Тарифы Услуги Сим-карты

Интегрирующий усилитель схема и принцип работы. Схемы на оу с конденсаторами в цепи обратной связи

Сумматором называется устройство, выходное напряжение которого является суммой напряжений на его входе. Схема инвертирующего сумматора, приведенная на рис. 3.11, выполнена по типу инвертирующего усилителя, но ее входная цепь представляет собой n параллельных ветвей, каждая из которых содержит резисторR (i = 1, 2, …n), гдеn – число напряжений, подлежащих суммированию.

Соотношение, связывающее величины напряжений входных и выходного сигналов, получается на основе тех же предпосылок, что и при рассмотрении инвертирующего усилителя. Только к узлу “а” на входе ОУ подходит не один ток, а n – токов. Следовательно,

i= . (3.16)

Поэтому аналогично соотношению (3.5) при u= 0можно записать

= - . (3.17)

u
= - R
. (3.18)

Рисунок 3.11. Схема инвертирующего сумматора на ОУ

Из соотношения (3.18) следует, что схема на рис. 3.11 производит суммирование сигналов с одновременным умножением каждого из слагаемых на величину, зависящую от сопротивления резистора Rв соответствующей входной ветви. Для простого суммирования сопротивления всех резисторов схемы должны быть равны

R= R= … = R = R.

Схема неинвертирующего сумматора представлена на рис. 3.12. Она отличается от схемы неинвертирующего усилителя лишь наличием параллельных ветвей на неинвертирующем входе ОУ. Каждая из этих ветвей содержит резистор R, i = 1, 2, …n, гдеn– число суммируемых сигналов.

Поскольку входное сопротивление ОУ бесконечно велико, ток на входе ОУ, являющийся в схеме рис. 3.12 суммой токов всех входных ветвей, равен нулю. Поэтому:

= 0, (3.19)

где u- напряжение на неинвертирующем входе ОУ, которое, как отмечалось выше, совпадает с величиной напряжения на инвертирующем входе ОУ и определяется соотношением (3.8). Поэтому:

u
= (1 + ) .(3.20)

Таким образом, схема рис. 3.12 в общем случае может суммировать сигналы с соответствующим умножением каждого из слагаемых. Для простого суммирования необходимо, кроме равенства сопротивлений резисторов R, выбрать сопротивления резисторов Rи Rтакими, чтобы

R = (n – 1) R.

Рис.3.12. Схема неинвертирующего сумматора на ОУ

Следует иметь в виду, что при суммировании напряжение на выходе схем рис. 3.11 и 3.12 не должно превышать напряжение насыщения U вых max используемого ОУ.

3. Интегратор и дифференциатор на оу

Интегратором называется устройство, временная зависимость напряжения на выходе которого пропорциональна интегралу по времени входного напряжения. Его схема может быть выполнена по схеме инвертирующего усилителя при замене резистора в цепи обратной связи на конденсатор C, как показано на рис. 3.13. Для узла “а” этой схемы выполняется условие (3.2), а поскольку ток в цепи обратной связи обусловлен зарядом конденсатора при подаче входного сигнала, соотношение, аналогичное (3.5), может быть представлено в виде:

C
= . (3.21)

u
= -
,

где u
- выходное напряжение приt = 0. Отсчет времени обычно ведется с момента поступления на вход интегратора сигнала. Если до этого времени напряжение на входе интегратора отсутствовало, u
= 0.

u
= -
. (3.22)

Рисунок 3.13. Схема интегратора на ОУ

Таким образом, интегратор со схемой рис. 3.13, наряду с изменением полярности сигнала, осуществляет изменение его структуры. Это свойство используется для формирования импульсов специального вида, например, пилообразного, что иллюстрируется временной диаграммой рис. 3.14. Для получения такого импульса на вход интегратора необходимо подать прямоугольный импульс. Согласно соотношению (3.28), в течение длительности импульса τ выходное напряжение изменяется линейно

u вых = -
,

а в конце импульса достигнет величины

U вых =
τ,

где τ – длительность импульса. Наклон “пилы” определяется амплитудой прямоугольного импульса, а также постоянной времени переходного процесса RCзаряда конденсатора.

В обеспечении работы ОУ в линейном режиме уровень входного сигнала, его длительность и величины параметров пассивных элементов схемы должны выбираться такими, чтобы максимальное напряжение на выходе интегратора не превышало напряжения насыщения
. В противном случае будет происходить искажение выходного сигнала, что иллюстрируется рис. 3.14 для уменьшенной величины RC.

