный код несёт в себе особый смысл для того, чтобы клиент мог отчётливей понять, как интерпретировать ответ:

1xx: Информационные сообщения

Набор этих кодов был введён в HTTP/1.1. Сервер может отправить запрос вида: Expect: 100-continue, что означает, что клиент ещё отправляет оставшуюся часть запроса. Клиенты, работающие с HTTP/1.0 игнорируют данные заголовки.

2xx: Сообщения об успехе

Если клиент получил код из серии 2xx, то запрос ушёл успешно. Самый распространённый вариант - это 200 OK. При GET запросе, сервер отправляет ответ в теле сообщения. Также существуют и другие возможные ответы:

  • 202 Accepted : запрос принят, но может не содержать ресурс в ответе. Это полезно для асинхронных запросов на стороне сервера. Сервер определяет, отправить ресурс или нет.
  • 204 No Content : в теле ответа нет сообщения.
  • 205 Reset Content : указание серверу о сбросе представления документа.
  • 206 Partial Content : ответ содержит только часть контента. В дополнительных заголовках определяется общая длина контента и другая инфа.

3xx: Перенаправление

Своеобразное сообщение клиенту о необходимости совершить ещё одно действие. Самый распространённый вариант применения: перенаправить клиент на другой адрес.

  • 301 Moved Permanently : ресурс теперь можно найти по другому URL адресу.
  • 303 See Other : ресурс временно можно найти по другому URL адресу. Заголовок Location содержит временный URL.
  • 304 Not Modified : сервер определяет, что ресурс не был изменён и клиенту нужно задействовать закэшированную версию ответа. Для проверки идентичности информации используется ETag (хэш Сущности - Enttity Tag);

4xx: Клиентские ошибки

Данный класс сообщений используется сервером, если он решил, что запрос был отправлен с ошибкой. Наиболее распространённый код: 404 Not Found. Это означает, что ресурс не найден на сервере. Другие возможные коды:

  • 400 Bad Request : вопрос был сформирован неверно.
  • 401 Unauthorized : для совершения запроса нужна аутентификация. Информация передаётся через заголовок Authorization.
  • 403 Forbidden : сервер не открыл доступ к ресурсу.
  • 405 Method Not Allowed : неверный HTTP метод был задействован для того, чтобы получить доступ к ресурсу.
  • 409 Conflict : сервер не может до конца обработать запрос, т.к. пытается изменить более новую версию ресурса. Это часто происходит при PUT запросах.

5xx: Ошибки сервера

Ряд кодов, которые используются для определения ошибки сервера при обработке запроса. Самый распространённый: 500 Internal Server Error. Другие варианты:

  • 501 Not Implemented : сервер не поддерживает запрашиваемую функциональность.
  • 503 Service Unavailable : это может случиться, если на сервере произошла ошибка или он перегружен. Обычно в этом случае, сервер не отвечает, а время, данное на ответ, истекает.

Форматы сообщений запроса/ответа

На следующем изображении вы можете увидеть схематично оформленный процесс отправки запроса клиентом, обработка и отправка ответа сервером.

Давайте посмотрим на структуру передаваемого сообщения через HTTP:

Message = *() CRLF [] = Request-Line | Status-Line = Field-Name ":" Field-Value

Между заголовком и телом сообщения должна обязательно присутствовать пустая строка. Заголовков может быть несколько:

Тело ответа может содержать полную информацию или её часть, если активирована соответствующая возможность (Transfer-Encoding: chunked). HTTP/1.1 также поддерживает заголовок Transfer-Encoding.

Общие заголовки

Вот несколько видов заголовков, которые используются как в запросах, так и в ответах:

General-header = Cache-Control | Connection | Date | Pragma | Trailer | Transfer-Encoding | Upgrade | Via | Warning

Что-то мы уже рассмотрели в этой статье, что-то подробней затронем во второй части.

Заголовок via используется в запросе типа TRACE, и обновляется всеми прокси-серверами.

Заголовок Pragma используется для перечисления собственных заголовков. К примеру, Pragma: no-cache - это то же самое, что Cache-Control: no-cache. Подробнее об этом поговорим во второй части.

