Тарифы Услуги Сим-карты

Информационная обратная связь. Современные проблемы науки и образования

Нередко встречаются случаи, когда информация может передаваться не только от одного корреспондента к другому, но и в обратном направлении. В таких условиях появляется возможность использовать обратный поток информации для существенного повышения верности сообщений, переданных в прямом направлении. При этом не исключено, что по обоим каналам (прямому и обратному) в основном непосредственно передаются сообщения в двух направлениях ("дуплексная связь") и только часть пропускной способности каждого из каналов используют для передачи дополнительных данных, предназначенных для повышения верности.

Возможны различные способы использования системы с обратной связью в дискретном канале. Обычно их подразделяют на два типа: системы с информационной обратной связью и системы с управляющей обратной связью. Системами с информационной обратной связью называются такие, в которых с приемного устройства на передающее поступает информация о том, в каком виде принято сообщение. На основании этой информации передающее устройство может вносить те или иные изменения в процесс передачи сообщения: например, повторить ошибочно принятые отрезки сообщения, изменить применяемый код (передав предварительно соответствующий условный сигнал и убедившись в том, что он принят) либо вообще прекратить передачу при плохом состоянии канала до его улучшения.

В системах с управляющей обратной связью приемное устройство на основании анализа принятого сигнала само принимает решение о необходимости повторения, изменения способа передачи, временного перерыва связи и передает об этом приказание передающему устройству. Возможны и смешанные методы использования обратной связи, когда в некоторых случаях решение принимается на приемном устройстве, а в других случаях на передающем устройстве на основании полученной по обратному каналу информации.

Простейшим по идее методом информационной обратной связи является метод полной обратной проверки и повторения (ОПП). При этом принятый сигнал полностью ретранслируется на передающее устройство, где каждая принятая кодовая комбинация сверяется с переданной. В случае их несовпадения передающее устройство передает сигнал для стирания неправильно принятой комбинации, а затем повторяет нужную комбинацию. В качестве сигнала для стирания применяют специальную кодовую комбинацию, не используемую при передаче сообщения.

Функциональная схема такой системы показана на рис. 5.L Передаваемое сообщение, закодированное примитивным кодом, посылают в канал и одновременно записывают в запоминающем устройстве (накопителе). Принятая кодовая комбинация сразу не декодируется, а запоминается в приемном накопителе и возвращается по обратному каналу на передающий конец, где она сравнивается с переданной комбинацией. Если они совпадают, то передается следующая кодовая комбинация, в противном случае - сигнал стирания.

При этом методе окончательный ошибочный прием кодовой комбинации возможен лишь тогда, когда ошибки в принятой комбинации компенсируются ошибками, возникающими в канале обратной связи. Другими словами, для того чтобы некоторый символ в переданной кодовой комбинации был окончательно принят ошибочно, необходимо и достаточно, чтобы, во-первых, произошла ошибка в прямом канале и, во-вторых, при ретрансляции произошла такая ошибка, которая изменит неправильный ретранслируемый символ на действительно переданный. Это позволяет сразу вычислить вероятность не обнаруженной, а следовательно, и неисправленной ошибки (в расчете на один символ):

р н.о = p 1 p 2 (5.33)

где p 1 - вероятность ошибки в прямом канале; р 2 - вероятность противоположной ошибки в канале обратной связи.

Следовательно, если p 1 и р 2 велики, то система с полной ретрансляцией дает неудовлетворительные результаты. Практически данный метод имеет смысл в тех случаях, когда канал обратной связи обеспечивает весьма высокую верность (например, при передаче сообщений на спутник с Земли), а прямой канал имеет низкую верность (например, при передаче сообщений спутника на Землю ввиду того, что мощность передатчика на спутнике мала). Существенным недостатком системы с полной ретрансляцией является большая загрузка канала обратной связи. Существуют и более сложные системы с информационной обратной связью, в которых используются помехоустойчивые коды.

Наиболее распространены системы с управляющей обратной связью (УОС) при использовании избыточных кодов для обнаружения ошибок (рис. 5.2). Такие системы часто называют системами с переспросом, или с автоматическим запросом ошибок, или с решающей обратной связью (РОС).

