Тарифы Услуги Сим-карты

Волокно оптические линии связи. Обоснование выбора волоконно-оптических линий связи

Оптика открывает широкие возможности там, где требуются высокоскоростные коммуникации с высокой пропускной способностью. Это хорошо себя зарекомендовавшая, понятная и удобная технология. В АудиоВизуальной области она открывает новые перспективы и предоставляет решения, недоступные с помощью других методов. Оптика проникла во все ключевые направления — системы наблюдения, диспетчерские и ситуационные центры, на военные и медицинские объекты, в зоны с экстремальными условиями эксплуатации. ВОЛС обеспечивают высокую степень защиты конфиденциальной информации, позволяют передавать несжатые данные типа графики с высоким разрешением и видео с точностью до пикселя. Новые стандарты и технологии ВОЛС. Волокно — будущее СКС(структурированных кабельных систем)? Строим сеть предприятия.


Оптоволоконный (он же волоконно-оптический) кабель - это принципиально иной тип кабеля по сравнению с рассмотренными двумя типами электрического или медного кабеля. Информация по нему передается не электрическим сигналом, а световым. Главный его элемент - это прозрачное стекловолокно, по которому свет проходит на огромные расстояния (до десятков километров) с незначительным ослаблением.


Структура оптоволоконного кабеля очень проста и похожа на структуру коаксиального электрического кабеля (рис. 1.). Только вместо центрального медного провода здесь используется тонкое (диаметром около 1 - 10 мкм) стекловолокно, а вместо внутренней изоляции - стеклянная или пластиковая оболочка, не позволяющая свету выходить за пределы стекловолокна. В данном случае речь идет о режиме так называемого полного внутреннего отражения света от границы двух веществ с разными коэффициентами преломления (у стеклянной оболочки коэффициент преломления значительно ниже, чем у центрального волокна). Металлическая оплетка кабеля обычно отсутствует, так как экранирование от внешних электромагнитных помех здесь не требуется. Однако иногда ее все-таки применяют для механической защиты от окружающей среды (такой кабель иногда называют броневым, он может объединять под одной оболочкой несколько оптоволоконных кабелей).

Оптоволоконный кабель обладает исключительными характеристиками по помехозащищенности и секретности передаваемой информации. Никакие внешние электромагнитные помехи в принципе не способны исказить световой сигнал, а сам сигнал не порождает внешних электромагнитных излучений. Подключиться к этому типу кабеля для несанкционированного прослушивания сети практически невозможно, так как при этом нарушается целостность кабеля. Теоретически возможная полоса пропускания такого кабеля достигает величины 1012 Гц, то есть 1000 ГГц, что несравнимо выше, чем у электрических кабелей. Стоимость оптоволоконного кабеля постоянно снижается и сейчас примерно равна стоимости тонкого коаксиального кабеля.

Типичная величина затухания сигнала в оптоволоконных кабелях на частотах, используемых в локальных сетях, составляет от 5 до 20 дБ/км, что примерно соответствует показателям электрических кабелей на низких частотах. Но в случае оптоволоконного кабеля при росте частоты передаваемого сигнала затухание увеличивается очень незначительно, и на больших частотах (особенно свыше 200 МГц) его преимущества перед электрическим кабелем неоспоримы, у него просто нет конкурентов.




Волоконно-оптические линии связи (ВОЛС) позволяют передавать аналоговые и цифровые сигналы на дальние расстояния, в некоторых случаях - на десятки километров. Они также используются на малых, более «управляемых» расстояниях, например, внутри зданий. Примеры решений по построению СКС (структурированных кабельных систем) для построения сети предприятия находятся здесь: Строим сеть предприятия: Схема построения СКС - Оптика по горизонтали. , Строим сеть предприятия: Схема построения СКС - Централизованная оптическая кабельная система. , Строим сеть предприятия: Схема построения СКС - Зоновая оптическая кабельная система.

Преимущества оптики хорошо известны: это иммунитет к шумам и помехам, малый диаметр кабелей при огромной пропускной способности, устойчивость к взлому и перехвату информации, отсутствие нужды в ретрансляторах и усилителях и т.д.
Когда-то были проблемы с оконечной заделкой оптических линий, но сегодня они в основном решены, так что работать с этой технологией стало гораздо проще. Есть, однако, ряд вопросов, которые надо рассматривать исключительно в контексте областей применения. Как и в случае с передачей по «меди» или радиоканалу, качество волоконно-оптической связи зависит от того, насколько хорошо согласованы выходной сигнал передатчика и входной каскад приемника. Некорректная спецификация мощности сигнала приводит к увеличению коэффициента битовых ошибок при передаче; мощность слишком большая — и усилитель приемника «перенасыщается», слишком малая — и возникает проблема с шумами, поскольку они начинают мешает полезному сигналу. Вот два наиболее критичных параметра ВОЛС: выходная мощность передатчика и потери при передаче — затухания в оптическом кабеле, который соединяет передатчик и приемник.

Существуют два различных типа оптоволоконного кабеля:

* многомодовый или мультимодовый кабель, более дешевый, но менее качественный;
* одномодовый кабель, более дорогой, но имеет лучшие характеристики по сравнению с первым.

Тип кабеля определят количество режимов распространения или «путей», по которым свет проходит внутри кабеля.

Многомодовый кабель , наиболее часто используемый в небольших промышленных, бытовых и коммерческих проектах, имеет самый высокий коэффициент ослабления и работает только на коротких расстояниях. Более старый тип кабеля, 62,5/125 (эти цифры характеризуют внутренний/ внешний диаметры световода в мкм), часто называемый «OM1», имеет ограниченную пропускную способность и используется для передачи данных со скоростью до 200 Мбит/с.
Недавно стали применять кабели 50/125 «OM2» и «OM3», предлагающие скорости 1Гбит/с на расстояниях до 500 м и 10 Гбит/с на до 300 м.

Одномодовый кабель используется в высокоскоростных соединениях (выше 10 Гбит/с) или на длинных дистанциях (до 30 км). Для передачи аудио и видео наиболее целесообразным является применение кабелей «OM2».
Вице-президент европейского отделения компании Extron по маркетингу Райнер Штайль отмечает, что оптоволоконные линии стали более доступными, их чаще применяют для организации сети внутри зданий — это ведет к росту применения АВ-систем на основе оптических технологий. Штайль говорит: «В плане интеграции ВОЛС уже сегодня обладают несколькими ключевыми преимуществами.
По сравнению с аналогичной медно-кабельной инфраструктурой оптика позволяет использовать одновременно и аналоговые, и цифровые видеосигналы, обеспечивая единое системное решение для работы с существующими, а также с перспективными видеоформатами.
Кроме того, т.к. оптика предлагает очень высокую пропускную способность, тот же кабель будет работать с большими разрешениями и в будущем. ВОЛС легко адаптируется к новым стандартам и форматам, появляющимся в процессе развития АВ-технологий».

Другим признанным экспертом в этой области является Джим Хейз, президент Американской Волоконно-Оптической Ассоциации, созданной в 1995 году, способствующей росту профессионализма в области волоконной оптики и, между прочим, насчитывающей в своих рядах более 27000 квалифицированных специалистов по установке и внедрению оптических систем. Он говорит о росте популярности ВОЛС следующее: «Выгода - в быстроте инсталляции и дешевизне комплектующих. Растет применение оптики в сфере телекоммуникаций, особенно в системах Fiber-To-The-Home* (FTTH) с поддержкой беспроводного доступа , а также в сфере безопасности (камеры наблюдения).
Похоже, что сегмент FTTH растет быстрее других рынков во всех развитых странах. Здесь, в США, на оптике построены сети управления дорожным движением, муниципальных служб (администрация, пожарные, полиция), учебных заведений (школы, библиотеки).
Растет количество пользователей Интернет — и у нас быстро строятся новые центры обработки данных (ЦОД), для взаимосвязи которых используется оптоволокно. Ведь при передаче сигналов со скоростью 10 Гбит/с затраты аналогичны «медным» линиям, но оптика потребляет значительно меньше энергии. Долгие годы приверженцы волокна и меди «бились» друг с другом за приоритет в корпоративных сетях. Зря потраченное время!
Сегодня связь по WiFi стала настолько хорошей, что пользователи нетбуков, ноутбуков и iPhon’ов отдали предпочтение мобильности. И теперь в корпоративных локальных сетях оптику используют для коммутации с точками беспроводного доступа».
Действительно, областей применения оптики становится все больше, в основном, из-за указанных выше преимуществ перед медью.
Оптика проникла во все ключевые направления — системы наблюдения, диспетчерские и ситуационные центры, на военные и медицинские объекты, в зоны с экстремальными условиями эксплуатации. Снижение стоимости оборудования позволило использовать оптические технологии в традиционно «медных» областях - в конференц-залах и на стадионах, в розничной торговле и на транспортных узлах.
Райнер Штайль из Extron комментирует: «Волоконно-оптическое оборудование широко используется в медицинских учреждениях, например, для коммутации локальных видеосигналов в операционных. Оптические сигналы не имеют никакого отношения к электричеству, что идеально в плане обеспечения безопасности пациентов. ВОЛС прекрасно подходят и для медицинских учебных заведений, где необходимо распределять видеосигналы из нескольких операционных в несколько аудиторий, чтобы студенты могли наблюдать за ходом операции «вживую».
Волоконно-оптическим технологиям отдают предпочтение и военные, так как передаваемые данные трудно или даже невозможно «считать» извне.
ВОЛС обеспечивают высокую степень защиты конфиденциальной информации, позволяют передавать несжатые данные типа графики с высоким разрешением и видео с точностью до пикселя.
Возможность передачи на дальние расстояния делает оптику идеально подходящей для систем Digital Signage в крупных торговых центрах, где длина кабельных линий может достигать нескольких километров. Если для витой пары расстояние ограничено 450 метрами, то для оптики и 30 км не предел».
Что касается использования оптоволокна в АудиоВизуальной индустрии, то прогрессу здесь способствуют два основных фактора. Во-первых, это интенсивное развитие IP-основанных систем передачи аудио- и видео, которые опираются на сети с высокой пропускной способностью — для них ВОЛС подходят идеально.
Во-вторых, повсеместное требование передавать видео HD и компьютерные изображения HR на расстояния большие, чем 15 метров — а это предел для передачи HDMI по меди.
Есть случаи, когда видеосигнал просто невозможно «раздать» по медному кабелю и необходимо применить оптоволокно — такие ситуации стимулируют разработку новой продукции. Бьёнг Хо Пак, вице-президент по маркетингу компании Opticis, поясняет: «Для полосы данных UXGA, 60 Гц, и 24-битового цвета требуется общая скорость 5 Гбит/с, или 1,65 Гбит/с на каждый цветовой канал. HDTV имеет несколько меньшую пропускную способность. Производители «подталкивают» рынок, но и рынок одновременно «подталкивает» игроков использовать изображения более высокого качества. Есть отдельные области применения, где требуются дисплеи, способные отображать 3-5 млн пикселей или 30- 36-битовую глубину цвета. В свою очередь, для этого потребуется скорость передачи около 10 Гбит/с».
Сегодня многие производители коммутационного оборудования предлагают версии видео-удлинителей (экстендеров) для работы с оптическими линиями. ATEN International , TRENDnet , Rextron , Gefen и другие выпускают различные модели для целого ряда видео- и компьютерных форматов.
При этом служебные данные — HDCP** и EDID*** — могут передаваться с помощью дополнительной оптический линии, а в некоторых случаях — по отдельному медному кабелю, связывающему передатчик и приемник.
В результате того, что формат HD стал стандартом для рынка вещания, на других рынках — инсталляционном, например — тоже стали применять защиту от несанкционированного копирования контента в форматах DVI и HDMI, — говорит Джим Джачетта, старший вице-президент по разработкам компании Multidyne. — С помощью выпускаемого нашей компании устройства HDMI-ONE пользователи могут отправить видеосигнал с DVD- или Blu-Ray плеера на монитор или дисплей, расположенный на расстоянии до 1000 метров. Ранее ни одно устройство, работающее с многомодовыми линиями, не поддерживало систему защиты от копирования HDCP».