Рисунок 3.14. Временные диаграммы,

иллюстрирующие формирование пилообразного импульса

на выходе интегратора при (RC ) " и его искажения при (RC ) ""

После окончания входного сигнала конденсатор C разряжается. Только после полного его разряда во избежание искажения интегрирования может быть подан очередной импульс входного сигнала. Для уменьшения времени разряда параллельно конденсатору обычно подключается транзисторный ключ, закорачивающийся цепь разряда после окончания входного сигнала.

Если в схеме рис. 3.13 поменять местами резистор и конденсатор, как показано на рис.3.15, то для узла «а» соотношение, аналогичное (3.21) будет иметь вид:

Следовательно, схема рис.3.15 осуществляет операцию дифференцирования. Устройство, на выходе которого напряжение пропорционально производной от напряжения на входе, называется дифференциатор.

Рисунок 3.15. Схема дифференциатора на ОУ

До сих пор рассматривались усилители, собираемые из отдельных дис­кретных компонентов – транзисторов, диодов, резисторов. При исполь­зовании технологии интегральных схем все эти необходимые дискретные компоненты могут быть сформированы в одной монолитной ИС. Именно по такой технологии в настоящее время изготавливаются операционные усилители (ОУ). Первоначально они были разработаны для выполнения определенных математических операций (отсюда название), но затем бы­стро нашли применение в самых различных электронных схемах.

Идеальный операционный усилитель - это идеальный усилитель с бесконечно большим коэффициентом усиления, бесконечно широкой по­лосой пропускания и совершенно плоской АЧХ, бесконечным входным со­противлением, нулевым выходным сопротивлением и полным отсутстви­ем дрейфа нуля. На практике операционный усилитель имеет следующие свойства:

1) очень высокий коэффициент усиления (свыше 50000);

2) очень широкую полосу пропускания и плоскую АЧХ;

3) очень высокое входное сопротивление;

4) очень низкое выходное сопротивление;

5) очень слабый дрейф нуля.

Рис. 31.1.

На рис. 31.1 показано условное обозначение операционного усилителя. ОУ имеет два входа: инвертирующий вход (-), сигнал на котором нахо­дится в противофазе с выходным сигналом, и неинвертирующий вход (+), сигнал на котором совпадает по фазе с выходным сигналом.

Применения

Диапазон применений ОУ исключительно широк. Он может использо­ваться в качестве инвертирующего, неинвертирующего, суммирующего и дифференциального усилителей, как повторитель напряжения, интегра­тор и компаратор. Внешние компоненты, подключаемые к ОУ, опреде­ляют его конкретное применение. Ниже рассматриваются некоторые из этих применений.

На рис. 31.2 показано применение ОУ в качестве инвертирующего уси­лителя. Поскольку ОУ обладает очень большим (почти бесконечным) коэффициентом усиления, то сигнал на его выходе вырабатывается при очень малом входном сигнале. Это означает, что инвертирующий вход ОУ (точку Р) можно считать виртуальной (мнимой) землей, т. е. точкой с практически нулевым потенциалом. Для получения коэффициента усиления ОУ требуемого уровня вводится очень глубокая отрицательная связь через резистор обратной связи R oc . Коэффициент усиления инвер­тирующего усилителя (рис. 31.2) можно рассчитать по формуле

Отрицательный знак указывает на инвертирование входного сигнала при его усилении.


Рис. 31.2.

Пример

Полагая R 1 = 1 кОм и R oc = 2,2 кОм, рассчитать коэффициент усиления и выходное напряжение инвертирующего усилителя, если на его вход подано на­пряжение 50 мВ.

Решение

Коэффициент усиления

Выходное напряжение = -2, 2 · 50 мВ = -110 мВ.

Суммирующий усилитель (рис. 31.3) вырабатывает выходное напряже­ние, величина которого пропорциональна сумме входных напряжений V 1 и V 2 . Для входного напряжения V 1 коэффициент усиления G V = - R oc / R 1 , а для входного напряжения V 2 G V = - R oc / R 1 .