В большинстве случаев это системы дуплексные, т. е. информация в них передается в обоих направлениях. В кодере передаваемое сообщение кодируется кодом, позволяющим с большой вероятностью обнаруживать возникающие в канале ошибки. Принятый кодовый блок декодируется с обнаружением ошибок. Если ошибки не обнаружены, то декодированный отрезок сообщения поступает к получателю. При обнаружении ошибок блок бракуется и по обратному каналу передается специальный "сигнал переспроса". В большинстве систем этот сигнал представляет собой специальную кодовую комбинацию, на время передачи которой прерывается поток информации, идущей по обратному каналу. Прием сигнала переспроса вызывает повторение забракованного блока, который для этого хранится в накопителе-повторителе до тех пор, пока по обратному каналу не будет принята очередная кодовая комбинация, не содержащая переспроса.

Система с управляющей обратной связью оказывается весьма эффективной в каналах с переменной вероятностью ошибки р (например, в каналах с замираниями). Когда величина р становится близкой к 1/2, т. е. пропускная способность канала падает почти до нуля, система находится в режиме постоянного переспроса, однако при хорошем коде ложная информация на выход практически не поступает. При уменьшении вероятности ошибки скорость передачи увеличивается, а верность продолжает оставаться на заданном уровне. Таким образом, система УОС как бы адаптируется (приспосабливается) к состоянию канала, используя канал настолько, насколько это оказывается возможным в каждом из его состояний.

В заключение отметим следующий факт, доказываемый в теории информации: в каналах без памяти наличие любой обратной связи не увеличивает пропускной способности прямого канала. Следовательно, если допустимо использование длинных кодов, то обратная связь не даст преимуществ. Однако, как уже указывалось, длинные коды требуют весьма сложных устройств декодирования, которые часто практически не реализуемы. Именно в этом случае может помочь обратная связь, позволяющая реализовать ту же пропускную способность более простыми средствами.

Вопросы к главе 5

  1. По каким признакам можно классифицировать коды?
  2. Источник независимых сообщений имеет в своем алфавите восемь сообщений с вероятностями Р(А) = 0,3; Р(Б) = Р(В) = 0,2; Р(Г) = 0,15; Р(Д) = 0,1; Р(Е) = 0,03; Р(Ж) = Р(И) = 0,01. Вычислите энтропию сообщений, постройте неравномерный код по методу Фено и определите, насколько он близок к оптимальному. Сравните необходимые скорости передачи в канале при коде Фено и при равномерном коде.
  3. Почему короткие помехоустойчивые коды не обеспечивают большой эффективности?
  4. Может ли один и тот же помехоустойчивый код использоваться в системе с обнаружением и в системе с исправлением ошибок?
  5. В двоичном стирающем канале без памяти (см. гл. 3, рис. 3.7) вероятность ошибки p = 0, а вероятность стирания р с >0. Докажите, что код с d > 1 позволяет исправлять в таком канале все стертые символы, если кратность стираний q c Пусть некоторый код А длины n имеет нечетное значение d. Построим новый код В длины n+1, добавив к прежнему коду проверочный символ, равный сумме (по модулю 2) всех остальных символов. Покажите, что при этом d увеличивается на 1.
  6. Покажите, что код В длины n+1, построенный в предыдущей задаче, позволяет исправлять ошибки кратностью q≤d/2-1, т. е. те же, которые исправлял код А и одновременно обнаруживать ошибки кратностью d/2, где d - четное минимальное расстояние кода В.
  7. Какой код является двойственным простейшему коду (n, n-1) с одной проверкой на четность и d = 2? Чему равно d для двойственного кода?
  8. При использовании кода Хэмминга (7,4) с проверочной матрицей (5.24) принята последовательность 1100111. Как она должна быть декодирована по алгоритму Хэмминга? Тот же вопрос, если принята последовательность 1100110? А если 1010001?
  9. Код Хэмминга (3,1) содержит всего две комбинации: 000 и 111. Определите эквивалентную вероятность ошибки при использовании этого кода в симметричном канале с независимыми ошибками, происходящими с вероятностью р.
  10. Тот же код (3,1) используется в несимметричном канале, в котором Р(1→0) = р, Р(0→1) = 0. Предложите разумное правило декодирования и вычислите эквивалентную вероятность ошибки.
  11. В формуле (5.28) выписаны четыре "проверки для символа эквидистантного кода (7,3). Учитывая, что этот код циклический, запишите проверки для b 2 и b 3 и определите, как будут декодированы по мажоритарному алгоритму принятые последовательности 0100110, 0110111, 0101010?
  12. Для двух кодов (6,5) и (4,3) с d = 2 у каждого, составлен итеративный код. Найдите для него n, k и d и покажите, каким образом он позволяет "справлять и обнаруживать ошибки?
  13. * В двоичной системе с информационной обратной связью (ОПП) ошибки независимы и их вероятность в прямом канале pi = 0,l, а в обратном канале р 2 = 10 -5 . Используются 5-разрядные кодовые комбинации. Определите вероятность не обнаруженной ошибки и оцените степень замедления передачи за счет обнаруженных ошибок.
  14. * В условиях вопроса 13 p 1 = 0,5 (т. е. связь по прямому каналу отсутствует), а p 2 = 0. Возможна ли передача информации в этом случае? По формуле (5.33) вероятность не обнаруженной ошибки р н.о = 0. С другой стороны, интуиция подсказывает, что передача информации здесь невозможна. Как объяснить такое противоречие?