Заголовок Date используется для хранения даты и времени запроса/ответа.

Заголовок Upgrade используется для изменения протокола.

Transfer-Encoding предназначается для разделения ответа на несколько фрагментов с помощью Transfer-Encoding: chunked. Это нововведение версии HTTP/1.1.

Заголовки сущностей

В заголовках сущностей передаётся мета-информация контента:

Entity-header = Allow | Content-Encoding | Content-Language | Content-Length | Content-Location | Content-MD5 | Content-Range | Content-Type | Expires | Last-Modified

Все заголовки с префиксом Content- предоставляют информацию о структуре, кодировке и размере тела сообщения.

Заголовок Expires содержит время и дату истечения сущности. Значение “never expires” означает время + 1 код с текущего момента. Last-Modified содержит время и дату последнего изменения сущности.

С помощью данных заголовков, можно задать нужную для ваших задач информацию.

Формат запроса

Запрос выглядит примерно так:

Request-Line = Method SP URI SP HTTP-Version CRLF Method = "OPTIONS" | "HEAD" | "GET" | "POST" | "PUT" | "DELETE" | "TRACE"

SP - это разделитель между токенами. Версия HTTP указывается в HTTP-Version. Реальный запрос выглядит так:

GET /articles/http-basics HTTP/1.1 Host: www.articles.com Connection: keep-alive Cache-Control: no-cache Pragma: no-cache Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Список возможных заголовков запроса:

Request-header = Accept | Accept-Charset | Accept-Encoding | Accept-Language | Authorization | Expect | From | Host | If-Match | If-Modified-Since | If-None-Match | If-Range | If-Unmodified-Since | Max-Forwards | Proxy-Authorization | Range | Referer | TE | User-Agent

В заголовке Accept определяется поддерживаемые mime типы, язык, кодировку символов. Заголовки From, Host, Referer и User-Agent содержат информацию о клиенте. Префиксы If- предназначены для создания условий. Если условие не прошло, то возникнет ошибка 304 Not Modified.

Формат ответа

Формат ответа отличается только статусом и рядом заголовков. Статус выглядит так:

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

  • HTTP версия
  • Код статуса
  • Сообщение статуса, понятное для человека

Обычный статус выглядит примерно так:

HTTP/1.1 200 OK

Заголовки ответа могут быть следующими:

Response-header = Accept-Ranges | Age | ETag | Location | Proxy-Authenticate | Retry-After | Server | Vary | WWW-Authenticate

  • Age время в секундах, когда сообщение было создано на сервере.
  • ETag MD5 сущности для проверки изменений и модификаций ответа.
  • Location используется для перенаправления и содержит новый URL адрес.
  • Server определяет сервер, где было сформирован ответ.

Думаю, на сегодня теории достаточно. Теперь давайте взглянем на инструменты, которыми мы можем пользоваться для мониторинга HTTP сообщений.

Инструменты для определения HTTP трафика

Существует множество инструментов для мониторинга HTTP трафика. Вот несколько из них:

Наиболее часто используемый - это Chrome Developers Tools:

Если говорить об отладчике, можно воспользоваться Fiddler :

Для отслеживания HTTP трафика вам потребуется curl, tcpdump и tshark.

Библиотеки для работы с HTTP - jQuery AJAX

Поскольку jQuery очень популярен, в нём также есть инструментарий для обработки HTTP ответов при AJAX запросах. Информацию о jQuery.ajax(settings) можете найти на официальном сайте .

Передав объект настроек (settings), а также воспользовавшись функцией обратного вызова beforeSend, мы можем задать заголовки запроса, с помощью метода setRequestHeader().

$.ajax({ url: "http://www.articles.com/latest", type: "GET", beforeSend: function (jqXHR) { jqXHR.setRequestHeader("Accepts-Language", "en-US,en"); } });

Если хотите обработать статус запроса, то это можно сделать так:

$.ajax({ statusCode: { 404: function() { alert("page not found"); } } });

Итог

Вот такой вот он, тур по основам протокола HTTP. Во второй части будет ещё больше интересных фактов и примеров.