Например, если R oc = R 1 = R 2 , то коэффициент усиления для обоих входов равен -5 кОм / 5 к0м = -1. Пусть V 1 = 1 В и V 2 = 2 В, тогда вклад в выходное напряжение, связанный с V 1 , составляет 1 · (-1) = -1 В, а вклад, связанный с V 2 , составляет 2 · (-1) = -2 В. Следовательно, полное выходное напряжение равно V вых = -1 - 2 = -3 В.

Пример 1

На входы суммирующего ОУ, показанного на рис. 31.4, подаются напряжения V 1 = 20 мВ и V 2 = -10 мВ. Рассчитайте выходное напряжение V вых .


Рис. 31.3.


Рис. 31.4.

Решение

Выходное напряжение для V 1 = -5/1 · 20 = -100 мВ.

Выходное напряжение для V 2 = -5/5 · (-10) = +10мВ.

Следовательно, полное выходное напряжение V вых = -100 + 10 = -90 мВ.

В этом случае операционный усилитель охвачен 100%-ной отрицательной обратной связью (рис. 31.5) и имеет результирующий коэффициент уси­ления, равный 1. Заметим, что выходной и входной сигналы повторителя напряжения совпадают по фазе.

Напряжение смещения

При нулевом входном сигнале выходной сигнал идеального ОУ равен ну­лю. На практике это не так: отличный от нуля сигнал (ток или напря­жение) присутствует на выходе ОУ даже при нулевом входном сигнале. Чтобы добиться нулевого выходного сигнала при нулевом входном, на вход ОУ подается входной ток смещения или напряжение смещения та­кой величины и полярности, чтобы выходной сигнал, соответствующий входному сигналу смещения, компенсировал исходный мешающий выход­ной сигнал.

Входной ток смещения обычно устанавливается с помощью дополни­тельного резистора R 2 , подключаемого к неинвертирующему входу ОУ, как показано на рис. 31.6.


Рис. 31.5. Повторитель напряже­ния. Рис. 31.6

Оптимальное сопротивление этого резистора определяется по формуле

Обычно, если коэффициент усиления больше четырех, номиналы рези­сторов R 2 и R 1 выбирают одинаковыми. Введение резистора R 2 не изме­няет коэффициент усиления инвертирующего усилителя, он по-прежнему остается равным - R oc / R 1 . Как мы увидим позже, в некоторых ИС преду­сматриваются выводы для установки нулевого напряжения на выходе ОУ.

Неинвертирующий усилитель

В этом случае входной сигнал подается на неинвертирующий вход ОУ, как показано на рис. 31.7.

Для выражения напряжения U ВЫХ необходимо знать длительность действия входного сигнала. Напряжение на разряженном конденсаторе составит:

U С = I 0 t 1 /C. (6.16)

где I 0 - ток через конденсатор; t 1 – постоянная времени интегрирования.

Для положительного напряжения U ВХ имеем: I ВХ = U ВХ /R.

Поскольку I ВЫХ = I 0 = I ВХ, то с учетом инверсии получим

U ВЫХ = - (1 / RC) ∫U ВХ dt + U Со (6.17)

Из соотношения следует, что U ВЫХ определяется интегралом (с обратным знаком) от U ВХ в интервале t o ÷t 1 , умноженном на масштабный коэффициент

(1 / RC); где U С o – напр. на конденсаторе в момент времени t o .

Недостаток схемы (рис. 6.2): если напряжение U ВХ на входе нарастает медленно, то U ВЫХ будет уменьшаться до тех пор, пока не достигнет величины отрицательного напряжения -U НАС насыщения ОУ. Это происходит потому, что по постоянному току интегратор работает как усилитель с разомкнутой петлей ОС (А→∞), т.к. сопротивление Х C по постоянному току стремится к максимуму

А = Х C /R 1 = (1/ω∙C)/R 1 . * (6.18)

Реальная схема интегратора способна пропускать постоянный ток с максимальным коэффициентом усиления.

С ростом частоты входного сигнала передаточная функция падает и К ≈ 1 за частотой среза (f СР).

Передаточная характеристика схемы в комплексной форме имеет вид:

W (ρ ) = -1/(ρ ∙R 1 ∙C 1) (6.19)

где ρ = j∙ω - оператор Лапласа.

и показывает, что U ВЫХ равно интегралу по времени от входного напряжения, взятого с обратным знаком. Если R ВХ > R 1 и К > 1, то

W (p) = - К/[(ρ R 1 ∙C 1)(К+1)] (6.20)

Чтобы понять, почему схема интегрирует, приведем некоторые соотношения, вытекающие из определения С. Величину С можно определить С = Q/U.