Информационная система с обратной связью существует там, где окружающая среда способствует принятию решения, которое оказывает влияние на эту среду, и следовательно на дальнейшие решения.

Здесь можно привести несколько примеров:

*принятие решений относительно числа обслуживаемых потребителей зависит от числа заказов и объема складских запасов;

*стремление конкурирующих фирм выпускать новые изделия увеличивает затраты на исследования и технические усовершенствования, что приводит к соответствующим изменениям в технологии производства и снижению производственных издержек соответственно.

В информационной системе с обратной связью существует строго определенный базис, на котором основывается практика решений, принимаемых руководителями предприятий, на основе рис. 3. Замечу, что их решения окружающими обстоятельствами. не являются выражениями «свободной воли», а являются строго обусловленными

Практика отечественных предприятий показывает, что поставка товаров потребителю в среднем занимает неделю, с момента получения заказа от клиента. Запаздывание бухгалтерских операций и закупок составляют в розничном звене в среднем 3 недели от момента продажи вплоть до ее отражения в заявках на выполнение заказа. Оптовику требуется 1 неделя для оформления заказа, а отправка товара розничному звену занимает еще неделю. Аналогичные запаздывания имеют место также между оптовым звеном и заводским складом.

У производителя уходит в среднем 6 недель с момента принятия решения об изменении темпа выпуска продукции до момента, когда производство достигает нового уровня. Однако в высокоорганизованных логистических системах, функционирующих в странах с развитым рыночным хозяйством, периоды запаздывания значительно сокращаются.

Информационные системы с обратной связью

Структура системы – характеризующая взаимосвязь отдельных частей

Усиление в системе с обратной связью – усиления, проявляющиеся в тех случаях, когда действие оказывается более сильным, чем это можно предполагать исходя из ввода информации, определяющей регулирующие решения. Они происходят во всей информационной системе, особенно при действующем порядке принятия решений в логической системе.

Запаздывания в системе с обратной связью – интервалы времени, возникающие между моментом получения информации, принятием решений, основанных на этой информации, и процессом выполнения этих решений.

1.6 Информационные системы mrp, мrр-II, еrр, сsrр и их роль в логистике

Приведенные аббревиатуры являются обозначением концепций создания автоматизированных информационных технологий управ­ления производством, расположенные в порядке их эволюционного развития, которые с некоторой долей допущения можно рассматри­вать и как этапы разработки и становления логистической инфор­мационной системы.