Те, кто работает с ВОЛС, не должны забывать и о специфических инсталляционных проблемах - концевой заделке кабелей. В этом плане многие производители выпускают как собственно разъемы, так и монтажные наборы, включающие в себя специализированный инструмент, а также химические препараты.
Между тем, любой элемент ВОЛС, будь то удлинитель, разъем или место состыковки кабелей, должен с помощью оптического измерителя быть проверен на предмет ослабления сигнала - это необходимо для оценки общего бюджета мощности (power budget, основной расчётный показатель ВОЛС). Естественно, собрать разъемы волоконных кабелей можно и вручную, «на коленке», но действительно высокое качество и надежность гарантируется только при использовании готовых, произведенных на заводе «разделанных» кабелей, подвергнутых тщательному многоступенчатому тестированию.
Несмотря на огромную пропускную способность ВОЛС, у многих всё еще остаётся желание «впихнуть» в один кабель побольше информации.
Здесь развитие идет в двух направлениях — спектрального уплотнения (optical WDM), когда в один световод направляется несколько световых лучей с разными длинами волн, а другое - сериализация / десериализация данных (англ. SerDes), когда параллельный код преобразуется в последовательный и обратно.
При этом оборудование для спектрального уплотнения стоит дорого из-за сложного проектирования и применения миниатюрных оптических компонентов, но не увеличивает скорость передачи. Применяемые в оборудовании SerDes высокоскоростные логические устройства также увеличивают расходную часть проекта.
Кроме того, сегодня выпускается оборудование, позволяющее мультиплексировать и демультиплексировать из общего светового потока управляющие данные - USB или RS232/485. При этом световые потоки можно отправлять по одному кабелю в противоположных направлениях, хотя цена выполняющих эти «трюки» приборов обычно превышает стоимость дополнительного световода для возврата данных.

Оптика открывает широкие возможности там, где требуются высокоскоростные коммуникации с высокой пропускной способностью. Это хорошо себя зарекомендовавшая, понятная и удобная технология. В АудиоВизуальной области она открывает новые перспективы и предоставляет решения, недоступные с помощью других методов. По крайней мере, без значительных рабочих усилий и денежных затрат.

В зависимости от основной области применения волоконно-оптические кабели подразделяются на два основных вида:

Кабель внутренней прокладки:
При монтаже ВОЛС в закрытых помещениях обычно применяется Волоконно-оптический кабель с плотным буфером (для защиты от грызунов). Используется для построения СКС в качестве магистрального или горизонтального кабеля. Поддерживает передачу данных на короткие и средние расстояния. Идеально подходит для горизонтального каблирования.

Кабель внешней прокладки:

Волоконно-оптический кабель с плотным буфером, бронированный стальной лентой, влагостойкий. Применяется для внешней прокладки при создании подсистемы внешних магистралей и связывают между собой отдельные здания. Может прокладываться в кабельные каналы. Подходит для непосредственной укладки в грунт.

Внешний самонесущий оптоволоконный кабель:
Волоконно-оптический кабель самонесущий, со стальным тросиком. Применяется для внешннй прокладки на большие расстояния в рамках телефонных сетей. Поддерживает передачу сигналов кабельного телевидения, а также передачу данных. Подходит для прокладки в кабельной канализации и воздушной прокладки.

Преимущества ВОЛС:

  • Передача информации по ВОЛС имеет целый ряд достоинств перед передачей по медному кабелю. Стремительное внедрение в информационные сети Волс является следствием преимуществ, вытекающих из особенностей распространения сигнала в оптическом волокне.
  • Широкая полоса пропускания - обусловлена чрезвычайно высокой частотой несущей 1014Гц. Это дает потенциальную возможность передачи по одному оптическому волокну потока информации в несколько терабит в секунду. Большая полоса пропускания - это одно из наиболее важных преимуществ оптического волокна над медной или любой другой средой передачи информации.
  • Малое затухание светового сигнала в волокне. Выпускаемое в настоящее время отечественными и зарубежными производителями промышленное оптическое волокно имеет затухание 0,2-0,3 дБ на длине волны 1,55 мкм в расчете на один километр. Малое затухание и небольшая дисперсия позволяют строить участки линий без ретрансляции протяженностью до 100 км и более.
  • Низкий уровень шумов в волоконно-оптическом кабеле позволяет увеличить полосу пропускания, путем передачи различной модуляции сигналов с малой ибыточностью кода.
  • Высокая помехозащищенность. Поскольку волокно изготовлено из диэлектрического материала, оно невосприимчиво к электромагнитным помехам со стороны окружающих медных кабельных систем и электрического оборудования, способного индуцировать электромагнитное излучение (линии электропередачи, электродвигательные установки и т.д.). В многоволоконных кабелях также не возникает проблемы перекрестного влияния электромагнитного излучения, присущей многопарным медным кабелям.
  • Малый вес и объем. Волоконно-оптические кабели (ВОК) имеют меньший вес и объем по сравнению с медными кабелями в расчете на одну и ту же пропускную способность. Например, 900-парный телефонный кабель диаметром 7,5 см, может быть заменен одним волокном с диаметром 0,1 см. Если волокно “одеть” в множество защитных оболочек и покрыть стальной ленточной броней, диаметр такого ВОК будет 1,5 см, что в несколько раз меньше рассматриваемого телефонного кабеля.
  • Высокая защищенность от несанкционированного доступа. Поскольку ВОК практически не излучает в радиодиапазоне, то передаваемую по нему информацию трудно подслушать, не нарушая приема-передачи. Системы мониторинга (непрерывного контроля) целостности оптической линии связи, используя свойства высокой чувствительности волокна, могут мгновенно отключить “взламываемый” канал связи и подать сигнал тревоги. Сенсорные системы, использующие интерференционные эффекты распространяемых световых сигналов (как по разным волокнам, так и разной поляризации) имеют очень высокую чувствительность к колебаниям, к небольшим перепадам давления. Такие системы особенно необходимы при создании линий связи в правительственных, банковских и некоторых других специальных службах, предъявляющих повышенные требования к защите данных.
  • Гальваническая развязка элементов сети. Данное преимущество оптического волокна заключается в его изолирующем свойстве. Волокно помогает избежать электрических “земельных” петель, которые могут возникать, когда два сетевых устройства неизолированной вычислительной сети, связанные медным кабелем, имеют заземления в разных точках здания, например на разных этажах. При этом может возникнуть большая разность потенциалов, что способно повредить сетевое оборудование. Для волокна этой проблемы просто нет.
  • Взрыво- и пожаробезопасность. Из-за отсутствия искрообразования оптическое волокно повышает безопасность сети на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска.
  • Экономичность ВОЛС. Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличии от меди. В настоящее время стоимость волокна по отношению к медной паре соотносится как 2:5. При этом ВОК позволяет передавать сигналы на значительно большие расстояния без ретрансляции. Количество повторителей на протяженных линиях сокращается при использовании ВОК. При использовании солитонных систем передачи достигнуты дальности в 4000 км без регенерации (то есть только с использованием оптических усилителей на промежуточных узлах) при скорости передачи выше 10 Гбит/с.
  • Длительный срок эксплуатации. Со временем волокно испытывает деградацию. Это означает, что затухание в проложенном кабеле постепенно возрастает. Однако, благодаря совершенству современных технологий производства оптических волокон, этот процесс значительно замедлен, и срок службы ВОК составляет примерно 25 лет. За это время может смениться несколько поколений/стандартов приемо-передающих систем.
  • Удаленное электропитание. В некоторых случаях требуется удаленное электропитание узла информационной сети. Оптическое волокно не способно выполнять функции силового кабеля. Однако, в этих случаях можно использовать смешанный кабель, когда наряду с оптическими волокнами кабель оснащается медным проводящим элементом. Такой кабель широко используется как в России, так и за рубежом.

Однако оптоволоконный кабель имеет и некоторые недостатки:

  • Самый главный из них - высокая сложность монтажа (при установке разъемов необходима микронная точность, от точности скола стекловолокна и степени его полировки сильно зависит затухание в разъеме). Для установки разъемов применяют сварку или склеивание с помощью специального геля, имеющего такой же коэффициент преломления света, что и стекловолокно. В любом случае для этого нужна высокая квалификация персонала и специальные инструменты. Поэтому чаще всего оптоволоконный кабель продается в виде заранее нарезанных кусков разной длины, на обоих концах которых уже установлены разъемы нужного типа. Следует помнить, что некачественная установка разъема резко снижает допустимую длину кабеля, определяемую затуханием.
  • Также надо помнить, что использование оптоволоконного кабеля требует специальных оптических приемников и передатчиков, преобразующих световые сигналы в электрические и обратно, что порой существенно увеличивает стоимость сети в целом.
  • Оптоволоконные кабели допускают разветвление сигналов (для этого производятся специальные пассивные разветвители (couplers) на 2—8 каналов), но, как правило, их используют для передачи данных только в одном направлении между одним передатчиком и одним приемником. Ведь любое разветвление неизбежно сильно ослабляет световой сигнал, и если разветвлений будет много, то свет может просто не дойти до конца сети. Кроме того, в разветвителе есть и внутренние потери, так что суммарная мощность сигнала на выходе меньше входной мощности.
  • Оптоволоконный кабель менее прочен и гибок, чем электрический. Типичная величина допустимого радиуса изгиба составляет около 10 - 20 см, при меньших радиусах изгиба центральное волокно может сломаться. Плохо переносит кабель и механическое растяжение, а также раздавливающие воздействия.
  • Чувствителен оптоволоконный кабель и к ионизирующим излучениям, из-за которых снижается прозрачность стекловолокна, то есть увеличивается затухание сигнала. Резкие перепады температуры также негативно сказываются на нем, стекловолокно может треснуть.
  • Применяют оптоволоконный кабель только в сетях с топологией звезда и кольцо. Никаких проблем согласования и заземления в данном случае не существует. Кабель обеспечивает идеальную гальваническую развязку компьютеров сети. В будущем этот тип кабеля, вероятно, вытеснит электрические кабели или, во всяком случае, сильно потеснит их.