Протокол передачи гипертекста HTTP (Hypertext Transfer Protocol, RFC 1945, 2068) предназначен для передачи гипертекстовых документов от сервера к клиенту. Протокол HTTP относится к протоколам прикладного уровня. Согласно RFC, транспортным протоколом для него должен быть протокол с установлением соединения, надежной передачей данных и без сохранения границ между сообщениями. На практике в подавляющем большинстве случаев транспортным протоколом для HTTP является протокол TCP, причем сервер HTTP (сервер Web) находится в состоянии ожидания соединения со стороны клиента стандартно по порту 80 TCP, а клиент HTTP (браузер Web) является инициатором соединения.

В терминах Web все, к чему может получить доступ пользователь, – документы, изображения, программы, – называется ресурсами. Каждый ресурс имеет уникальный для Web адрес, называемый универсальным идентификатором ресурса (URI – Universal Resource Identifier). В самом общем случае URI выглядит следующим образом:

protocol://user:password@host:port/path/file?paremeters#fragment

Отдельные поля URI имеют следующий смысл:

protocol - прикладной протокол, посредством которого получают доступ к ресурсу;

user - пользователь, от имени которого получают доступ к ресурсу либо сам пользователь в качестве ресурса;

password - пароль пользователя для аутентификации при доступе к ресурсу;

host - IP-адрес или имя сервера, на котором расположен ресурс;

port - номер порта, на котором работает сервер, предоставляющий доступ к ресурсу;

path - путь к файлу, содержащему ресурс;

file - файл, содержащий ресурс;

parameters - параметры для обработки ресурсом-программой;

fragment - точка в файле, начиная с которой следует отображать ресурс.

Взаимодействие между клиентом и сервером Web осуществляется путем обмена сообщениями. Сообщения HTTP делятся на запросы клиента серверу и ответы сервера клиенту.

Сообщения запроса и ответа имеют общий формат. Оба типа сообщений выглядят следующим образом: сначала идет начальная строка (start-line), затем, возможно, одно или несколько полей заголовка, называемых, также, просто заголовками, затем пустая строка (то есть строка, состоящая из символов CR и LF), указывающая конец полей заголовка, а затем, возможно, тело сообщения:

начальная строка

поле заголовка 1

поле заголовка 2

поле заголовка N

тело сообщения

Формат начальной строки клиента и сервера различаются и будут рассмотрены далее. Заголовки бывают четырех видов:

общие заголовки (general-headers), которые могут присутствовать как в запросе, так и в ответе;

заголовки запросов (request-headers), которые могут присутствовать только в запросе;

заголовки ответов (response-headers), которые могут присутствовать только в ответе;

заголовки объекта (entity-headers), которые относятся к телу сообщения и описывают его содержимое.

Каждый заголовок состоит из названия, символа двоеточия ":" и значения. Наиболее важные заголовки приведены в табл. 1.

Таблица 1

Заголовки протокола HTTP

Заголовок

Назначение

Заголовки объекта

Перечисляет поддерживаемые сервером методы

Content-Encoding

Способ, которым закодировано тело сообщения, например, с целью уменьшения размера

Длина сообщения в байтах

Тип содержимого и, возможно, некоторые параметры

Уникальный тэг ресурса на сервере, позволяющий сравнивать ресурсы

Дата и время, когда ресурс на сервере будет изменен, и его нужно получать заново

Дата и время последней модификации содержимого

Заголовки ответа

Число секунд, через которое нужно повторить запрос для получения нового содержимого

URI ресурса, к которому нужно обратиться для получения содержимого

Дата и время или число секунд, через которое нужно повторить запрос, чтобы получить успешный ответ

Название программного обеспечения сервера, приславшего ответ

Заголовки запроса

Типы содержимого, которое "понимает" клиент и может воспроизвести

Кодировки символов, в которых клиент может принимать текстовое содержимое

Способ, которым сервер может закодировать сообщение

Хост и номер порта, с которого запрашивается документ

If-Modified-Since

If-Unmodified-Since

Заголовки запроса для условного обращения к ресурсу

Запрос части документа

Название программного обеспечения клиента

Общие заголовки

Указывает серверу на завершение (close) или продолжение (keep-alive) сеанса

Дата и время формирования сообщения

Подробное описание заголовков HTTP/1.0 можно найти в RFC 2068.