Система МRР (Маterial Requirement Planning) - планирование по­требности в материалах.. На данном этапе разработки информаци­онной системы решались вопросы комплексного планирования материальных потоков. Система МRР-II (Мапиfасturing Resource Planning) - планирование производственных ресурсов. Причем, МRР-II = МR.Р + СRР, где СRР - планирование потребности в мощностях. После внедрения систем МRР достаточно быстро был реализован ва­риант планирования производственных мощностей (Сарасity Requirement Planning, СRР), методология которого принципиально была похожа на МRР, но речь шла о расчетах необходимых производствен­ных мощностей, а не материалов и компонентов. Эта задача была су­щественно сложнее, поскольку требовала учета большого числа па­раметров, а окончательный расчет обязательно включал не только параметры мощности, но и временную последовательность.

Системы МRР-II разделяют три уровня планирования: 1) плани­рование продукции - определение мощности производства и средств, требуемых для выполнения долгосрочных прогнозов на се­мейство продуктов; 2) основное расписание производства продук­ции - создание общего расписания на основе комбинации реальных заказов со средневременными прогнозами; 3) планирование потреб­ности в мощностях СR.Р, результатом которого являются детальный план потребности в материалах и окончательный план потребности в мощностях.

В 1990-е годы системы планирования класса МRР-II в интегра­ции с модулем финансового планирования (FR.Р, Finance Requirement Planning) получили название систем бизнес-планирования (ЕRР, Enterprise Resource Planning), которые позволяют наиболее эффектив­но планировать производственно-хозяйственную деятельность со­временного предприятия, в том числе финансовые затраты на про­екты обновления оборудования и инвестиции в производство новых изделий. По существу, системы ЕRР представляют собой следующую стадию интеграции для логистических информационных систем, раз­работку которых обусловили новые требования к информационно­му обеспечению систем управления: а) существенная географиче­ская и концептуальная (диверсификационная) глобализация как сбыта, так и поставок, в том числе для мелких и средних произво­дителей; б) резкое снижение продолжительности жизненного цикла продукта на рынке; в) значительное увеличение роли и числа за­казных производств как наиболее полно отражающих концепцию “общества потребления”; г) усиление конкуренции и в результате - снижение прибыли, получаемой производителем, а как следствие - резкое повышение интереса к управлению издержками; д) общая ин­тенсификация жизни, приведшая к существенному повышению тре­бований к мобильности управления; е) закрепление проблем сбыта и логистики за мелким и средним производителем. Благодаря оче­видности и действенности преимуществ системы планирования ре­сурсов ведущие современные производители продолжают активно внедрять приложения ЕRР уже в течение более 25 лет после того, как они стали коммерчески доступны. Оборот мирового рынка сис­тем ЕRР до конца XX в. ежегодно увеличивался на 30% и вырос с 5,2 млрд долл. в 1996 г. до 19 млрд долл. в 2001 г.

С иной точки зрения позволила взглянуть на процесс управле­ния ресурсами предприятия концепция СSRР (Customer Synchronized Resource Planning). Данная концепция основывается на том, что управление осуществляется не от возможности производить продукт, а от потребности рынка покупать этот продукт. Для реализации кон­цепции СSRР разрабатываются методики управления внутренними бизнес-процессами, тесно интегрированные с маркетингом, где эф­фективность оценивается не по успешности организации производ­ства и использования ресурсов, а по устойчивости позиций предпри­ятия на рынке. Данная методология является следующим этапом, приближающим разработку логистической информационной системы.

Нередко встречаются случаи, когда информация может передаваться не только от одного корреспондента к другому, но и в обратном направлении. В таких условиях появляется возможность использовать обратный поток информации для существенного повышения верности сообщений, переданных в прямом направлении. При этом не исключено, что по обоим каналам (прямому и обратному) в основном непосредственно передаются сообщения в двух направлениях («дуплексная связь») и только часть пропускной способности каждого из каналов используется для передачи дополнительных данных, предназначенных для повышения верности.