где Q – заряд; U – приложенное напряжение. Отсюда следует, что Q = C∙U и изменение заряда за единицу времени (т.е. ток через конденсатор) составит

i C = dQ/dt = C(dU/dt) (6.21)

Если ОУ близок к идеальному, т.е. i СМ = 0, А→∞ (без ОС) и U Диф = 0, то

i r = i С. Из соотношения (6.20) получим i С = dQ/dt = C∙(dU С /dt) = i r .

Ввиду того, что U r = 0, и U С = -U ВЫХ, то величина тока составит:

i C = -С∙dU Вых /dt = U 1 /R = i r . (6.22)

Разрешив это уравнение относительно dU ВЫХ, найдем

dU ВЫХ = - (1 / RC) ∫U ВХ dt. (6.23)

Пределами интегрирования является время t 0 и t 1 . Для вычисления интеграла от изменяющегося напряжения, надо выразить напряжение как функцию времени.

Однозвенный интегратор ведет себя как инерционное звено первого порядка (рис. 6.3). Если на входе в момент времени t = 0 напряжение U ВХ изменится скачком от 0 до значения U ВХ ≠0, то U Вых. изменится по закону (рис. 6.3).

U Вых.(t) = -U ВХ К(1- е - t/ RC)+U Вых.(0) е - t/ RC (6.24)

где RC = τ Э – эквивалентная постоянная времени

U Вых.(0) – начальное выходное напряжение при t = 0.

T/RC = -t/τ Э – эквивалентный коэфф. усиления.

На выходе напряжение изменяется по экспоненциальному закону для интегрирующей RC цепи.

Если время Т на участке (t 1 ÷t 2), в течение которого развивается эта экспонента, много меньше постоянной времени τ Э, то начальный участок экспоненты мало отличается от прямой линии. Если на вход интегратора подать сигнал sin частоты f Мин, то погрешность интегратора мала; а при f Мах – интегрирование максимально, т.к. “С” шунтирует выход и К U ОУ падает по экспоненте. При подаче на вход схемы прямоугольного сигнала на выходе будет формироваться пилообразное напр. при 1/f = Т > τ Э.

Пример: Определить величину и форму сигнала U ВЫХ интегратора через время t 1 = 3 мс, если на его вход поступает ступенчатый сигнал прямоугольной формы. Пусть : R 1 – 1 мОм; С 1 = 0,1 мкФ; U ВХ = 1В.

Решение : А) Записывая входной ступенчатый сигнал как функцию времени, получим U 1 = U, при t 1 ≥ t 0 , и U 1 = 0, при t 1 < t 0 .

Используя первое условие, интегрируем и получаем

U ВЫХ = -(1 / RC) ∫U 1 dt.= -(1 / RC)U 1 ∆t (6.25)

Изменение U ВЫХ во времени представляет собой наклонную прямую с полярностью, противоположной полярности U ВХ.

Для прям. имп. результат интегрирования имеет вид U ВЫХ = -(1 / RC)U 1 ∆t.

Б) Найдем значение U ВЫХ в пределах от t 0 до t 1 = 3 мс.

t1=3 мс 1 3 мс

U ВЫХ = -(1 / RC)U 1 t | = - ------------- 1 В | = - 10*1 В *0,003 С = 0,03 В = 30 мВ.

tо 1 мом * 0,1 мкф 0

Ошибку интегрирования можно уменьшить введением в цепь ООС параллельно конденсатору – сопротивление R ОС. Шунтирование цепи ООС через R ОС позволяет на НЧ ограничить напряжение ошибки.

ΔU Вых. = (R ОС /R 1)∙U СДВ, вместо ΔU Вых. = А∙U СДВ. (6.26)

Такое шунтирование ограничивает снизу область частот, в которой происходит интегрирование.

Например, на частоте f РАБ = 3/(2π∙R ОС C), точность интегрирования = 5%; увеличение рабочей частоты

f > 1/(2π∙R ОС ∙C) приводит к увеличению точности.