Перспективы развития ВОЛС:

  • В связи с ростом требований, предъявляемых новыми сетевыми приложениями, становится все более актуальным применение оптоволоконных технологий в структурированных кабельных системах. Каковы же преимущества и особенности использования оптических технологий в горизонтальной кабельной подсистеме, а также на рабочих местах пользователей?
  • Проанализировав изменения сетевых технологий за последние 5 лет, легко заметить, что медные стандарты СКС отставали от гонки "сетевых вооружений". Не успев инсталлировать СКС третьей категории, предприятиям приходилось переходить на пятую, сейчас уже и на шестую, а не за горами использование седьмой категории.
  • Очевидно, развитие сетевых технологий не остановится на достигнутом: гигабит на рабочее место вскоре станет стандартом де-факто, а впоследствии и де-юре, и для ЛВС (локальных вычислительных сетей) крупного или даже среднего предприятия 10 Гбит/с Etnernet не будет редкостью.
  • Поэтому очень важно использовать такую кабельную систему, которая позволила бы легко справляться с возрастающими скоростями сетевых приложений на протяжении как минимум 10 лет - именно такой минимальный срок службы СКС определен международными стандартами.
  • Более того, при изменении стандартов на протоколы ЛВСнеобходимо избегать повторной прокладки новых кабелей, которая раньше была причиной значительных расходов на эксплуатацию СКС и просто не допустима в будущем.
  • Только одна среда передачи в СКС удовлетворяет данным требованиям- оптика. Оптические кабели используются в телекоммуникационных сетях уже более 25 лет, в последнее время они также находят широкое применение в кабельном телевидении и ЛВС.
  • В ЛВС они в основном используются для построения магистральных кабельных каналов между зданиями и в самих зданиях, обеспечивая при этом высокую скорость передачи данных между сегментами этих сетей. Однако развитие современных сетевых технологий актуализирует использование оптоволокна как основной среды для подключения непосредственно пользователей.

Новые стандарты и технологии ВОЛС:

За последние годы на рынке появилось несколько технологий и продуктов, позволяющих значительно облегчить и удешевить использование оптоволокна в горизонтальной кабельной системе и подключение его к рабочим местам пользователей.

Среди этих новых решений прежде всего хочется выделить оптические разъемы с малым форм-фактором - SFFC (small-form-factor connectors), плоскостные лазерные диоды с вертикальным резонатором - VCSEL (vertical cavity surface-emitting lasers) и оптические многомодовые волокна нового поколения.

Следует отметить, что недавно утвержденный тип многомодового оптического волокна ОМ-3 обладает полосой пропускания более 2000 МГц/км на длине лазерного излучения 850 нм. Данный тип волокна обеспечивает последовательную передачу потоков данных протокола 10 Gigabit Ethernet на расстояние 300 м. Использование новых типов многомодового оптоволокна и 850-нанометровых VCSEL-лазеров обеспечивает наименьшую стоимость реализации 10 Gigabit Ethernet-решений.

Разработка новых стандартов оптоволоконных разъемов позволила сделать оптоволоконные системы серьезным конкурентом медным решениям. Традиционно оптоволоконные системы требовали в два раза большего числа разъемов и коммутационных шнуров, чем медные - в телекоммуникационных пунктах требовалась гораздо большая площадь для размещения оптического оборудования, как пассивного, так и активного.

Оптические разъемы с малым форм-фактором, представленные недавно целым рядом производителей, обеспечивают в два раза большую плотность портов, чем предыдущие решения, поскольку каждый такой разъем содержит в себе сразу два оптических волокна, а не одно, как ранее.

При этом уменьшаются размеры и оптических пассивных элементов - кроссов и т.д., и активного сетевого оборудования, что позволяет снизить в четыре раза расходы на установку (по сравнению с традиционными оптическими решениями).

Следует отметить, что американские органы стандартизации EIA и TIA в 1998 году приняли решение не регламентировать использование какого-либо определенного типа оптических разъемов с малым форм-фактором, что привело к появлению на рынке сразу шести типов конкурирующих решений в данной области: MT-RJ, LC, VF-45, Opti-Jack, LX.5 и SCDC. Также сегодня есть и новые разработки.

Наиболее популярным миниатюрным разъемом является разъем типа MT-RJ, который имеет один полимерный наконечник с двумя оптическими волокнами внутри. Его конструкция была спроектирована консорциумом компаний во главе с AMP Netconnect на основе разработанного в Японии многоволоконного разъема MT. AMP Netconnect на сегодня представила уже более 30 лицензий на производство данного типа разъема MT-RJ.

Своему успеху разъем MT-RJ во многом обязан внешней конструкции, которая схожа с конструкцией 8-контактного модульного медного разъема RJ-45. За последнее время характеристики разъема MT-RJ заметно улучшились - AMP Netconnect предлагает разъемы MT-RJ с ключами, предотвращающими ошибочное или несанкционированное подключение к кабельной системе. Кроме того, ряд компаний разрабатывает одномодовые варианты разъема MT-RJ.

Достаточно высоким спросом на рынке оптических кабельных решений пользуются разъемы LC компании Avaya (http://www.avaya.com). Конструкция этого разъема основана на использовании керамического наконечника с уменьшенным до 1,25 мм диаметром и пластмассового корпуса с внешней защелкой рычажного типа для фиксации в гнезде соединительной розетки.

Разъем выпускается как в симплексном, так и в дуплексном варианте. Основным преимуществом разъема LC являются низкие средние потери и их среднеквадратичное отклонение, которое составляет всего 0,1 дБ. Такое значение обеспечивает стабильную работу кабельной системы в целом. Для установки вилки LC применяются стандартная процедура вклеивания на эпоксидной смо ле и полировки. Сегодня разъемы нашли свое применение у производителей 10 Гбит/с-трансиверов.

Компания Corning Cable Systems (http://www.corning.com/cablesystems) производит одновременно как разъемы типа LC, так и MT-RJ. По ее мнению, индустрия СКС сделала свой выбор в пользу разъемов MT-RJ и LC. Недавно компания выпустила первый одномодовый разъем MT-RJ и UniCam-версии разъемов MT-RJ и LC, особенностью которых является малое время монтажа. При этом для установки разъемов типа UniCam нет необходимости использовать эпоксидный клей и поли

Волоконно-оптические линии связи - это вид связи, при котором информация передается по оптическим диэлектрическим волноводам, известным под названием "оптическое волокно".

Оптическое волокно в настоящее время считается самой совершенной физической средой для передачи информации, а также самой перспективной средой для передачи больших потоков информации на значительные расстояния. Основания так считать вытекают из ряда особенностей, присущих оптическим волноводам.

1.1 Физические особенности.

  1. Широкополосность оптических сигналов, обусловленная чрезвычайно высокой частотой несущей (Fo=10**14 Гц). Это означает, что по оптической линии связи можно передавать информацию со скоростью порядка 10**12 бит/с или Терабит/с. Говоря другими словами, по одному волокну можно передать одновременно 10 миллионов телефонных разговоров и миллион видеосигналов. Скорость передачи данных может быть увеличена за счет передачи информации сразу в двух направлениях, так как световые волны могут распространяться в одном волокне независимо друг от друга. Кроме того, в оптическом волокне могут распространяться световые сигналы двух разных поляризаций, что позволяет удвоить пропускную способность оптического канала связи. На сегодняшний день предел по плотности передаваемой информации по оптическому волокну не достигнут.
  2. Очень малое (по сравнению с другими средами) затухание светового сигнала в волокне. Лучшие образцы российского волокна имеют затухание 0.22 дБ/км на длине волны 1.55 мкм, что позволяет строить линии связи длиной до 100 км без регенерации сигналов. Для сравнения, лучшее волокно Sumitomo на длине волны 1.55 мкм имеет затухание 0.154 дБ/км. В оптических лабораториях США разрабатываются еще более "прозрачные", так называемые фторцирконатные волокна с теоретическим пределом порядка 0,02 дБ/км на длине волны 2.5 мкм. Лабораторные исследования показали, что на основе таких волокон могут быть созданы линии связи с регенерационными участками через 4600 км при скорости передачи порядка 1 Гбит/с.

1.2 Технические особенности.

  1. Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличие от меди.
  2. Оптические волокна имеют диаметр около 100 мкм., то есть очень компактны и легки, что делает их перспективными для использования в авиации, приборостроении, в кабельной технике.
  3. Стеклянные волокна - не металл, при строительстве систем связи автоматически достигается гальваническая развязка сегментов. Применяя особо прочный пластик, на кабельных заводах изготавливают самонесущие подвесные кабели, не содержащие металла и тем самым безопасные в электрическом отношении. Такие кабели можно монтировать на мачтах существующих линий электропередач, как отдельно, так и встроенные в фазовый провод, экономя значительные средства на прокладку кабеля через реки и другие преграды.
  4. Системы связи на основе оптических волокон устойчивы к электромагнитным помехам, а передаваемая по световодам информация защищена от несанкционированного доступа. Волоконно-оптические линии связи нельзя подслушать неразрушающим способом. Всякие воздействия на волокно могут быть зарегистрированы методом мониторинга (непрерывного контроля) целостности линии. Теоретически существуют способы обойти защиту путем мониторинга, но затраты на реализацию этих способов будут столь велики, что превзойдут стоимость перехваченной информации.

    Существует способ скрытой передачи информации по оптическим линиям связи. При скрытой передаче сигнал от источника излучения модулируется не по амплитуде, как в обычных системах, а по фазе. Затем сигнал смешивается с самим собой, задержанным на некоторое время, большее, чем время когерентности источника излучения.

    При таком способе передачи информация не может быть перехвачена амплитудным приемником излучения, так как он зарегистрирует лишь сигнал постоянной интенсивности.

    Для обнаружения перехватываемого сигнала понадобится перестраиваемый интерферометр Майкельсона специальной конструкции. Причем, видность интерференционной картины может быть ослаблена как 1:2N, где N - количество сигналов, одновременно передаваемых по оптической системе связи. Можно распределить передаваемую информацию по множеству сигналов или передавать несколько шумовых сигналов, ухудшая этим условия перехвата информации. Потребуется значительный отбор мощности из волокна, чтобы несанкционированно принять оптический сигнал, а это вмешательство легко зарегистрировать системами мониторинга.