Возможны различные способы использования систем с обратной связью в дискретном канале. Обычно они подразделяются на два типа: системы с информационной обратной связью и системы с управляющей обратной связью. Системами с информационной обратной связью называются такие, в которых с приемного устройства на передающее поступает информация о том, в каком виде принято сообщение. На основании этой информации передающее устройство может вносить те или иные изменения в процесс передачи сообщения: например, повторить ошибочно принятые отрезки сообщения, изменить применяемый код (передав предварительно соответствующий условный сигнал и убедившись в том, что он принят) либо вообще прекратить передачу при плохом состоянии канала до его улучшения.

В системах с управляющей обратной связью приемное устройство на основании анализа принятого сигнала само принимает решение о необходимости повторения, изменения способа передачи, временного перерыва связи и т. д. и передает об этом приказание передающему устройству. Возможны и смешанные методы использования обратной связи, когда в некоторых случаях решение

принимается на приемном устройстве, а в других случаях на передающем устройстве на основании полученной по обратному каналу информации.

Простейшим по идее методом информационной обратной связи является метод полной обратной проверки и повторения (ОПП). При этом принятый сигнал полностью ретранслируется на передающее устройство, где каждая принятая кодовая комбинация сверяется с переданной. В случае их несовпадения передающее устройство передает сигнал для стирания неправильно принятой комбинации, а затем повторяет нужную комбинацию. В качестве сигнала для стирания применяется специальная кодовая комбинация, не используемая при передаче сообщения.

Функциональная схема такой системы показана на рис. 5.1. Передаваемое сообщение, закодированное примитивным кодом, посылается в канал и одновременно записывается в запоминающем устройстве (накопителе). Принятая кодовая комбинация сразу не декодируется, а запоминается в приемном накопителе и возвращается по обратному каналу на передающий конец, где она сравнивается с переданной комбинацией. Если они совпадают, то передается следующая кодовая комбинация, в противном случае - сигнал стирания.

При этом методе окончательный ошибочный прием кодовой комбинации возможен лишь тогда, когда ошнбкн в принятой комбинации компенсируются ошибками, возникающими в канале обратной связи. Другими словами, для того чтобы некоторый символ в переданной кодовой комбинации был окончательно принят ошибочно, необходимо и достаточно, чтобы, во-первых, произошла ошибка в прямом канале и, во-вторых, при ретрансляции произошла такая ошибка, которая изменит неправильный ретранслируемый символ на действительно переданным. Это позволяет сразу вычислить вероятность необнаруженной ошибки для такого канала:

где вероятность ошнбкн в прямом канале; вероятность противоположной ошйбки в канале обратной связи.

Следовательно, если велики, то система с полной ретрансляцией дает неудовлетворительные результаты. Практически данный метод имеет смысл в тех случаях, когда канал обратной связи обеспечивает весьма высокую верность (папрнмер, при передаче сообщений на спутник с Земли), а прямой канал имеет низкую верность (папрнмер, при передаче сообщений спутника на Землю ввиду того, что мощность передатчика на спутнике мала). Существенным недостатком системы с полной ретрансляцией является большая загрузка канала обратной связи. Существуют и более сложные системы с информационной обратной связью, в которых используются помехоустойчивые коды.

Наибольшее распространение получили системы с управляющей обратной связью при использовании избыточных кодов для обнаружения ошибок (рис. 5.2). Такие системы часто называют системами с переспросом, или с автоматическим запросом ошибок, или с решающей обратной связью

В большинстве случаев это системы дуплексные, т. е. информация в них передается в обоих направлениях. В кодере передаваемое сообщение кодируется кодом, позволяющим с большой вероятностью обнаруживать возникающие в канале ошибки.

(кликните для просмотра скана)

Принятый кодовый блок декодируется с обнаружением ошибок. Если ошибки не обнаружены, то декодированный отрезок сообщения поступает к получателю. При обнаружении ошибок блок бракуется и по обратному каналу передается специальный «сигнал переспроса». В большинстве систем этот сигнал представляет собой специальную кодовую комбинацию, на время передачи которой прерывается поток информации, идущей по обратному каналу. Прием сигнала переспроса вызывает повторение забракованного блока, который с этой целью хранится в накопителе-повторителе до тех пор, пока по обратному каналу не будет принята очередная кодовая комбинация, не содержащая переспроса. Рассмотрим несколько подробнее параметры таких систем.