При введении R ОС расширяется диапазон постоянного коэффициента усиления на НЧ. Схему суммирующего интегратора можно выполнить в инверсном и прямом включении (рис.6.4,а):

U ВЫХ = - (1 / RC) ∫(U 1 +U 2 +U 3)dt. (6.27)

Если R 1 = R 2 = R 3 , и i C = i·R 1 = i·R 2 = i·R 3 , то выражение имеет вид

∆U ВЫХ = -(U 1 +U 2 +U 3)/(R 1 ·C). (6.28)

(отношение U/t – есть скорость нарастания выходного напряжения)

Если С включить последовательно с R ОС (рис. 6.4,б) то U ВЫХ оказывается линейной функцией U ВХ и интеграла по времени от U ВХ. Передаточная функция схемы:

U ВЫХ = [-(R ОС /R)U 1 ]-(1 / RC) ∫U 1 dt. (6.29)

Дифференциальная схема (рис. 6.4,в) формирует интеграл от разности 2-х вх-х сигналов:

U ВЫХ = (1 / RC)∫ (U 2 -U 1)dt. (6.30)

Энциклопедичный YouTube

    1 / 1

    Динамичный интегратор «Энвижн Груп»

Субтитры

Математическое описание

Математическая модель интегратора имеет вид:

y (t) = k ∫ 0 t 1 x (t) d t + y 0 {\displaystyle y(t)=k\int \limits _{0}^{t_{1}}x(t)\,dt+y_{0}} , где x (t) {\displaystyle x(t)} - входная функция времени, y (t) {\displaystyle y(t)} - выходная функция времени - результат интегрирования за время от до t = t 1 {\displaystyle t=t_{1}} , k {\displaystyle k} - коэффициент пропорциональности, имеет размерность обратную времени, y 0 {\displaystyle y_{0}} - начальное значение выходной переменной в момент времени t = 0 {\displaystyle t=0} .

Типы

Аналоговые

В этих приборах входная величина представлена в аналоговом виде, но выходная величина не обязательно аналоговая, даже чаще представлена в цифровом виде, например, в бытовых счетчиках.

Механические вычислительные интеграторы

Исторически первые интеграторы для вычислений. Представляли собой механические устройства, где величины представлялись в виде углов поворотов и угловых скоростей различных валов, шестерён, фигурных кулачков для вычисления функций. В годы Первой мировой войны широко использовались в приборах управления стрельбой, например, корабельных орудий и приборах управления зенитным огнём .

Со временем в подобные вычислители стали вводить различные электромеханические устройства, электрические автоматические следящие системы. Расцвет таких вычислителей с интеграторами пришёлся на годы Второй мировой войны и первые послевоенные годы. Например, вычислители автоматических оптических бомбометательных прицелов бомбардировщиков B-29 (в прицеле ОБП-48 Ту-4) были электромеханическими.

В различные приборы учета расхода и сейчас входят механические интеграторы в виде механических счётчиков - нескольких сцеплённых счётных цифровых колец.

Пневматические интеграторы

Принцип действия этих интеграторов основан на вытеснении жидкости из мерного объёма, как, например в мерных газовых бюретках, всплывании мерных сосудов или перемещений поршня, снабжённого проградуированной шкалой . В этих приборах выполняется интегрирование объёмного расхода газа.

Гидравлические интеграторы

По сути объём жидкости в некотором сосуде является интегралом от расхода жидкости в этот сосуд. Если снабдить сосуд шкалой, проградуированной, например, в единицах объёма, то получается простейший интегратор расхода жидкости.

Такой интегратор применялся в водяных часах - клепсидре , изобретённых ещё в античные времена .

Электронные аналоговые интеграторы

Сейчас это наиболее распространённый тип интеграторов. Мало типов радиотехнических или электронных устройств, где бы не применялись такие интеграторы. Схемотехнически строится на активных и пассивных компонентах. В зависимости от конкретной задачи, обеспечения нужной точности интегрирования, удобства применения, стоимости, строится по схемам различной сложности.

В простейшем случай представляет собой RC-фильтр нижних частот - соединение конденсатора и резистора как показано на рисунке. Дифференциальное уравнение, описывающее эту цепь:

I = C d U a d t = U e − U a R {\displaystyle I=C{\frac {dU_{a}}{dt}}={\frac {U_{e}-U_{a}}{R}}} ,

где I {\displaystyle I} - ток цепи, входной ток, C {\displaystyle C} - ёмкость конденсатора, R {\displaystyle R} - сопротивление резистора, - входное напряжение интегрирующей цепочки, U a {\displaystyle U_{a}} - выходное напряжение.