  5. Важное свойство оптического волокна - долговечность. Время жизни волокна, то есть сохранение им своих свойств в определенных пределах, превышает 25 лет, что позволяет проложить оптико-волоконный кабель один раз и, по мере необходимости, наращивать пропускную способность канала путем замены приемников и передатчиков на более быстродействующие.

Есть в волоконной технологии и свои недостатки:

  1. При создании линии связи требуются высоконадежные активные элементы, преобразующие электрические сигналы в свет и свет в электрические сигналы. Необходимы также оптические коннекторы (соединители) с малыми оптическими потерями и большим ресурсом на подключение-отключение. Точность изготовления таких элементов линии связи должна соответствовать длине волны излучения, то есть погрешности должны быть порядка доли микрона. Поэтому производство таких компонентов оптических линий связи очень дорогостоящее.
  2. Другой недостаток заключается в том, что для монтажа оптических волокон требуется прецизионное, а потому дорогое, технологическое оборудование.
  3. Как следствие, при аварии (обрыве) оптического кабеля затраты на восстановление выше, чем при работе с медными кабелями.

Преимущества от применения волоконно-оптических линий связи (ВОЛС) настолько значительны, что несмотря на перечисленные недостатки оптического волокна, эти линии связи все шире используются для передачи информации.

2. Оптическое волокно

Промышленность многих стран освоила выпуск широкой номенклатуры изделий и компонентов ВОЛС. Следует заметить, что производство компонентов ВОЛС, в первую очередь оптического волокна, отличает высокая степень концентрации. Большинство предприятий сосредоточено в США. Обладая главными патентами, американские фирмы (в первую очередь это относится к фирме "CORNING") оказывают влияние на производство и рынок компонентов ВОЛС во всем мире, благодаря заключению лицензионных соглашений с другими фирмами и созданию совместных предприятий.

Важнейший из компонентов ВОЛС - оптическое волокно. Для передачи сигналов применяются два вида волокна: одномодовое и многомодовое. Свое название волокна получили от способа распространения излучения в них. Волокно состоит из сердцевины и оболочки с разными показателями преломления n1 и n2.

В одномодовом волокне диаметр световодной жилы порядка 8-10 мкм, то есть сравним с длиной световой волны. При такой геометрии в волокне может распространяться только один луч (одна мода).

В многомодовом волокне размер световодной жилы порядка 50-60 мкм, что делает возможным распространение большого числа лучей (много мод).

Оба типа волокна характеризуются двумя важнейшими параметрами: затуханием и дисперсией.

Затухание обычно измеряется в дБ/км и определяется потерями на поглощение и на рассеяние излучения в оптическом волокне.

Потери на поглощение зависят от чистоты материала, потери на рассеяние зависят от неоднородностей показателя преломления материала.

Затухание зависит от длины волны излучения, вводимого в волокно. В настоящее время передачу сигналов по волокну осуществляют в трех диапазонах: 0.85 мкм, 1.3 мкм, 1.55 мкм, так как именно в этих диапазонах кварц имеет повышенную прозрачность.

Другой важнейший параметр оптического волокна - дисперсия. Дисперсия - это рассеяние во времени спектральных и модовых составляющих оптического сигнала. Существуют три типа дисперсии: модовая, материальная и волноводная.

модовая дисперсия присуща многомодовому волокну и обусловлена наличием большого числа мод, время распространения которых различно

материальная дисперсия обусловлена зависимостью показателя преломления от длины волны

волноводная дисперсия обусловлена процессами внутри моды и характеризуется зависимостью скорости распространения моды от длины волны.

Поскольку светодиод или лазер излучает некоторый спектр длин волн, дисперсия приводит к уширению импульсов при распространению по волокну и тем самым порождает искажения сигналов. При оценке пользуются термином "полоса пропускания" - это величина, обратная к величине уширения импульса при прохождении им по оптическому волокну расстояния в 1 км. Измеряется полоса пропускания в МГц*км. Из определения полосы пропускания видно, что дисперсия накладывает ограничение на дальность передачи и на верхнюю частоту передаваемых сигналов.

Если при распространении света по многомодовому волокну как правило преобладает модовая дисперсия, то одномодовому волокну присущи только два последних типа дисперсии. На длине волны 1.3 мкм материальная и волноводная дисперсии в одномодовом волокне компенсируют друг друга, что обеспечивает наивысшую пропускную способность.

Затухание и дисперсия у разных типов оптических волокон различны. Одномодовые волокна обладают лучшими характеристиками по затуханию и по полосе пропускания, так как в них распространяется только один луч. Однако, одномодовые источники излучения в несколько раз дороже многомодовых. В одномодовое волокно труднее ввести излучение из-за малых размеров световодной жилы, по этой же причине одномодовые волокна сложно сращивать с малыми потерями. Оконцевание одномодовых кабелей оптическими разъемами также обходится дороже.

Многомодовые волокна более удобны при монтаже, так как в них размер световодной жилы в несколько раз больше, чем в одномодовых волокнах. Многомодовый кабель проще оконцевать оптическими разъемами с малыми потерями (до 0.3 dB) в стыке. На многомодовое волокно расчитаны излучатели на длину волны 0.85 мкм - самые доступные и дешевые излучатели, выпускаемые в очень широком ассортименте. Но затухание на этой длине волны у многомодовых волокон находится в пределах 3-4 dB/км и не может быть существенно улучшено. Полоса пропускания у многомодовых волокон достигает 800 МГц*км, что приемлемо для локальных сетей связи, но не достаточно для магистральных линий.

3. Волоконно-оптический кабель

Вторым важнейшим компонентом, определяющим надежность и долговечность ВОЛС, является волоконно-оптический кабель (ВОК). На сегодня в мире несколько десятков фирм, производящих оптические кабели различного назначения. Наиболее известные из них: AT&T, General Cable Company (США); Siecor (ФРГ); BICC Cable (Великобритания); Les cables de Lion (Франция); Nokia (Финляндия); NTT, Sumitomo (Япония), Pirelli(Италия).

Определяющими параметрами при производстве ВОК являются условия эксплуатации и пропускная способность линии связи.

По условиям эксплуатации кабели подразделяют на:

  • монтажные
  • станционные
  • зоновые
  • магистральные

Первые два типа кабелей предназначены для прокладки внутри зданий и сооружений. Они компактны, легки и, как правило, имеют небольшую строительную длину.

Кабели последних двух типов предназначены для прокладки в колодцах кабельных коммуникаций, в грунте, на опорах вдоль ЛЭП, под водой. Эти кабели имеют защиту от внешних воздействий и строительную длину более двух километров.

Для обеспечения большой пропускной способности линии связи производятся ВОК, содержащие небольшое число (до 8) одномодовых волокон с малым затуханием, а кабели для распределительных сетей могут содержать до 144 волокон как одномодовых, так и многомодовых, в зависимости от расстояний между сегментами сети.

При изготовлении ВОК в основном используются два подхода:

  • конструкции со свободным перемещением элементов
  • конструкции с жесткой связью между элементами

По видам конструкций различают кабели повивной скрутки, пучковой скрутки, кабели с профильным сердечником, а также ленточные кабели. Существуют многочисленные комбинации конструкций ВОК, которые в сочетании большим ассортиментом применяемых материалов позволяют выбрать исполнение кабеля, наилучшим образом удовлетворяющее всем условиям проекта, в том числе - стоимостным.

Особый класс образуют кабели, встроенные в грозотрос.

Отдельно рассмотрим способы сращивания строительных длин кабелей.

Сращивание строительных длин оптических кабелей производится с использованием кабельных муфт специальной конструкции. Эти муфты имеют два или более кабельных ввода, приспособления для крепления силовых элементов кабелей и одну или несколько сплайс-пластин. Сплайс-пластина - это конструкция для укладки и закрепления сращиваемых волокон разных кабелей.

4. Оптические соединители

После того, как оптический кабель проложен, необходимо соединить его с приемо-передающей аппаратурой. Сделать это можно с помощью оптических коннекторов (соединителей). В системах связи используются коннекторы многих видов. Сегодня мы рассмотрим лишь основные виды, получившие наибольшее распространение в мире. Внешний вид разъемов показан на рисунке.

Характеристики коннекторов представлены в таблице 1. Когда мы говорим, что данные виды коннекторов имеют наибольшее распространение, то это означает, что большинство приборов ВОЛС имеют розетки (адаптеры) под один из перечисленных видов коннекторов. Хотелось бы сказать несколько слов о последнем разделе таблицы 1. В нем упомянут новый тип фиксации: "Push-Pull".

Таблица 1:

Тип разъема

телекоммуникации

кабельное ТВ

измерит. аппаратура

Дуплексные системы связи

фиксация

Фиксация "Push-Pull" обеспечивает подключение коннектора к розетке наиболее простым образом - на защелке. Защелка-фиксатор обеспечивает надежное соединение, при этом не нужно вращать накидную гайку. Важное преимущество разъемов с фиксацией Push-Pull - это высокая плотность монтажа оптических соединителей на распределительных и кроссовых панелях и удобство подключения.

5. Электронные компоненты систем оптической связи

Теперь коснемся проблемы передачи и приема оптических сигналов. Первое поколение передатчиков сигналов по оптическому волокну было внедрено в 1975 году. Основу передатчика составлял светоизлучающий диод, работающий на длине волны 0.85 мкм в многомодовом режиме.

В течение последующих трех лет появилось второе поколение - одномодовые передатчики, работающие на длине волны 1.3 мкм.

В 1982 году родилось третье поколение передатчиков - диодные лазеры, работающие на длине волны 1.55 мкм.

Исследования продолжались и вот появилось четвертое поколение оптических передатчиков, давшее начало когерентным системам связи - то есть системам, в которых информация передается модуляцией частоты или фазы излучения. Такие системы связи обеспечивают гораздо большую дальность распространения сигналов по оптическому волокну. Специалисты фирмы NTT построили безрегенераторную когерентную ВОЛС STM-16 на скорость передачи 2.48832 Гбит/с протяженностью в 300 км, а в лабораториях NTT в начале 1990 года ученые впервые создали систему связи с применением оптических усилителей на скорость 2.5 Гбит/с на расстояние 2223 км.

Появление оптических усилителей на основе световодов, легированных эрбием, способных усиливать проходящие по световоду сигналы на 30 dB, дало начало пятому поколению систем оптической связи. В настоящее время быстрыми темпами развиваются системы дальней оптической связи на расстояния в тысячи километров. Успешно эксплуатируются трансатлантические линии связи США-Европа ТАТ-8 и ТАТ-9, Тихоокеанская линия США-Гавайские острова-Япония ТРС-3. Ведутся работы по завершению строительства глобального оптического кольца связи Япония-Сингапур-Индия-Саудовская Аравия-Египет-Италия.