Основными параметрами, характеризующими систему, являются эквивалентная вероятность ошибки и скорость передачи ниформацнн. Для их определения необходимо знать вероятности приема кодовой комбниацнн без ошибок с обнаруженной ошибкой и с необнаруженной ошибкой Эти вероятности можно вычислить, зная структуру кода и свойства канала. В частности, в симметричном канале без памяти можно оценить по формуле определить по очевидной формуле

Найти, исходя из того, что

Рассмотрим передачу одной кодовой комбинации. Она может быть принята правильно с вероятностью и тогда безошибочная информация поступает получателю; или принята с необнаруженной ошибкой (с вероятностью и тогда получателю будет выдана ошибочная информация. Наконец, она может быть принята (с вероятностью с обнаруженной ошибкой и забракована. В этом случае, после запроса, все повторяется сначала и опять имеется возможность прнпять кодовую комбинацию с необнаруженной ошибкой.

Окончательно остаточная вероятность того, что кодовая комбинация будет передана получателю с необнаруженной ошибкой складывается из вероятности необнаруженной ошибки при первой передаче, при второй передаче Следовательно,

Здесь первый член - вероятность необнаруженной ошибки при первой передаче, второй член - вероятность того, что при первой передаче возникла обнаруженная ошибка, а при повторении - необнаруженная ошибка и т. д.

Воспользовавшись формулой для геометрической прогрессии, найдем

Остаточная вероятность правильного приема Отсюда можно вычислить эквивалентную вероятность ошибки. Согласно (5.27)

Последнее приближенное равенство справедливо, еслн что на практике всегда выполняется в работоспособных системах.

Система с управляющей обратной связью оказывается весьма эффективной в каналах с переменной вероятностью ошибки (например, в коротковолновых каналах с замираниями). Когда величина становится близкой к 1/2, т. е. пропускная способность канала падает почти до нуля, система находится в режиме постоянного переспроса, однако при хорошем коде ложная информация на выход практически не поступает. При уменьшении вероятности ошибки скорость передачи увеличивается, а верность продолжает оставаться на заданном уровне. Таким образом, система УОС как бы адаптируется (приспосабливается) к состоянию капала, используя канал настолько, насколько это оказывается возможным в каждом из его состояний.

В заключение отметим следующий факт, доказываемый в теории информации: в каналах без памяти наличие любой обратной связи не увеличивает пропускной способности прямого канала. Следовательно, если допустимо использование длинных кодов, то обратная связь не даст преимуществ. Однако, как уже указывалось, длинные коды требуют весьма сложных устройств декодирования, которые часто оказываются практически нереализуемыми. Именно в этом случае может помочь обратная связь, позволяющая реализовать ту же пропускную способность более простыми средствами.

Понятие информационных систем с обратной связью является основой для создания базовой структуры, интегрирующей различные стороны процесса управления логистической системой. В этой системе тс или иные явления порождают информацию, которая служит основой для принятия решений, управляющих действиями, направленными на изменение этих явлений. Цикл этой системы непрерывен: мы не можем определенно говорить о каком-то начале или конце цепи. Это замкнутый контур.

Информационные системы с обратной связью характеризуются структурой, запаздыванием и усилением.

Структура системы – это взаимосвязи отдельных частей.

Запаздывания всегда существуют при получении информации, при принятии решений, основанных на этой информации, и в процессе выполнения этих решений.

Усиления обычно происходят при принятии решений. Они проявляются в тех случаях, когда принятие решения оказывается более сильным, чем это можно предполагать.

В информационной системе с обратной связью существует строго определенная практика принятия решений, которой руководствуется хозяйственный руководитель. Принятие решения строго обусловлено производственными или другими обстоятельствами. Существует возможность

установить правила, регулирующие эти решения, и определить их влияние на производственное и экономическое поведение систем. Для этого используем простой пример организации логистической системы (рис. 8.6). Для изучения этой системы необходимо располагать информацией трех видов: об организационной структуре системы, о запаздываниях решений и действий и о правилах, регулирующих закупки и товарные запасы.