Общее решение этого уравнения при произвольном изменении U e {\displaystyle U_{e}} :

U a (t) = 1 R C ∫ − ∞ t U e (τ) e − (τ − t) / R C d τ {\displaystyle U_{a}(t)={\frac {1}{RC}}\int \limits _{-\infty }^{t}{U_{e}({\tau })}e^{-(\tau -t)/RC}\,d{\tau }} .

Произведение R C = T {\displaystyle RC=T} имеет размерность времени и его называют постоянной времени RC -цепи. Из приведённой формулы очевидно, что простейшая RC -цепь только приближённо выполняет функцию интегрирования из-за экспоненциального сомножителя в подинтегральном выражении. Точность интегрирования повышается при стремлении постоянной времени к бесконечности, что стремит экспоненту к 1. Но при этом выходное напряжение стремится к 0. Таким образом, при повышении точности интегрирования существенно снижается выходное напряжение простейшей интегрирующей цепи, что во многих практических применениях неприемлемо.

Для устранения этого недостатка в схемы интеграторов включают активные электронные компоненты . Простейший интегратор такого типа можно построить на биполярном транзисторе , включённом по схеме с общим эмиттером . В этой схеме значительно повышена точность интегрирования, так как напряжение база-эмиттер при изменении входного тока базы изменяется незначительно и приблизительно равно напряжению на прямосмещённом полупроводниковом p-n переходе . Если входное напряжение база-эмиттер пренебрежимо мало по сравнению с входным напряжением, то точностные свойства такого интегратора приближаются к свойствам идеального интегратора. Нужно отметить, что этот интегратор инвертирующий, то есть при подаче положительного напряжения на вход выходной сигнал будет уменьшаться.

Дальнейшее повышение точности электронных аналоговых интеграторов можно достичь применяя в качестве активных компонентов операционные усилители (ОУ). Упрощённая схема такого интегратора приведена на рисунке. Идеальный ОУ имеет бесконечный коэффициент усиления и бесконечное входное сопротивление (нулевой входной ток), современные реальные ОУ по этим параметрам приближаются к идеальным - имеют коэффициент усиления более нескольких сотен тысяч и входные токи менее 1 нА и даже пА. Поэтому при упрощенном анализе цепей с ОУ обычно допускают, что ОУ идеальный.

Цифровые интеграторы

В этих интеграторах и входной и выходной сигналы представлены в виде цифровых кодов. По своей сути являются сумматорами с накоплением. На псевдокоде их работу можно описать так:

Выход_интегратора:= Выход_интегратора + Вход * Интервал_выборки

Интервал выборки - время от момента получения предыдущего значения до момента получения текущего значения. Не обязательно, чтобы интервал выборки являлся истинным временем. При математическом моделировании реальных процессов (физических, биологических, др.) это может быть масштабированный временной интервал (растянутый или, наоборот, сжатый относительно истинного моделируемого времени) или даже величина невременно́й природы.

Цифровые интеграторы могут быть построены как аппаратно - в виде сумматоров с обратной связью, так и программно.

При аппаратной реализации интегратора по типу сумматора различают:

  • интегратор с параллельным переносом;
  • интегратор с последовательным переносом;
  • интегратор следящий.

Применение интеграторов

Трудно перечислить все области использования интеграторов, вот некоторые из них.

  • В инерциальных навигационных системах, например, летательных и космических аппаратов, боевых ракет. Двойное интегрирование сигналов датчиков ускорений и датчиков угловых ускорений позволяет вычислить координаты объекта и направления осей объекта не прибегая к внешним наблюдениям.
  • При учёте потребления веществ, сыпучих, жидких и газообразных сред.
  • Гутников В. С. Интегральная электроника в измерительных устройствах. 2-е изд., перераб. и доп. Л.: Энергоатомиздат. Ленингр. отделение, 1988. - 304 с.: илл.
  • Новицкий П. В. , Кнорринг В. Г. , Гутников В. С. Цифровые приборы с частотными датчиками. Л., «Энергия», 1970. - 424 с. илл.
  • Боярченков М. А., Черкашина А. Г. Магнитные элементы автоматики и вычислительной техники. Учебное пособие для студентов высших учебных заведений по специальности «Автоматика и телемеханика» вузов. М., «Высшая школа», 1976. - 383 с. илл.
  • Степаненко И. П. Основы теории транзисторов и транзисторных схем, изд. 3-е, перераб. и доп. М., «Энергия», 1973. - 608 с. илл.