В последние годы наряду с когерентными системами связи развивается альтернативное направление: солитоновые системы связи. Солитон - это световой импульс с необычными свойствами: он сохраняет свою форму и теоретически может распространяться по "идеальному" световоду бесконечно далеко. Солитоны являются идеальными световыми импульсами для связи. Длительность солитона составляет примерно 10 трилионных долей секунды (10 пс). Солитоновые системы, в которых отдельный бит информации кодируется наличием или отсутствием солитона, могут иметь пропускную способность не менее 5 Гбит/с на расстоянии 10 000 км.

Такую систему связи предполагается использовать на уже построенной трансатлантической линии ТАТ-8. Для этого придется поднять подводный ВОК, демонтировать все регенераторы и срастить все волокна напрямую. В результате на подводной магистрали не будет ни одного промежуточного регенератора.

6. Применение ВОЛС в вычислительных сетях

Наряду со строительством глобальных сетей связи оптическое волокно широко используется при создании локальных вычислительных сетей (ЛВС).

Фирма "ВИМКОМ ОПТИК", занимаясь автоматизацией и электронными технологиями, разрабатывает и устанавливает локальные и магистральные сети Ethernet, Fast Ethernet, FDDI, ATM/SDH с применением оптических линий связи. Фирма "ВИМКОМ ОПТИК" делает это по трем причинам. Во-первых, это выгодно. При установке протяженных сегментов сети не требуются повторители. Во-вторых, это надежно. В оптических линиях связи очень низкий уровень шумов, что позволяет передавать информацию с коэффициентом ошибок не более 10**(-10). В третьих, это перспективно. Волоконно-оптические линии связи позволяют наращивать вычислительные возможности сети без замены кабельных коммуникаций. Для этого нужно просто установить более быстродействующие передатчики и приемники. Это важно для тех пользователей, кто ориентируется на развитие своей ЛВС.

Кабель для связи сегментов сети стоит недорого, но работы по его прокладке могут составить самую крупную статью расходов по установке сети. Потребуется труд не только техников-кабельщиков, но и целой команды строителей (штукатуров, маляров, электриков), что обойдется недешево, если учесть возрастающую стоимость ручного труда. Основные топологии ЛВС: "шина", "звезда", "кольцо". В настоящее время оптическое волокно сложно использовать при строительстве общей шины, но его удобно использовать для связи "точка-точка", применяемой в топологии "звезда" и "кольцо".

Схема ВОЛС, применяемых, в частности, в ЛВС, устроена следующим образом:

Электрический сигнал идет от сетевого контроллера, устанавливаемого в рабочую станцию или сервер (например, сетевой контроллер Ethernet), затем поступает на электрический вход трансивера (например, оптический трансивер ISOLAN 3Com), который преобразует электрический сигнал в оптический. Оптический кабель (например, ОКГ-50-2) присоединяется к оптическим разъемам трансивера с помощью оптических соединителей (например, ST).

Рассмотрим несколько вариантов строительства ВОЛС.

  1. ВОЛС внутри одного здания. В этом случае для связи применяется двухволоконный ОК (типа "Лапша"), который при необходимости может быть проложен в трубке ПНД-32 под фальш-полом или вдоль стен в декоративных коробах. Все работы могут быть произведены самим заказчиком, если поставляемый кабель будет оконцован соответствующими коннекторами.
  2. ВОЛС между зданиями строится с прокладкой ВОК либо по колодцам кабельных коммуникаций, либо путем подвеса ВОК между опорами. В этом случае необходимо обеспечить сопряжение толстого многоволоконного кабеля с оптическими трансиверами. Для этого используют кабельные муфты, в которых производится разделка концов ВОК, идентификация волокон и оконцевание волокон коннекторами, соответствующими выбранным трансиверам. Эту работу можно выполнить несколькими способами.
    1. Можно заказать ВОК в специальном исполнении Break-Out. Это более дорогой вариант, зато кабель можно сразу оконцевать оптическими коннекторами, вывести из муфты оконцованные модули (шнуры, подобные монтажным проводам) и подключить их к приемо-передающей аппаратуре.
    2. Можно приварить к разделанным в кабельной муфте волокнам оптические шнуры с коннекторами на одном конце (pig tail). Длина pig tail выбирается из соображений удобства для пользователя (например, 3 м).
    3. Можно оконцевать волокна коннекторами и воткнуть коннекторы изнутри в оптические розетки (coupling), вмонтированные в стенку кабельной муфты. Снаружи в coupling втыкается коннектор оптического шнура, ведущего к приемо-передающей аппаратуре.

Возможны и другие способы стыковки ВОК с оптическими трансиверами. У каждого способа есть свои достоинства и недостатки. В практике специалистов фирмы "ВИМКОМ ОПТИК" получил распространение третий способ, так как он экономичен, надежен, обеспечивает малые вносимые оптические потери за счет применения розеток и коннекторов с керамическими элементами, а также удобен для пользователей.

Особо следует сказать о необходимости оптического кросс-коннекта.

Следует отметить, что за последние годы разработано несколько способов сращивания оптических волокон. Универсальным считается способ сращивания волокон путем сварки на специальном аппарате. Такие аппараты производят фирмы: BICC(Великобритания), Ericsson (Швеция), Fujikura, Sumitomo(Япония). Высокая стоимость сварочных аппаратов стала причиной создания альтернативных технологий сращивания оптических волокон.

Например, для быстрого соединения волокон сейчас используются специально разработанные фирмой 3М механические "сплайсы" (splice). Это пластиковые устройства размерами 40x7x4 мм, состоящие из двух частей: корпуса и крышки. Внутри корпуса находится специальный желоб, в который с разных сторон вставляются соединяемые волокна. Затем надевается крышка, являющаяся одновременно замком. Особая конструкция "сплайса" надежно центрирует волокна. Получается герметичное и качественное соединение волокон с потерями на стыке ~ 0.1 dB. Такие "сплайсы" особенно удобны при быстром восстановлении повреждений ВОЛС. Время на соединение двух волокон не превышает 30 секунд после того как волокна подготовлены (снято защитное покрытие, сделан строго перпендикулярный скол). Монтаж ведется без применения клея и специального оборудования, что очень удобно при работе в труднодоступном месте (например, в кабельном колодце).

Фирма SIECOR предлагает другую технологию сращивания волокон, при которой волокна вводятся в прецизионную втулку. В месте стыка волокон внутри втулки помещен гель на основе силикона высокой прозрачности с показателем преломления, близким к показателю преломления оптического волокна. Этот гель обеспечивает оптический контакт между торцами сращиваемых волокон и одновременно герметизирует место стыка.

Другие способы сращивания менее распространены, мы на них останавливаться не будем.

Монтаж оптических линий связи фирма "ВИМКОМ ОПТИК" проводит с помощью сварочного аппарата фирмы "Sumitomo" type 35 SE. Этот аппарат позволяет сваривать любые типы волокон в ручном и автоматическом режимах, тестирует волокно перед сваркой, устанавливает оптимальные параметр работы, оценивает качество поверхностей волокон перед сваркой, измеряет потери в месте соединений волокон и,если это необходимо, дает команду повторить сварку. Кроме этого аппарат защищает место сварки специальной гильзой и проверяет на прочность сварное соединение. Аппарат позволяет сваривать одномодовые и многомодовые волокна с потерями 0.01dB, что является превосходным результатом. Особо хочется сказать о специально разработанной методике оценки качества сварки. В аппаратах других конструкций, например BICC, волокно изгибается, и в месте изгиба свариваемого волокна водится излучение лазера, которое регистрируется в месте изгиба второго свариваемого волокна фотоприемником. При таком способе измерений волокно подвергается чрезмерной деформации изгиба, что может привести к образованию трещин на этом участке волокна. Sumitomo проводит измерения неразрушающим способом на основе обработки видеоинформации по специально разработанным алгоритмам.

Для некоторых специальных применений оптические волокна выпускаются с особым покрытием оболочки или со сложным профилем показателя преломления на границе "жила-оболочка". В такие волокна очень трудно ввести зондирующее излучение в области изгиба. Для аппаратов Sumitomo работа со специальными волокнами не вызывает затруднений. Подобные аппараты довольно дороги, но мы работаем именно на таких аппаратах. Этим достигаются две цели: 1) высокое качество сварки, 2) высокая скорость работ, что немаловажно при выполнении ответственных заказов (срочная ликвидация аварии на магистральной линии связи).

В процессе монтажа ВОЛС осуществляется тестирование линии с помощью оптического рефлектометра. По мнению специалистов "ВИМКОМ ОПТИК" одним из наиболее приспособленных аппаратов для этих целей является мини-рефлектометр фирмы Ando AQ7220. Легкий и компактный (340х235х100 мм,4.6 кг с встроенной батареей на 3-4 часа работы), он особенно удобен для работы в полевых условиях. Прибор имеет внутреннюю память, 3.5" дисковод, жесткий диск (дополнительно).

Прирост объема продаж приводит к значительному снижению стоимости всех компонентов ВОЛС, а новые технологии строительства оптических сетей позволяют создавать высоконадежные телекоммуникации.

В настоящее время в качестве оптических линий связи используют:

а) волоконно-оптические линии связи (ВОЛС);

б) оптические линии связи с использованием лазерной “пушки”;

в) оптические линии связи с использованием инфракрасных излучателей и приемников;

г) оптические линии связи с использованием кремнийорганического оптического волокна.

Структурная схема волоконно-оптической линии связи приведена на рис.4.2.

Рис.4.2. Структурная схема ВОЛС.

Электрический сигнал поступает на передатчик – трансивер, который преобразует электрический сигнал в световой импульс, который через оптический соединитель подается в оптический кабель. В месте приема оптический кабель с помощью оптического соединителя подключатся к приемнику – трансиверу, преобразующему пучок света в электрический сигнал.

В зависимости от назначения ВОЛС, ее протяженности, качества используемых комплектующих структурная схема может изменяться. При значительных расстояниях между пунктами передачи и приема вводится ретранслятор – усилитель сигналов. При малой длине оптического кабеля (если хватает строительной длины оптического кабеля) сварка кабеля не нужна. Под строительной длиной понимают длину цельного куска кабеля, поставляемого заводом – изготовителем.

Волоконно-оптические линии связи имеют следующие достоинства:

1. Высокая помехозащищенность от внешних электромагнитных помех и от межканальных взаимонаводок.

2. Широкий диапазон рабочих частот позволяет по такой линии связи можно передавать информацию со скоростью 10 12 бит/с = Тбит/c.

3. Защищенность от несанкционированного доступа: излучения в окружающее пространство ВОЛС почти не дает, а изготовление отводов оптической энергии без разрушения кабеля практически не возможно. А всякие воздействия на волокно могут быть зарегистрированы с помощью мониторинга (непрерывного контроля) целостности линии.

4. Возможность скрытой передачи информации.

5. Потенциально низкая стоимость, обусловленная заменой дорогостоящих цветных металлов (медь) материалами с неограниченными сырьевыми ресурсами (двуокись кремния).

6. Автоматически обеспечивается гальваническая развязка сегментов линии.