Организационная структура

Рассмотрим типовую организационную структуру для функций производства и сбыта продукции, показанную на рис. 8.6. Штриховые линии на нем изображают восходящий поток заказов на товары, сплошные линии – отгрузку товаров. Следует отметить наличие запасов на трех уровнях: на заводе, в оптовом и розничном звеньях.

Запаздывания решений и действий

Чтобы определить динамические характеристики системы, необходимо знать время запаздывания в потоках заказов и товаров. Запаздывания указываются, как правило, в неделях.

Рис. 8.6.

– функции решения; – источники информации; – канал материалопотока

Правила выдачи заказов и регулирования запасов

Чтобы логистическая система работала эффективно, необходимо знать правила, регулирующие размещение заказов, и размеры складских запасов в каждом звене реализации продукции. В этой модели имеется три основных вида заказов.

  • 1. Заказы на возмещение проданных товаров.
  • 2. Заказы для пополнения запасов во всех звеньях в связи с изменением уровня продаж.
  • 3. Заказы, необходимые для заполнения каналов обеспечения товарами по заказам, находящимся в стадии выполнения.

Порядок выдачи заказов характеризуется следующим образом:

  • а) на основе анализа продаж и в соответствии с запаздыванием закупки (три, две и одна неделя для соответствующих трех звеньев) заказы ближайшему звену системы включают возмещение фактических продаж, реализованных заказывающим звеном;
  • б) но истечении достаточного времени для определения среднего значения краткосрочных продаж принимаются меры для постепенного снижения или повышения запасов в зависимости от увеличения или уменьшения оборота;
  • в) часть заказов, находящихся в процессе выполнения (отправленные почтой, невыполненные заказы поставщика и товары в пути), всегда пропорциональна среднему уровню деловой активности и продолжительности выполнения заказа.

Рост объема продаж, как и удлинение цикла поставок, обязательно вызывает увеличение общего объема заказов в каналах распределения. Эти заказы являются частью "материальной базы" в структуре логистической системы. При отсутствии заказов, специально предназначенных для заполнения каналов распределения, соответствующая потребность в товарах на эти цели покрывается за счет снижения складских запасов, а это означает, что заказы на заполнение каналов товародвижения выдаются безотчетно под видом регулирования запасов.

Выдача заказов зависит также от ожидаемого в будущем объема продаж. Методы предвидения, которые состоят в экстраполяции существующей тенденции на будущий период, приводят в общем к созданию менее устойчивой, колеблющейся логистической системы.

Воздействие на организационную структуру запаздываний и правил поведения системы (рис. 8.7), ее характеристики должны быть выражены в четкой количественной форме.

Рис. 8.7.

– функции решения; – источники информации; – канал материалоиотка

После описания логистической системы необходимо выяснить ее поведение в целом. Для этого следует воспользоваться схемой потребительских закупок в качестве входных данных и затем наблюдать за возникающими изменениями в состоянии складских запасов и производстве продукции. Их воздействие на логистическую систему методами имитации. Имитация заключается в прослеживании шаг за шагом фактических потоков заказов, товаров и информации, а также наблюдением за всеми принимаемыми решениями.

Представленная структура содержит четыре элемента:

  • 1) несколько уровней (в данном случае – три);
  • 2) потоки, перемещающие содержимое одного уровня к другому;
  • 3) функции решений, которые регулируют темпы потока между уровнями;
  • 4) каналы информации, соединяющие функции решений с уровнями.

Поясним некоторые понятия .

Уровни характеризуют возникающие накопления внутри системы. Это товары, имеющиеся на складе, товары в пути, складские площади, численность работающих и другие показатели.

Темп потока – это мгновенные потоки между уровнями в системе. Темпы отражают активности в системе.