В теле сообщения содержится собственно передаваемая информация – полезная нагрузка сообщения. Тело сообщения представляет собой последовательность октетов (байтов). Тело сообщения может быть закодировано, например, для уменьшения объема передаваемой информации, при этом способ кодирования указывается в заголовке объекта Content-Encoding.

Сообщение запроса от клиента к серверу состоит из строки запроса (request-line), заголовков (общих, запросов, объекта) и, возможно, тела сообщения. Строка запроса начинается с метода, затем следует идентификатор запрашиваемого ресурса, версия протокола и завершающие символы конца строки:

<Метод> <Идентификатор> <Версия HTTP>

Метод указывает команду протокола HTTP, которую нужно применить к запрашиваемому ресурсу. Например, метод GET говорит о том, что клиент хочет получить содержимое ресурса. Идентификатор определяет запрашиваемый ресурс. Версия HTTP обозначается строкой следующего вида:

HTTP/<версия>.<подверсия>

В RFC 2068 представлен протокол HTTP/1.1.

Рассмотрим основные методы протокола HTTP.

Метод OPTIONS выполняет запрос информации об опциях соединения (например, методах, типах документов, кодировках), которые поддерживает сервер для запрашиваемого ресурса. Этот метод позволяет клиенту определять опции и/или требования, связанные с ресурсом, или возможности сервера, не производя никаких действий над ресурсом и не инициируя его загрузку.

Если ответ сервера – это не сообщение об ошибке, то заголовки объекта содержат информацию, которую можно рассматривать как опции соединения. Например, в заголовке Allow перечислены все методы, поддерживаемые сервером для данного ресурса.

Если идентификатор запрашиваемого ресурса – звездочка ("*"), то запрос OPTIONS предназначен для обращения к серверу в целом.

Если идентификатор запрашиваемого ресурса – не звездочка, то запрос OPTIONS применяется к опциям, которые доступны при соединении с указанным ресурсом.

Метод GET позволяет получать любую информацию, связанную с запрашиваемым ресурсом. В большинстве случаев, если идентификатор запрашиваемого ресурса указывает на документ (например, документ HTML, текстовый документ, графическое изображение, видеоролик), то сервер возвращает содержимое этого документа (содержимое файла). Если запрашиваемый ресурс является приложением (программой), формирующим в процессе своей работы некоторые данные, то в теле сообщения ответа возвращаются эти данные, а не двоичный образ выполняемого файла. Это используется, например, при создании приложений CGI. Если идентификатор запрашиваемого ресурса указывает на директорию (каталог, папку), то, в зависимости от настроек сервера, может быть возвращено либо содержимое директории (список файлов), либо содержимое одного из файлов, находящегося в этой директории (как правило, index.html или Default.htm). В случае запроса папки ее имя может указываться как с символом "/" на конце, так и без него. При отсутствии на конце идентификатора ресурса данного символа сервер выдает один из ответов с перенаправлением (с кодами статуса 301 или 302).

Одной из разновидностей метода GET является "условный GET" ("conditional GET"), при котором сообщение запроса включает заголовки запроса If-Modified-Since, If-Unmodified-Since, If-Match, If-None-Match, или If-Range. Условный метод GET запрашивает передачу объекта, только если он удовлетворяет условиям, описанным в приведенных заголовках. Например, при наличии заголовка If-Modified-Since содержимое запрашиваемого ресурса будет получено только в том случае, если оно не изменялось после момента времени, указанного в качестве значения данного заголовка. Условный метод GET предназначен для уменьшения ненужной загрузки сети, поскольку позволяет не загружать вторично уже сохраненные клиентом данные.