Однако в оптоволоконной технологии имеются и свои недостатки:

1. Высокая стоимость аппаратуры.

2. Требуется дорогое технологическое оборудование, как в процессе монтажа, так и в процессе эксплуатации. При обрыве оптического кабеля затраты на его восстановление значительно выше, чем на восстановление медного кабеля.

3. Относительно малая долговечность. Время жизни + сохранение им своих свойств в определенных допустимых пределах – оптического кабеля 25 лет. Заметим, что до настоящего времени в Москве эксплуатируются телефонные линии проложенные в начале века (см. Hard & Soft,1998,N11).


4. Оптические кабели не стойки к воздействию радиации.

Основу ВОЛС составляют оптические кабели, изготавливаемые из отдельных световодов – оптических волокон.

Передача оптической энергии по оптическому волокну обеспечивается с помощью эффекта полного внутреннего отражения. Оптическое волокно представляет собой двухслойный цилиндрический световод (рис.4.3.)


Рис.4.3. Распространение излучения и изменение и изменение показателя преломления в оптоволокне

Материал внутренней жилы имеет показатель преломления n 1 , а материал внешнего слоя n 2 , при этом n 1 >n 2 , т.е. материал внутренней жилы оптически более плотный, чем материал оболочки. Для излучения, входящего в цилиндр под малыми углами по отношению к оси цилиндра, выполняется условие полного внутреннего отражения: при падении излучения на границу с оболочкой вся энергия излучения отражается внутрь жилы световода. То же самое происходит и при всех последующих отражениях; в результате излучение распространяется вдоль оси световода, не выходя через оболочку. Максимальный угол отклонения от оси, при котором еще имеется полное внутреннее отражение, определяется выражением A 0 =sin y 0 =.

Величина A 0 называется числовой апертурой световода и учитывается при согласовании световода с излучателем. Излучение, падающее на торец под углами y>y­ 0 (внеапертурные лучи), при взаимодействии с оболочкой не только отражаются, но и преломляются; часть оптической энергии уходит из световода. В конечном итоге после многкратных встреч с границей жила-оболочка такое излучение полностью рассеивается из световода.

Излучение распространяется вдоль световода и в том случае, если уменьшение показателя преломления от центра к краю происходит не ступенчато, а постепенно. В таких световодах лучи, входящие в торец, преломляясь, фокусируются вблизи осевой линии (см.рис.4.4).


Рис.4.4. Распространение излучения и изменение показателя преломления в селфоке.

Любой отрезок такого световода действует как короткофокусная линза, вызывая эффект самофокусировки.

Эти световоды называют селфоками (self – сам, focus – фокус).

Промышленность многих стран освоила выпуск широкой номенклатуры изделий и компонентов ВОЛС. Следует заметить, что производство оптического волокна сосредоточено в основном в США. Для передачи сигналов применяются два вида оптоволокна: одномодовое и многомодовое. В одномодовом волокне световодная жила имеет диаметр 8-10 мкм. В многомодовом волокне диаметр световодной жилы составляет 50-60 мкм.

Оптоволокно характеризуется двумя важнейшими параметрами: затуханием и дисперсией.

Количественно затухание определяется по формуле

Pвх – мощность входного оптического сигнала;

Pвых – мощность выходного оптического сигнала;

l – длина световода.

Единицей измерения затухания служит децибелл на километр (дБ/км).

Затухание определяется потерями на поглощение и рассеяние излучения в оптоволокне. Потери на поглощение зависят от частоты материала, а потери на рассеяние – от неоднородности его показателей преломления. Зависит затухание и от длины волны излучения, вводимого в оптоволокно. В настоящее время передача сигналов по волокну осуществляется в трех диапазонах: 0.85 мкм, 1.3 мкм, 1.55 мкм, так как именно в этих диапазонах кварц имеет повышенную прозрачность. Оптоволокно характеризуется очень малым затуханием. Лучшие образцы российского волокна имеют затухание 0.22 дБ/км при длине волны 1.55 мкм, что позволяет строить линии связи длиной до 100 км без регенерации сигналов. Оптоволокно фирмы Sumitoto (Япония) имеет затухание 0.154 дБ/км при длине волны 1.55мкм. Имеются сообщения о разработке так называемых фторцирконатных оптоволокон с затуханием порядка 0.02 дБ/км, что позволит обеспечить скорость передачи порядка 1 Гбит/с с регенераторами через 4600 км.

Дисперсия, т.е. зависимость скорости распространения сигнала от длины волны излучения, - другой важнейший параметр оптического волокна. Поскольку при передаче информации светодиод или лазер излучает некоторый спектр длин волн, дисперсия приводит к уширению импульсов при распространении по волокну и тем самым порождает искажения сигналов. При оценке дисперсии пользуются термином “полоса пропускания” - величина, обратная величине уширения импульса при прохождении им по оптическому волокну расстояния в 1 км.

Измеряется полоса пропускания в мегагерцах на километр (МГц * км). Дисперсия накладывает ограничения на дальность передачи и верхнее значение частоты передаваемых сигналов.

Величина затухания и дисперсии различаются для разных типов оптических волокон.

Одномодовые волокна обладают лучшими характеристиками по затуханию и полосе пропускания. Однако одномодовые источники излучения (диодные лазеры, работающие на длине волны 1.55 мкм) в несколько раз дороже многомодовых (светоизлучающий диод, функционирующий на длине волны 0.85 мкм). Сращивание одномодовых волокон, монтаж оптических разъемов на концах одномодовых кабелей обходится дороже. Однако полоса пропускания многомодовых волокон достигает 1000 МГц * км, что приемлемо только для локальных сетей связи.

Для связи приемника и передатчика используется волоконно-оптический кабель (ВОК), в котором оптические волокна дополняются элементами повышающими эластичность и прочность кабеля.

Основными показателями ВОК являются условия эксплуатации и пропускная способность.

Связь корректирующей способности кода с кодовым расстоянием

Степень различия любых двух кодовых комбинаций характеризуется расстоянием между ними по Хэммингу или просто кодовым расстоянием .

Расстояние Хэмминга d выражается числом позиций, в которых кодовые комбинации отличаются одна от другой.

Пример 1. Найти расстояние Хэмминга d между кодовыми комбинациями 10101011 и 11111011.

Технологический век дал нам много ярких изобретений и открытий, но, по-видимому, именно возможность передачи информации на большие расстояния внесла один из наиболее весомых вкладов в развитие технологий. Носители, по которым передаются данные, прошли долгий путь развития от медной проволоки столетие назад до современных оптоволоконных кабелей. В результате многократно увеличились объемы информации, скорости и расстояния ее передачи, что расширило пределы технологического развития во всех областях.

Современные оптоволоконные кабели из стекла с малыми потерями обеспечивают практически неограниченную полосу пропускания и имеют массу других преимуществ над ранее созданными носителями. Простейшая оптоволоконная система передачи информации между двумя точками состоит из трех основных элементов: оптического передатчика, оптоволоконного кабеля и оптического приемника (рис. 1).

Рис. 1. Схема простейшей оптоволоконной системы передачи информации

Оптический передатчик преобразует аналоговый или цифровой электрический сигнал в соответствующий ему световой сигнал. Источником света может быть либо светодиод, либо твердотельный лазер. Чаще всего используются источники света с длиной волны 850, 1300 и 1550 нанометров.

Оптоволоконный кабель состоит из одного или нескольких стеклянных волокон, которые для света работают как волноводы (световоды). По конструкции оптоволоконный кабель похож на электрический, но содержит специальные элементы для защиты находящихся внутри него световодов. Соединение многокилометровых кабелей выполняется с помощью разъемных и неразъемных оптических соединителей.

Оптический приемник преобразует световой сигнал в копию исходного электрического сигнала. В качестве чувствительного элемента оптического приемника используется либо лавинный фотодиод, либо (чаще) PIN-фотодиод.

Оптоволоконные системы передачи информации - оптические приемник и передатчик, связанные оптоволоконным кабелем - имеют много преимуществ над обычными медными проводами и коаксиальными кабелями:

Почему оптоволоконные системы обладают этими полезными свойствами? Прочитав эту брошюру и поняв принципы, лежащие в основе оптоволоконной технологии, вы получите ответ на этот вопрос. Каждому из трех компонентов оптоволоконных систем - передатчикам, приемникам и кабелям - посвящен свой раздел.

Оптические передатчики

Оптический передатчик преобразует электрический сигнал в модулированный световой поток, предназначенный для передачи по оптоволокну. В зависимости от типа сигнала могут использоваться различные способы модуляции - включение и выключение света или его плавное изменение между заданными уровнями пропорционально входному сигналу. На рис. 2 эти два основных способа модуляции показаны на графиках зависимости интенсивности света от времени.


Рис. 2. Основные методы модуляции светового потока

Чаще всего в оптических передатчиках в качестве источника света используются светоизлучающие диоды (светодиоды) и полупроводниковые лазеры (лазерные диоды). Для использования в оптоволоконных системах эти устройства изготавливаются в корпусах, позволяющих подвести оптоволокно максимально близко к зоне, излучающей свет. Это необходимо для того, чтобы направить как можно больше света в световод. Иногда излучатель оборудован микроскопической сферической линзой, позволяющей собрать весь свет «до последней капли» и направить его в волокно. В некоторых случаях стеклянная нить присоединяется непосредственно к поверхности излучающего свет кристалла.

Чаще всего в оптических передатчиках в качестве источника света используются светоизлучающие диоды (светодиоды) и полупроводниковые лазеры (лазерные диоды).

У светодиодов площадь излучающего элемента довольно велика, и поэтому они излучают не так эффективно, как лазеры. Однако светодиоды широко используются на линиях связи малой и средней длины. Светодиоды гораздо дешевле лазеров, имеют почти линейную зависимость интенсивности излучения от величины электрического тока, интенсивность их излучения слабо зависит от температуры. Лазеры, напротив, имеют очень малую площадь излучающей поверхности и могут отдавать в оптоволокно гораздо большую мощность, чем светодиоды. Они тоже линейны по току, но очень сильно подвержены влиянию температуры и для достижения необходимой стабильности требуют применения более сложных электронных схем. Поскольку лазеры довольно дороги, они в основном используются там, где требуется передача данных на большие расстояния.

Поскольку лазеры довольно дороги, они в основном используются там, где требуется передача данных на большие расстояния.

Применяемые в оптоволоконной связи светодиоды и лазеры излучают в инфракрасной части спектра электромагнитных волн и поэтому их свет невидим человеческим глазом без применения специальных средств. Длина волны излучения выбрана с учетом максимальной прозрачности материала световодов и наивысшей чувствительности фотодиодов. Наиболее часто используемые сейчас длины волн - 850, 1300 и 1550 нанометров. Для всех трех длин волн выпускаются как светодиоды, так и лазеры.