Функции решений представляют собой формулировку линии поведения, определяющую, каким образом имеющаяся информация об уровнях приводит к выбору решений, связанных с величинами текущих темпов потока. Функция решения может иметь форму несложного уравнения, которое определяет простейшую реакцию материалопотока на состояния одного или двух уровней (так, производительность транспортной системы часто может быть адекватно выражена количеством товаров в пути, представляющим собой уровень, и константой – средним запаздыванием на время транспортировки). Вместе с тем функция решения может представлять собой длинную и детально разработанную цепь вычислений, выполняемых с учетом изменения ряда дополнительных условий.

Информация является основой решений. Функции решений (см. рис. 8.7), на основе которых устанавливаются темпы, связаны только с информацией об уровнях. Чем выше уровень информационной системы, тем выше эффективность логистической системы. Поэтому высокое качество информационной системы позволяет эффективно решать многие проблемы управления запасами, транспортирования продукции, складирования и других логистических функциональных областей.

Структурная схема системы ИОС в общих чертах такая же, как и для систем с РОС. Отличие состоит в том, что решение о качестве в данном случае принимает передающая сторона.

В системах с ИОС каждое принятое сообщение передается по обратному каналу в пункт передачи, где оно сравнивается с исходным сообщением, хранимым в БЗУ. Если сообщения совпадают или различаются в допустимых пределах, зависящих от корректирующей способности используемого кода, то на передающей стороне принимается решение, что сообщение принято правильно, и получателю посылается сигнал подтверждения, в соответствии с которым принятое ранее сообщение, хранящееся в запоминающем устройстве, передается по назначению. Если же различие между сообщениями превышает допустимые пределы, передающая сторона посылает сигнал, что принятое сообщение недостоверно и повторяет передачу. Системы с ИОС, в которых по обратному каналу передается вся информация, переданная по прямому, называется системами с ретрансляционной обратной связью.

Существует несколько разновидностей систем с ИОС. В частности, если для передачи применяются корректирующие коды, то по прямому каналу можно передавать только информационные символы, а по обратному – только проверочные. Сравнивая на передающей стороне принятые проверочные символы с хранящимися в запоминающем устройстве, можно сделать вывод о правильности приема сообщения.

Имеется вариант, в котором после проверки принятого по обратному каналу сообщения и обнаружения ошибки передатчик может либо повторить его, либо послать дополнительную информацию, необходимую для исправления (корректирующая информация).

Из принципа действия систем с ИОС следует, что их целесообразно применять в случаях, когда скорость передачи информации не является главным, а требуется обеспечить высокую достоверность передаваемых сообщений (например, при передаче команд).

В системах с ИОС качество обратного канала должно быть не хуже качества прямого во избежание искажений, которые могут увеличить число повторений.

Системы с обратной связью любого типа следует относить к системам с адаптивным кодированием, т.к. реальная скорость передачи информации в них зависит от состояния канала связи – при ухудшении состояния канала увеличивается число повторных передач и наоборот. Это эквивалентно изменению избыточности в передаваемых сообщениях, что является характерным признаком адаптивного кодирования.


Список литературы.

1. Э.М. Габидулин, В.Б. Афанасьев. Кодирование в радиоэлектронике. – М.: «Радио и связь», 1986.

2. Журавлев Ю.П., Забубенков В.Н. Мультитаймеры. – Л.: «Энергия», 1979.

3. В.А. Острейковский. Информатика. – М.: «Высшая школа», 2001.

4. В.И. Першиков, В.М. Савинков. Толковый словарь по информатике. – М.: «Финансы и статистика», 1991.

5. И.В. Ситняковский, О.Н. Порохов, А.Л. Нехаев. Цифровые системы передачи абонентских линий. – М.: «Радио и связь», 1987.

6. Ф.Е. Темников, В.А. Афонин, В.И. Дмитриев. Теоретические основы информационной техники. – М.: «Энергия», 1979.

7. Тутевич В.Н. Телемеханика. – М.: «Высшая школа», 1985.

8. Цымбал В.П. Задачник по теории информации и кодированию. – Киев, изд. «Вища школа», 1976.

9. Н.С. Щербаков. Достоверность работы цифровых устройств. – М.: «Машиностроение», 1989.

10. Ю.Э. Яцкевич. Теоретические основы вычислительной техники. Информационные основы. – Л.: изд. ЛПИ, 1977.