Различают также "частичный GET" ("partial GET"), при котором сообщение запроса включает заголовок запроса Range. Частичный GET запрашивает передачу только части объекта. Частичный метод GET предназначен для уменьшения ненужной загрузки сети, за счет запроса только части объекта, когда другая часть уже загружена клиентом. Значением заголовка Range является строка "bytes=" с последующим указанием диапазона байтов, которые необходимо получить. Байты нумеруются с 0. Начальный и конечный байты диапазона разделяются символом "–". Как начальный, так и конечный байты в диапазоне могут отсутствовать. Если нужно получить несколько диапазонов, то они перечисляются через запятую. Если некоторые из перечисленных диапазонов пересекаются, то сервер осуществляет их объединение. Сообщение ответа в случае запроса с частичным методом GET должно содержать заголовок Content-Range, в котором указывается передаваемый диапазон. Если сервер передает несколько непересекающихся диапазонов, то заголовок Content-Type принимает специальное значение "multypart/byteranges". Тело сообщения разбивается на части, разделенные сгенерированным сервером разделителем и переданным в качестве параметра заголовка Content-Type. Каждая отдельная часть содержит собственные заголовки Content-Type и Content-Range с пустой строкой перед содержимым диапазона.

Метод HEAD идентичен GET, за исключением того, что сервер не возвращает в ответе тело сообщения. Информация, содержащаяся в HTTP заголовках ответа на запрос HEAD, идентична информации, представляемой в ответ на запрос GET для того же ресурса. Этот метод может использоваться для получения информации об объекте запроса без непосредственной пересылки тела объекта. Метод HEAD может использоваться для тестирования гипертекстовых связей.

Метод POST используется для запроса, при котором адресуемый сервер принимает данные, включенные в тело сообщения (объект) запроса, и отправляет их на обработку приложению, указанному как запрашиваемый ресурс. POST разработан для того, чтобы общим методом реализовать следующие функции:

аннотация существующих ресурсов;

регистрация сообщения на электронной доске объявлений (BBS), в конференциях новостей (newsgroups), списках рассылки (mailing lists) или подобной группе статей;

передача блока данных, например результат ввода в форме, процессу обработки;

выполнение запросов к базам данных (БД);

Фактически функция, выполняемая методом POST, определяется приложением, на которое указывает идентификатор запрашиваемого ресурса. Наряду с методом GET, метод POST используется при создании приложений CGI. Браузер может формировать запросы с методом POST при отправке форм. Для этого элемент FORM документа HTML, содержащего форму, должен иметь атрибут method со значением POST.

Приложение, запуск которого инициируется методом POST, может выполнить действие на сервере и не передать никакого содержимого в качестве результата работы. В зависимости от того, включает ответ тело сообщения, описывающее результат, или нет, код состояния в ответе может быть как 200 (OK), так и 204 (Нет содержимого, No Content).

Если ресурс на сервере был создан, ответ содержит код состояния 201 (Создан, Created) и включает заголовок ответа Location.

Тело сообщения, которое передается в запросе с методом PUT, сохраняется на сервере, причем идентификатор запрашиваемого ресурса будет идентификатором сохраненного документа. Если идентификатор запрашиваемого ресурса указывает на уже существующий ресурс, то включенный в тело сообщения объект рассматривается как модифицированная версия ресурса, находящегося на сервере. Если новый ресурс создан, то сервер сообщает пользовательскому агенту об этом посредством ответа с кодом состояния 201 (Создан, Created).

Различие между методами POST и PUT заключается в различном значении идентификатора запрашиваемого ресурса. URI в запросе POST идентифицирует ресурс, который обрабатывает включенный в тело сообщения объект. Этим ресурсом может быть приложение, принимающее данные. Напротив, URI в запросе PUT идентифицирует объект, включенный в запрос в виде тела сообщения, то есть пользовательский агент назначает данный URI включенному ресурсу.

Метод DELETE запрашивает сервер об удалении ресурса, имеющего запрашиваемый идентификатор. Запрос с данным методом может быть отвергнут сервером, если у пользователя нет прав на удаление запрашиваемого ресурса.