Как уже было сказано, световой поток светодиодов и лазеров модулируется одним из двух способов: «включено-выключено» или линейным непрерывным изменением интенсивности. На рис. 3 показаны упрощенные схемы, реализующие оба способа модуляции. Для управления излучателем используется транзистор, на базу которого поступает предварительно сформированный цифровой сигнал. Максимальная частота модуляции при этом определяется электронной схемой и свойствами излучателя. Со светодиодами легко достижимы частоты в несколько сотен мегагерц, с лазерами - в тысячи мегагерц. На схеме не показан узел термостабилизации (светодиодам он обычно вообще не требуется).

Линейная модуляция осуществляется с помощью схемы на основе операционного усилителя (рис. 3B). Модулирующий сигнал подается на инвертирующий вход усилителя, постоянное смещение поступает на неинвертирующий вход. Здесь также не показана схема термостабилизации.


Рис. 3. Методы модуляции светового потока светодиодов
и полупроводниковых лазеров

В цифровом сигнале, для передачи которого используется модуляция «включено-выключено», логические уровни могут кодироваться различными способами. В наиболее простом из них логической единице соответствует наличие света, логическому нулю - его отсутствие. Кроме того, применяются широтно-импульсная и частотно-импульсная модуляция. При широтно-импульсной модуляции используется непрерывный поток импульсов, двумя различными длительностями которых кодируются логические уровни сигнала. При частотно-импульсной модуляции все импульсы имеют одинаковую длительность, но частота их следования меняется в зависимости от передаваемого логического уровня.


Рис 4. Различные методы оптической передачи аналоговой
и цифровой информации

В цифровом сигнале, для передачи которого используется модуляция «включено-выключено», логические уровни могут кодироваться различными способами. В наиболее простом из них логической единице соответствует наличие света, логическому нулю - его отсутствие.

Для аналоговой модуляции также существует несколько методов. Простейший из них - линейная модуляция, где интенсивность источника света прямо связана с величиной передаваемого сигнала. В других методах передаваемый сигнал вначале модулирует высокочастотную несущую (а в некоторых случаях и несколько несущих), а затем этот сложный сигнал управляет яркостью источника света.

На рис. 4 показана зависимость интенсивности света от времени для этих методов модуляции.

Частота света (который тоже является электромагнитным излучением) весьма велика - порядка миллионов гигагерц. Полоса частот излучателей света (лазеров и светодиодов) достаточно широка, но, к сожалению, современная технология не дает возможности селективного использования этой полосы, как это делается при передаче информации по радио. В оптическом передатчике происходит включение и выключение всей полосы частот сразу, как это делалось в первых искровых передатчиках на заре эры радио. Со временем ученые преодолеют это препятствие и станет возможной «когерентная передача», что определит дальнейшее развитие оптоволоконной технологии.

Световоды

Ввод света в оптическое волокно

Чем выше мощность излучателя, тем больше света попадает в световод.

После того, как передатчик преобразовал входной электрический сигнал в нужным образом модулированный свет, его необходимо ввести в оптическое волокно. Как уже говорилось, для этого существует два способа: прямое соединение излучающего элемента со световодом, и размещение световода в непосредственной близости от излучателя. При использовании второго способа количество света, которое попадет в оптоволокно, зависит от четырех факторов: интенсивности излучения, площади излучающего элемента, входного угла световода и потерь на отражение и рассеяние. Кратко рассмотрим все эти факторы.

Интенсивность излучения светодиода или лазера зависит от его конструкции и обычно выражается как общая мощность излучения при определенном токе. Иногда эта цифра указывается как реальная мощность, передаваемая в оптоволокно конкретного типа. При прочих равных условиях чем выше мощность излучателя, тем больше света попадает в световод.

Отношение площадей излучающего элемента и сердцевины оптоволокна определяет долю общей мощности, которая попадает в световод - чем меньше это отношение, тем больше света окажется в волокне.

Только тот свет, который вошел в оптоволокно под углом, меньшим или равным входному, будет распространяться по световоду.

Входной угол оптоволокна характеризуют его числовой апертурой (numerical aperture, NA), которая определяется как синус половины входного угла. Типовые значения NA лежат в диапазоне от 0,1 до 0,4, что соответствует входному углу от 11 до 46 градусов. Только тот свет, который вошел в оптоволокно под углом, меньшим или равным входному, будет распространяться по световоду.

Потери. Кроме потерь от загрязнений на поверхности оптоволокна, всегда существуют неизбежные потери интенсивности света, вызванные отражением на входе в световод и выходе из него. Это так называемые френелевские потери (по имени французского физика О. Ж. Френеля), которые составляют примерно 4% общей интенсивности на каждой границе раздела стекло-воздух. При необходимости для снижения этих потерь на соединяемые стеклянные поверхности наносят немного специального оптического геля.

Типы оптического волокна

Сейчас используется два типа оптического волокна: со ступенчатым и плавным изменением показателя преломления вдоль радиуса (профилем). На рис. 5 показано, что свет распространяется по таким световодам по-разному.


Рис 5. Распространение света по оптоволокну со ступенчатым и плавным профилями показателя преломления

Оптоволокно характеризуется толщиной сердцевины и оболочки, которую выражают в микрометрах. Сейчас наиболее распространены три типоразмера оптоволокна общего назначения, хотя существуют и другие типоразмеры для специальных применений. Это многомодовые световоды 50/125 и 62,5/125 мкм и одномодовые 8-10/125 мкм.

Как показано на рисунке, волокно со ступенчатым профилем показателя преломления состоит из сердцевины, изготовленной из стекла с малыми оптическими потерями, окруженной стеклянной оболочкой с более низким показателем преломления. Такое различие показателей преломления заставляет свет отражаться от границы между сердцевиной и оболочкой на всем пути распространения. Оптоволокно с плавным профилем состоит из стекла только одного сорта, но оно обработано так, что его показатель преломления плавно уменьшается от центра к периферии. В результате световод, подобно протяженной линзе, постоянно отклоняет распространяющийся по нему свет к центру.

Оптоволокно характеризуется толщиной сердцевины и оболочки, которую выражают в микрометрах. Сейчас наиболее распространены три типоразмера оптоволокна общего назначения, хотя существуют и другие типоразмеры для специальных применений. Это многомодовые световоды 50/125 и 62,5/125 мкм и одномодовые 8-10/125 мкм. Первые два типоразмера обычно используются вместе со светодиодными излучателями на линиях передачи малой и средней длины. Оптоволокно с сердцевиной 8-10 мкм чаще всего применяется в телекоммуникационных системах большой протяженности совместно с лазерными оптическими передатчиками.

Потери в оптическом волокне

Кроме потерь интенсивности сигнала в соединении излучателя и световода, потери происходят также и при распространении света по оптоволокну. Сердцевина оптического волокна делается из сверхчистого стекла с очень низкими потерями. Стекло должно иметь высочайшую прозрачность, поскольку по изготовленному из него волокну свет должен проходить километры. Давайте посмотрим на обычное оконное стекло. Оно прозрачно, но только потому, что его толщина всего 3-4 мм. Достаточно взглянуть на торец стеклянной пластины и увидеть его зеленую окраску, чтобы понять, как сильно она поглощает свет даже на длине в десяток-другой сантиметров. Легко представить, как же мало света пройдет через стометровую толщу оконного стекла!

Большинство световодов общего назначения дает на длине волны 850 нм потери от 4 до 6 децибел на километр (то есть на одном километре теряется от 60 до 75% света). На длине волны 1300 нм по- тери снижаются до 3-4 дБ/км (50-60%), а на 1550 нм они еще меньше - не является чем-то необычным значение 0,5 дБ/км (10%).

Большинство световодов общего назначения дает на длине волны 850 нм потери от 4 до 6 децибел на километр (то есть на одном километре теряется от 60 до 75% света). На длине волны 1300 нм потери снижаются до 3-4 дБ/км (50-60%), а на 1550 нм они еще меньше - не является чем-то необычным значение 0,5 дБ/км (10%).

Основной причиной потерь является поглощение света неоднородностями и рассеяние на них. Другая причина потерь в оптоволокне - его чрезмерный изгиб, при котором часть света выходит из сердцевины. Во избежание таких потерь радиус изгиба оптоволоконного кабеля при прокладке должен быть не менее 2,5 см (а чаще и еще больше).

Полоса пропускания оптоволокна

Однако полоса пропускания оптоволокна для модулированного сигнала ограничена, и тем сильнее, чем длиннее световод.


Чем меньше мод в излучении, тем шире полоса пропускания оптоволокна.

Перечисленные выше потери не зависят от частоты модуляции, то есть уровень потерь в 3 дБ означает, что до получателя не дойдет 50% света независимо от того, модулирован он сигналом 10 Гц или 100 МГц. Однако полоса пропускания оптоволокна для модулированного сигнала ограничена, и тем сильнее, чем длиннее световод. Причину этого ограничения поясняет рис. 6. Свет, вошедший в оптоволокно под малым углом к его оси (M1) распространяется по более короткому пути, чем тот, который входит под углом, близким к предельному входному (M2). В результате различные лучи, исходящие от одного и того же источника (называемые модами), приходят к даль- нему концу световода не одновременно, что приводит к эффекту размывания - уширению коротких импульсов. Это ограничивает максимальную частоту сигнала, передаваемого по оптоволоконному кабелю. Говоря кратко, чем меньше мод в излучении, тем шире полоса пропускания оптоволокна. Чтобы уменьшить число распространяющихся мод, сердцевину волокна делают тоньше. Одномодовое волокно с диаметром сердцевины от 8 до 10 мкм имеет значительно более широкую полосу пропускания, чем многомодовые волокна с диаметром 50 и 62,5 мкм, по которым может одновременно распространяться большое число мод излучения.


Рис. 6. Полоса частот модуляции, пропускаемых оптоволокном,
ограничивается существованием различных путей распространения света

Типовая полоса пропускания для обычных волоконных световодов составляет несколько мегагерц на километр для волокна с очень большим диаметром сердцевины, несколько сотен мегагерц на километр для стандартного многомодового волокна и тысячи мегагерц для одномодовых оптических волокон. С ростом длины кабеля полоса пропускания пропорционально снижается. Например, кабель, имеющий полосу 500 МГц на длине 1 км, при длине 2 км сможет обеспечить полосу в 250 МГц, а при 5 км - лишь в 100 МГц.

Очень широкая полоса пропускания одномодовых световодов позволяет практически не обращать внимания на их длину. Однако для многомодовых волокон этот фактор важен, поскольку нередко частотный диапазон передаваемых сигналов превосходит полосу пропускания кабелей.

Конструкция оптоволоконного кабеля

Типовая полоса пропускания для обычных волоконных световодов составляет несколько мегагерц на километр для волокна с очень большим диаметром сердцевины, несколько сотен мегагерц на километр для стандартного многомодового волокна и тысячи мегагерц для одномодовых оптических волокон. С ростом длины кабеля полоса пропускания пропорционально снижается.