У интегратора форма выходного напряжения представляет собой интеграл от формы входного напряжения. Схема идеального интегратора на ОУ показана на рис. 54.

Согласно второму правилу ОУ i вх » i С. Ток конденсатора и напряжение на нем связаны соотношением

Поскольку согласно рис. 54

получаем

.

Согласно правилу 1 и и » и н. Поскольку и н = 0, получаем

, или .

Интегрируя обе части уравнения по времени, получаем

где В – постоянная интегрирования, т. е. начальное напряжение на конденсаторе (U C 0) в момент времени t = 0;

t = R 1 C – постоянная времени интегрирования.

Рис. 55

Таким образом, выходное напряжение интегратора (рис. 1) равно интегралу от входного напряжения и обратно пропорционально постоянной времени интегрирования.

Постоянное напряжение на выходе интегратора будет даже тогда, когда входное напряжение равно нулю. При отсутствии входного напряжения интегратор работает как усилитель без обратной связи, поскольку конденсатор препятствует протеканию тока от выхода к инверсному входу. Тем не менее, конденсатор все время заряжается малыми токами дрейфа и смещения, что приводит к усилению напряжения ошибки. Поэтому в схемах реальных интеграторов (рис. 55) параллельно конденсатору включают резистор (R2), который обеспечивает путь для протекания постоянного тока, что позволяет минимизировать напряжение ошибки. Кроме того, с помощью этого резистора ограничивается коэффициент усиления на низких частотах. Резистор R3 введен в схему для компенсации дрейфа ОУ.

Коэффициент передачи идеального интегратора (рис. 54) определяется как

,

т. е. он обратно пропорционален частоте (рис. 56).

Рис. 56 Рис. 57

Для реального интегратора (рис. 56) коэффициент передачи имеет вид

.

ЛАХ реального интегратора показана на рис. 57.

В реальном интеграторе на частотах, при которых реактивное сопротивление конденсатора Х С сравнимо с сопротивлением R 2 , общий импеданс обратной связи не будет преимущественно емкостным, что не даст точного интегрирования. В общем случае, точное интегрирование начинается на частотах, значительно превышающих частоту, при которой Х С = R 2 . Таким образом, для точного интегрирования необходимо выполнение условия

Определим критическую частоту, при которой Х С = R 2

Эта частота определяет частоту излома ЛАХ реального интегратора (рис. 57).

На частотах, меньших f 0 , когда коэффициент усиления постоянен и равен (–R 2 /R 1), схема не работает как интегратор. На частотах, превышающих f 0 , спад коэффициента усиления составляет 20 дБ/дек, т. е. схема работает как интегратор до частоты, при которой коэффициент передачи становится равным нулю.

Порядок расчета интегратора. Для расчета интегратора (рис. 55) необходимо задать:

† амплитуду входного напряжения (U вх max);

† частоту, с которой необходимо начать интегрировать входной сигнал (f );

† частоту (f 1), на которой амплитуда входного сигнала должна быть ослаблена до заданного уровня (U f 1 max).

Расчет производится в следующем порядке.

² Выбираем емкость конденсатора С в диапазоне (0,01…1) мкФ.

² Выбираем критическую частоту f 0 на одну декаду ниже f .

² Находим сопротивление резистора R2

.

² Определяем сопротивление резистора R1 таким, чтобы на частоте f 1

.

На частоте f 1 (во много раз большей f 0) влиянием резистора R2 можно пренебречь. Поэтому в этом случае применимо выражение для определения коэффициента передачи идеального интегратора

,

.

Порядок выполнения работы

1. Получить задание на расчет интегратора– значения U вх max , f , f 1 и U f 1 max .

2. Подобрать емкость конденсатора С в диапазоне (0.01...1 мкФ).

а б
Рис. 62

4. Собрать схему интегратора (рис. 63). Ко входу интегратора подключить генератор синусоидальных сигналов (ЗГ). Установить частоту ЗГ 20 Гц. Включить питание стенда. Установить на выходе интегратора напряжение максимальной амплитуды без искажений. Изменяя частоту ЗГ от 20 Гц до 220 кГц и поддерживая постоянной амплитуду входного напряжения (U вх), снять ЛАХ интегратора. Результаты занести в таблицу 5. Отключить питание стенда. По данным из таблицы 5 построить ЛАХ интегратора и зависимость и вых = j(f ).