Метод TRACE используется для возврата переданного запроса на уровне протокола HTTP. Получатель запроса (сервер Web) отправляет полученное сообщение обратно клиенту как тело сообщения ответа с кодом состояния 200 (OK). Запрос TRACE не должен содержать тела сообщения.

TRACE позволяет клиенту видеть, что получает на другом конце сервер и использовать эти данные для тестирования или диагностики.

Если запрос успешно выполнен, то ответ содержит все сообщение запроса в теле сообщения ответа, а заголовок объекта Content-Type имеет значение "message/http".

Подробную информацию о методах протокола HTTP/1.1 можно найти в RFC 2068.

После получения и интерпретации сообщения запроса, сервер отвечает сообщением HTTP ответа.

Первая строка ответа – это строка состояния (Status-Line). Она состоит из версии протокола, числового кода состояния, поясняющей фразы, разделенных пробелами и завершающих символов конца строки:

<Версия HTTP> <Код состояния> <Поясняющая фраза>

Версия протокола имеет тот же смысл, что и в запросе.

Элемент код состояния (Status-Code) – это целочисленный трехразрядный (трехзначный) код результата понимания и удовлетворения запроса. Поясняющая фраза (Reason-Phrase) представляет собой короткое текстовое описание кода состояния. Код состояния предназначен для обработки программным обеспечением, а поясняющая фраза предназначена для пользователей.

Первая цифра кода состояния определяет класс ответа. Последние две цифры не имеют определенной роли в классификации. Имеется 5 значений первой цифры:

1xx: Информационные коды – запрос получен, продолжается обработка.

2xx: Успешные коды – действие было успешно получено, понято и обработано.

3xx: Коды перенаправления – для выполнения запроса должны быть предприняты дальнейшие действия.

4xx: Коды ошибок клиента – запрос имеет ошибку синтаксиса или не может быть выполнен.

5xx: Коды ошибок сервера – сервер не в состоянии выполнить допустимый запрос.

Поясняющие фразы для каждого кода состояния перечислены в RFC 2068 и являются рекомендуемыми, но могут быть заменены на эквивалентные без ограничений со стороны протокола. Например, в локализованных русскоязычных версиях HTTP серверов эти фразы заменены русскими. В табл. 2 приведены коды ответов сервера HTTP.

Таблица 2

Коды ответов сервера HTTP

Поясняющая фраза согласно

1xx: Информационные коды

Продолжать

2xx: Успешные коды

Нет содержимого

Сбросить содержимое

Partial Content

Частичное содержимое

3xx: Коды перенаправления

Moved Temporarily

Временно перемещен

Не модифицирован

4xx: Коды ошибок клиента

Испорченный запрос

Несанкционированно

Не найден

Method Not Allowed

Метод не дозволен

Request Timeout

Истекло время ожидания запроса

Конфликт

Length Required

Требуется длина

Request Entity Too Large

Объект запроса слишком большой

Окончание табл. 2

Поясняющая фраза согласно

Эквивалентная поясняющая фраза на русском языке

5xx: Коды ошибок сервера

Internal Server Error

Внутренняя ошибка сервера

Not Implemented

Не реализовано

Service Unavailable

Сервис недоступен

HTTP Version Not Supported

Не поддерживаемая версия HTTP

Подробную информацию о кодах ответа и заголовках, сопровождающих данные ответы, можно получить в RFC 2068.

За строкой состояния следуют заголовки (общие, ответа и объекта) и, возможно, тело сообщения.

Одной из важнейших функций сервера Web является предоставление доступа к части локальной файловой системы. Для этого в настройках сервера указывается некоторая директория, которая является корневой для данного сервера Web. Чтобы опубликовать документ, то есть сделать его доступным пользователям, "посещающим" данный сервер (осуществляющим с ним соединение по протоколу HTTP), нужно скопировать этот документ в корневую директорию Web-сервера или в одну из ее поддиректорий. При соединении по протоколу HTTP на сервере создается процесс с правами пользователя, как правило, не существующего реально, а специально созданного для просмотра ресурсов сервера. Настраивая права и разрешения данного пользователя, можно управлять доступом к ресурсам Web.