Оптоволоконные кабели выпускаются разного диаметра и конструкции. Как и в случае коаксиальных, конструкция оптоволоконных кабелей определяется его предназначением. Внешне оптоволоконный кабель похож на коаксиальный. На рис. 7 схематично показано устройство стандартного оптоволоконного кабеля.

Оптоволокно имеет защитное покрытие, предохраняющее его от повреждений в производственном процессе. Оно помещается в облегающую его поливинилхлоридную трубку, где может свободно изгибаться при прокладке вокруг углов стен и в кабельных каналах.

Эта трубка окружена оплеткой из кевлара, принимающей на себя основное механическое усилие, которое действует на кабель при прокладке. Наконец, внешняя оболочка из поливинилхлорида защищает весь кабель и предотвращает проникновение влаги внутрь.

Кабели такой конструкции пригодны для прокладки внутри зданий, где не требуется значительная стойкость к внешним воздействиям. Существуют кабели практически для любого варианта прокладки, например, для прямой укладки в грунт, армированные устойчивой к грызунам внешней оболочкой из стали и сертифицированные UL негорючие кабели для прокладки над фальшпотолками. Выпускаются и многожильные кабели с цветовой кодировкой.


Рис. 7. Устройство стандартного оптоволоконного кабеля

Другие типы световодов

Пластмассовые световоды применяются для передачи данных на очень малые расстояния внутри электронного оборудования совместно с недорогими светодиодами. Одно из стандартных применений таких световодов - оптическая развязка цепей управления в высоковольтных источниках питания.

Еще два типа световодов - кварцевые с сердцевиной очень большого диаметра и целиком изготовленные из пластмассы - обычно не используются в телекоммуникациях. Кварцевые световоды используются для передачи мощных световых потоков, например в лазерной хирургии. Пластмассовые световоды применяются для передачи данных на очень малые расстояния внутри электронного оборудования совместно с недорогими светодиодами. Одно из стандартных применений таких световодов - оптическая развязка цепей управления в высоковольтных источниках питания.

Оптические соединители

С помощью оптических соединителей оптоволоконные кабели подключаются к оборудованию или соединяются между собой. Они похожи на электрические разъемы по функциям и внешнему виду, но требу- ют очень высокой точности изготовления. В оптическом разъемном соединении необходимо прецизионное совмещение и центровка сердцевины обоих волокон. Поскольку их диаметр весьма мал (например, 50 мкм), требования к точности очень высоки: допуск имеет порядок одного микрона.

Сейчас используются оптические разъемы множества различных типов. Разъем SMA, использовавшийся еще до изобретения одномодовых волокон, до недавнего времени оставался наиболее распространенным. На рис. 8 показаны детали конструкции этого разъема.


Рис. 8. Конструкция разъема SMA

Следует иметь в виду, что многомодовые разъемы ST будут корректно работать только с многомодовыми световодами.

Для многомодовых волокон сейчас чаще всего применяется разъем ST, разработанный компанией AT&T. В нем применен байонетный фиксатор, а общие потери меньше, чем в SMA. Подобранная пара разъемов ST обеспечивает уровень потерь менее 1 дБ (20%) и не требует дополнительных направляющих втулок или других подобных элементов. Специальный выступ, не дающий разъему поворачиваться, гарантирует, что при соединении оптические волокна всегда будут устанавливаться в одно и то же положение друг относительно друга, что обеспечивает стабильность характеристик разъемного соединения.

Разъемы ST выпускаются как для многомодовых, так и для одномодовых световодов - основное различие состоит в величине допусков. Следует иметь в виду, что многомодовые разъемы ST будут корректно работать только с многомодовыми световодами. Более дорогие одномодовые разъемы ST можно использовать как с одномодовыми, так и с многомодовыми световодами. Процедуры установки разъемов ST и SMA на кабель сходны и занимают примерно одинаковое время. На рис. 9 показаны основные элементы ставшего промышленным стандартом разъема ST.


Рис. 9. Основные элементы разъема ST

Неразъемные соединения световодов

Хотя для соединения двух световодов можно использовать оптические разъемы, существуют другие методы, обеспечивающие значительно более низкие потери. Два наиболее распространенных - механическое соединение и сварное соединение. Оба обеспечивают уровень потерь от 0,15 до 0,1 дБ (3-2%).

Для механического соединения концы световодов освобождаются от оболочек, их торцы очищаются и точно совмещаются с использованием специального механического приспособления. На место соединения наносится оптический гель, снижающий до минимума потери на отражение. Совмещенные концы световодов удерживаются на месте запорным механизмом.

Оптические приемники

Основная задача оптического приемника - преобразование модулированного светового потока, поступающего из оптоволокна, в копию исходного электрического сигнала, поданного на передатчик.

Основная задача оптического приемника - преобразование модулированного светового потока, поступающего из оптоволокна, в копию исходного электрического сигнала, поданного на передатчик. В качестве детектора в приемнике обычно используется PIN- или лавинный фотодиод, который устанавливается на оптическом соединителе (подобном используемому для источников света). У фотодиодов обычно довольно большой чувствительный элемент (несколько микрометров в диаметре), поэтому требования к точности позиционирования оптического волокна не такие жесткие, как для передатчиков.

Важно использовать приемники только с тем типоразмером волокна, для которого они предназначены, иначе может возникнуть перегрузка усилителя.

Интенсивность излучения, выходящего из оптоволокна, достаточно мала, и в оптических приемниках устанавливаются внутренние усилители с большим коэффициентом усиления. Поэтому важно использовать приемники только с тем типоразмером волокна, для которого они предназначены, иначе может возникнуть перегрузка усилителя. Если, например, пара передатчик-приемник, предназначенная для одномодового оптоволокна, используется с многомодовым, то в приемник поступит слишком много света, что вызовет его насыщение и серьезное искажение выходного сигнала. Аналогично, при использовании одномодового волокна с передатчиком и приемником, рассчитанными на многомодовое, до приемника дойдет мало света, и выходной сигнал будет содержать много шума или вообще не появится. Единственный случай, когда несоответствие приемника и передатчика типу волокна может оказаться полезным - чрезмерные потери в световоде. Тогда дополнительные 5-15 дБ, которые даст замена одномодового волокна на многомодовое, спасут положение и позволят получить работоспособную систему. Однако это экстремальная ситуация, и такое решение не рекомендуется для нормального применения.

Следует помнить, что электронные приемники сигнала, в отличие от оптоволоконного кабеля, восприимчивы к электромагнитным помехам, поэтому при работе с ними следует использовать стандартные меры защиты - экранирование, заземление и т.п.

Как и передатчики, оптические приемники выпускаются в аналоговом и цифровом вариантах. В них обоих используется аналоговый предварительный усилитель, за которым включен аналоговый или цифровой выходной каскад.

На рис. 10 показана функциональная схема простого аналогового оптического приемника. Первый каскад - операционный усилитель, включенный как преобразователь тока в напряжение. Слабый ток, генерируемый фотодиодом, преобразуется здесь в напряжение, амплитуда которого обычно составляет несколько милливольт. В следующем каскаде, представляющим собой простой усилитель напряжения, сигнал усиливается до необходимого уровня.

Функциональная схема цифрового оптического приемника показана на рис. 11. Как и в случае аналогового приемника, первый каскад представляет собой преобразователь тока в напряжение. Его выходной сигнал поступает на компаратор напряжения, который выдает чистый цифровой сигнал с малой длительностью перепадов. Регулятор уровня срабатывания компаратора, если он есть, используется для точной настройки симметрии восстановленного цифрового сигнала.

Часто в приемники для наиболее точного воспроизведения входного сигнала добавляются дополнительные каскады, которые работают как линейные усилители для коаксиальных кабелей, преобразователи протоколов и т.п. Следует помнить, что электронные приемники сигнала, в отличие от оптоволоконного кабеля, восприимчивы к электромагнитным помехам, поэтому при работе с ними следует использовать стандартные меры защиты - экранирование, заземление и т.п.


Рис. 10. Простейший аналоговый оптический приемник


Рис. 11. Простейший цифровой оптический приемник

Разработка оптоволоконной системы

При разработке оптоволоконной системы следует учитывать множество факторов, каждый из которых вносит свой вклад в конечную цель - гарантию того, что в приемник поступит достаточное количество света. Без достижения этой цели система не будет работать правильно. На рис. 12 указаны многие из этих факторов.


Рис. 12. Важнейшие параметры, которые необходимо учитывать
при разработке оптоволоконной системы

При инженерной разработке оптоволоконной системы рекомендуется использовать следующую пошаговую процедуру:

  1. Выбор приемника и передатчика, подходящих для того типа сигнала, который необходимо передавать (аналоговый, цифровой, видеосигнал, RS-232, RS-422, RS-485 и т.д.).
  2. Определение имеющихся источников питания (переменное напряжение, постоянное напряжение и др.).
  3. Определение, при необходимости, специальных требований (например, импедансов, полосы пропускания, специальных разъемов и диаметра волокна и т.п.).
  4. Расчет общих потерь в системе (в децибелах): суммирование потерь в кабелях, в разъемных и неразъемных соединениях. Эти характеристики можно получить у производителей электронных устройств и оптоволоконных кабелей.
  5. Сравнение полученной цифры потерь с допустимым значением уровня сигнала на входе приемника. Следует подстраховаться, добавив запас как минимум в 3 дБ на всю систему.
  6. Проверка соответствия полосы пропускания системы потребностям передачи нужного типа сигнала. Если расчеты покажут, что полоса пропускания окажется недостаточной для передачи сигнала на нужное расстояние, то следует либо выбрать другой приемник и передатчик (другую длину волны), либо рассмотреть возможность использования более дорогого и качественного оптоволоконного кабеля с меньшими потерями.

Контрольный перечень параметров, необходимых для разработки оптоволоконной системы передачи данных

Назначение (краткое описание задачи):
Параметры аналогового сигнала:
Входное напряжение
Входной импеданс
Выходное напряжение
Выходной импеданс
Отношение сигнал/шум
Полоса пропускания
Разъемы
Другие данные
Параметры цифрового сигнала:
Тип интерфейса (RS-232, 422, 485 и т.п.)
Скорость передачи данных
Способ связи (по постоянному или переменному току)
Допустимая частота битовых ошибок
Разъемы
Другие данные
Требования к источнику питания:
Напряжение
Ток
Переменное или постоянное напряжение
Разъемы
Другие данные

Требования к оптоволоконной линии:
Длина линии
Длина волны света
Допустимые потери
Оптические разъемы
Тип оптоволокна
Диаметр оптоволокна
Условия монтажа
Общие требования:
Размер корпуса
Способ монтажа
Характеристики окружающей среды
Диапазон рабочих температур
Диапазон температур хранения
Другие данные
Дополнительные комментарии: