Тарифы Услуги Сим-карты

Вычисление определителей n го порядка. Методы вычисления определителей n-ого порядка

Определители, их свойства и вычисление

1.Определители второго и третьего порядков; их вычисление .

Определитель первого порядка равен тому единственному элементу, из которого состоит соответствующая матрица.

Определитель второго порядка вычислим, например, по элементам первой строки

Запишем разложение данного определителя по элементам второй строки

Полученный результат совпадает с результатом вычисления определителя по первой строке. Этот же результат получится и при разложении по любому из столбцов. Рекомендуем это проверить самостоятельно.

Из сказанного можно заключить, что определитель второго порядка равен произведению элементов, стоящих на главной диагонали, минус произведение элементов, стоящих на побочной диагонали .

Определители n-го порядка; миноры и алгебраические дополнения. Свойства и вычисление определителей n-го порядка.

Определителем n-го порядка, соответствующим матрице
, называется алгебраическая сумма слагаемых, составленная следующим образом: слагаемыми служат всевозможные произведения элементов матрицы, взятых по одному из каждой строки и каждого столбца, причем слагаемое берется со знаком плюс, если его индексы составляют четную подстановку, и со знаком минус – в противоположном случае.
Замечание: Объясним это определение на примере определителя третьего порядка, для которого уже известна формула вычисления.
.
1) «алгебраическая сумма слагаемых» - . И да, действительно, здесь шесть слагаемых.
2) «слагаемыми служат всевозможные произведения элементов матрицы, взятых по одному из каждой строки и каждого столбца» - рассмотрим например слагаемое . Его первый множитель взят из второй строки, второй – из первой, а третий из третьей. То же самое и со столбцами – первым множитель из первого столбца, второй из третьего, а последний из второго.
3) «причем слагаемое берется со знаком плюс, если его индексы составляют четную подстановку, и со знаком минус – в противоположном случае» - рассмотрим для примера слагаемые (со знаком плюс) и (со знаком минус).

Составим перестановки так, что в первой строке будут номера строк сомножителей, а во второй – номера столбцов.
Для слагаемого : (первый столбец – индекс первого сомножителя и т.д.)
Для слагаемого : .
Определим четность этих перестановок:
а) - элементы в первой строке стоят по порядку. Во второй строке не по порядку стоят пары:
2 левее 1 – одна пара,
3 левее 1 – одна пара.
Итого две пары, т.е. количество пар четно, значит перестановка четная, а значит, слагаемое должно входить в сумму со знаком плюс (как оно и есть на самом деле).
б) - элементы в первой строке стоят по порядку. Во второй строке не по порядку стоят пары:
2 левее 1 – одна пара.
Итого, количество пар чисел, стоящих так, что большее левее меньшего – 1 шт., т.е. нечетно, а значит и перестановка называется нечетной, и соответствующее слагаемое должно входить в сумму со знаком минус (да, это так).

Минором элемента матрицы n -го порядка называется определитель матрицы (n-1) -го порядка, полученный из матрицы А вычеркиванием i -й строки и j -го столбца.

Рассматривая развернутое выражение для определителей

замечаем, что в каждое слагаемое входят в качестве сомножителей по одному элементу из каждой строки и по одному из каждого столбца определителя, причем всевозможные произведения этого вида входят в состав определителя со знаком плюс или минус. Это свойство полагается в основу обобщения понятия определителя на квадратные матрицы любого порядка. Именно: определителем квадратной матрицы порядка или, короче, определителем порядка называется алгебраическая сумма всевозможных произведений элементов матрицы, взятых по одному из каждой строки и по одному из каждого столбца, причем полученные произведения снабжены знаками плюс и минус по некоторому вполне определенному правилу. Это правило вводится

довольно сложным образом, и мы не будем останавливаться на его формулировке. Существенно отметить, что оно устанавливается так, что обеспечивается следующее важнейшее основное свойство определителя:

1. При перестановке двух строк определитель меняет знак на противоположный.

Для определителя 2 и 3-го порядков это свойство легко проверяется непосредственным вычислением. В общем случае оно доказывается на основе не сформулированного нами здесь правила знаков.

Определители обладают целым рядом других замечательных свойств, которые дают возможность с успехом использовать определители в разнообразных теоретических и численных расчетах, несмотря на чрезвычайную громоздкость определителя: ведь определитель n-го порядка содержит, как нетрудно видеть, слагаемых, каждое слагаемое состоит из сомножителей и слагаемые снабжены знаками по некоторому сложному правилу.

Переходим к перечислению основных свойств определителей, не останавливаясь на их подробных доказательствах.

Первое из этих свойств уже сформулировано выше.

2. Определитель не меняется при транспонировании его матрицы, т. е. при замене строк на столбцы с сохранением порядка.

Доказательство основано на подробном исследовании правила расстановки знаков в слагаемых определителя. Это свойство дает возможность всякое утверждение, касающееся строк определителя, перенести на столбцы.

3. Определитель есть линейная функция от элементов какой-либо его строки (или столбца). Подробнее

где представляют собой выражения, не зависящие от элементов строки.

Это свойство с очевидностью следует из того, что каждое слагаемое содержит по одному и только одному сомножителю из каждой, в частности строки.

Равенство (5) называется разложением определителя по элементам строки, а коэффициенты называются алгебраическими дополнениями элементов в определителе.

4. Алгебраическое дополнение элемента равно, с точностью до знака, так называемому минору определителя, т. е. определителю

долю порядка, получающемуся из данного посредством вычеркивания строки и столбца. Для получения алгебраического дополнения минор нужно взять со знаком . Свойства 3 и 4 сводят вычисление определителя порядка к вычислению определителей порядка

Из перечисленных основных свойств вытекает ряд интересных свойств определителей. Перечислим некоторые на них.

5. Определитель с двумя одинаковыми строками равен пулю.

Действительно, если определитель имеет две одинаковые строки, то при их перестановке определитель не изменяется, ибо строки одинаковые, но вместе с тем он, в силу первого свойства, меняет знак на обратный. Следовательно, он равен нулю.

Сумма произведений элементов какой-либо строки на алгебраические дополнения другой строки равна нулю.

Действительно, такай сумма является результатом разложения определителя с двумя одинаковыми строками по одной из них.

Общий множитель элементов какой-либо строки можно вынести за знак определителя.

Это следует из свойства 3.

8. Определитель с двумя пропорциональными строками равен нулю.

Достаточно вынести множитель пропорциональности, и мы получим определитель с двумя равными строками.

9. Определитель не меняется, если к элементам какой-либо строки добавить числа, пропорциональные элементам другой строки.

Действительно, в силу свойства 3 преобразованный определитель: равен сумме исходного определителя определителя с двумя пропорциональными строками, который равен нулю.

Последнее свойство дает хорошее средство для вычисления определителей. Используя это свойство можно, не менян величины определителя, преобразовать его матрицу так, чтобы в какой-либо строке (или столбце) все элементы, кроме одного, оказались равными нулю. Затем, разложив определитель но элементам этой строки (столбца), мы сведем вычисление определителя порядка к вычислению одного определителя порядка именно, алгебраического дополнения единственного отличного от нуля элемента выбранной строки.

ортогональный унитарный матрица полилинейный

Вычисление определителей 2-го и 3-го порядка.

Получим формулы вычисления определителей второго и третьего порядков. По определению при

При вычеркивании первой строки и одного столбца получаем матрицу, содержащую один элемент, поэтому

Подставляя эти значения в правую часть, получаем формулу вычисления определителя второго порядка

Определитель второго порядка равен разности произведения элементов, стоящих на главной диагонали, и произведения элементов, стоящих на побочной диагонали (рис.2.1).

Для определителя третьего порядка имеем

При вычеркивании первой строки и одного столбца получаем определители квадратных матриц второго порядка:

Эти определители второго порядка записываем по формуле (2.2) и получаем формулу вычисления определителя третьего порядка


Определитель (2.3) представляет собой сумму шести слагаемых, каждое из которых есть произведение трех элементов определителя, стоящих в разных строках и разных столбцах. Причем три слагаемых берутся со знаком плюс, а три других -- со знаком минус.

Для запоминания формулы (2.3) используется правило треугольников: надо сложить три произведения трех элементов, стоящих на главной диагонали и в вершинах двух треугольников, имеющих сторону, параллельную главной диагонали (рис. 2.2,а), и вычесть три произведения элементов, стоящих на побочной диагонали и в вершинах двух треугольников, имеющих сторону, параллельную побочной диагонали (рис. 2.2,6).

Можно также пользоваться схемой вычисления, изображенной на рис. 2.3 (правило Саррюса): к матрице приписать справа первый и второй столбцы, вычислить произведения элементов, стоящих на каждой из указанных шести прямых, а затем найти алгебраическую сумму этих произведений, при этом произведение элементов на прямых, параллельных главной диагонали, берутся со знаком плюс, а произведение элементов на прямых, параллельных побочной диагонали, -- со знаком минус (согласно обозначениям на рис. 2.3).

Вычисление определителей порядка N>3.

Итак, получены формулы для вычисления определителей второго и третьего порядков. Можно продолжить вычисления по формуле (2.1) для и получить формулы для вычисления определителей четвертого, пятого и т.д. порядков. Следовательно, индуктивное определение позволяет вычислить определитель любого порядка. Другое дело, что формулы будут громоздкими и неудобными при практических вычислениях. Поэтому определители высокого порядка (четвертого и более), как правило, вычисляют на основании свойств определителей.

Пример 2.1. Вычислить определители

Решение. По формулам (2.2) и (2.3) находим;

Формула разложения определителя по элементам строки (столбца)

Пусть дана квадратная матрица порядка.

Дополнительным минором элемента называется определитель матрицы порядка, полученной из матрицы вычеркиванием i-й строки и j-го столбца.

Алгебраическим дополнением элемента матрицы называется дополнительный минор этого элемента, умноженный на

Теорема 2.1 формула разложения определителя по элементам строки (столбца). Определитель матрицы равен сумме произведений элементов произвольной строки (столбца) на их алгебраические дополнения:

(разложение по i-й строке);

(разложение по j-му столбцу).

Замечания 2.1.

1. Доказательство формулы проводится методом математической индукции.

2. При индуктивном определении (2.1) фактически использована формула разложения определителя по элементам первой строки.

Пример 2.2. Найти определитель матрицы

Решение. Разложим определитель по 3-й строке:

Теперь разложим определитель третьего порядка по последнему столбцу:

Определитель второго порядка вычисляем по формуле (2.2):

Определитель матрицы треугольного вида

Применим формулу разложения для нахождения определителя верхней треугольной матрицы

Разложим определитель по последней строке (по n-й строке):

где -- дополнительный минор элемента. Обозначим. Тогда. Заметим, что при вычеркивании последней строки и последнего столбца определителя, получаем определитель верхней треугольной матрицы такого же вида, как, но (n-1)-го порядка. Раскладывая определитель, по последней строке ((n-1)-й строке), получаем. Продолжая аналогичным образом и учитывая, что, приходим к формулет.е. определитель верхней треугольной матрицы равен произведению элементов, стоящих на главной диагонали.

Замечания 2.2

1. Определитель нижней треугольной матрицы равен произведению элементов, стоящих на главной диагонали.

2. Определитель единичной матрицы равен 1.

3. Определитель матрицы треугольного вида будем называть определителем треугольного вида. Как показано выше, определитель треугольного вида (определитель верхней или нижней треугольной матрицы, в частности, диагональной) равен произведению элементов, стоящих на главной диагонали.

Основные свойства определителей (детерминантов)

1. Для любой квадратной матрицы, т.е. при транспонировании определитель не изменяется. Из этого свойства следует, что столбцы и строки определителя "равноправны": любое свойство, верное для столбцов, будет верным для строк.

2. Если в определителе один из столбцов нулевой (все элементы столбца равны нулю), то определитель равен нулю:.

3. При перестановке двух столбцов определитель меняет знак на противоположный (свойство антисимметричности):

4. Если в определителе имеется два одинаковых столбца, то он равен нулю:

5. Если определитель имеет два пропорциональных столбца, то он равен нулю:

6. При умножении всех элементов одного столбца определителя на число определитель умножается на это число:

7. Если j-й столбец определителя представляется в виде суммы двух столбцов, то определитель равен сумме двух определителей, у которых j-ми столбцами являются и соответственно, а остальные столбцы одинаковы:

8. Определитель линеен по любому столбцу:

9. Определитель не изменится, если к элементам одного столбца прибавить соответствующие элементы другого столбца, умноженные на одно и тоже число:

10. Сумма произведений элементов какого-либо столбца определителя на алгебраические дополнения соответствующих элементов другого столбца равна нулю:

Замечания 2.3

1. Первое свойство определителя доказывается по индукции. Доказательства остальных свойств проводятся с использованием формулы разложения определителя по элементам столбца. Например, для доказательства второго свойства достаточно разложить определитель по элементам нулевого столбца (предположим, что j-й столбец нулевой, т.е.):

Для доказательства свойства 10 нужно прочитать формулу разложения определителя справа налево, а именно, сумму произведений элементов i-го столбца на алгебраические дополнения элементов j-го столбца представить как разложение по j-му столбцу определителя


у которого на месте элементов j-ro столбца стоят соответствующие элементы i-го столбца. Согласно четвертому свойству такой определитель равен нулю.

2. Из первого свойства следует, что все свойства 2-10, сформулированные для столбцов определителя, будут справедливы и для его строк.

3. По формулам разложения определителя по элементам строки (столбца) и свойству 10 заключаем, что

4. Пусть -- квадратная матрица. Квадратная матрица того же порядка, что и, называется присоединенной по отношению к, если каждый ее элемент равен алгебраическому дополнению элемента матрицы. Иными словами, для нахождения присоединенной матрицы следует:

а) заменить каждый элемент матрицы его алгебраическим дополнением, при этом получим матрицу;

б) найти присоединенную матрицу, транспонируя матрицу.

Из формул (2.4) следует, что, где -- единичная матрица того же порядка, что и.

Пример 2.5. Найти определитель блочно-диагональной матрицы, где -- произвольная квадратная матрица, -- единичная, а -- нулевая матрица соответствующего порядка, -- транспонированная.

Решение. Разложим определитель по последнему столбцу. Так как в этом столбце все элементы нулевые, за исключением последнего, равного 1, получим определитель такого же вида, что и исходный, но меньшего порядка. Раскладывая полученный определитель по последнему столбцу, уменьшаем его порядок. Продолжая таким же образом, получаем определитель матрицы. Следовательно,

Рассмотрим квадратную таблицу А.

Определение. Определителем n-го порядка называется число, полученное из элементов данной таблицы по следующему правилу:

1 .Определитель n-го порядка равен алгебраической сумме n! членов.

Каждый член представляет собой произведение n-элементов взятых по одному из каждой строки и каждого столбца таблицы.

2 .Член берется со знаком плюс, если перестановки образованные первыми и вторыми индексами элементов , входящие в произведения одинаковой четности (либо обе четные, либо нечетные) и со знаком минус в противоположном случае.

Определитель обозначается символом:

или краткоdet A=.(детерминант А)

Согласно определению = -.

Правило вычисления определителя 3ого порядка:

=

Миноры и алгебраические дополнения

Пусть дан определитель n-го порядка (n>1)

Определение 1. Минором элементаопределителяn-го порядка называется определитель (n-1)-ого порядка полученный из А вычеркиванием i-й строки и j-го столбца, на пересечении которых стоит данный элемент .

Например:

=

Определение 2 . Алгебраическим дополнением элемента называется число

Основные свойства определителей n-го порядка

1.О равносильности строк и столбцов.

Величина определителя n-го порядка не меняется, если у него заменить строки соответствующими столбцами.

2.Если у определителей поменять местами две строки (столбца), то определитель изменит знак на противоположный.

= k

Если все элементы какой-либо строки (или столбца) определителя имеют общий множитель, то этот общий множитель можно вынести за знак определителя.

4.Величина определителя равна нулю, если все элементы какой-либо его строки нули (или столбца).

5.Определитель с двумя пропорциональными строками равен 0.

Например:

6.Величина определителя не изменится, если к его элементам какой-либо строки прибавить соответствующие элементы другой строки, умноженные на одно и то же число.

7.Если элементы какой-либо строки i определителя представлены в виде суммы двух слагаемых, то определитель равен сумме двух определителей, в которых все строки кроме i-й такие же, как в заданном определителе, а i-я строка одного определителя состоит из первых слагаемых, а второго из вторых.

8.Определитель равен сумме произведений всех элементов какой-либо его строки на их алгебраические дополнения.

=

9.Сумма произведений всех элементов какой-либо строки определителя на алгебраические дополнения соответствующих элементов другой строки равна нулю.

Например:

=

Теорема Лапласа

Теорема. Пусть в определителе d порядка n произвольно выбраны k строк (или k столбцов), 1.Тогда сумма произведений всех миноровk-го порядка, содержащихся в выбранных строках, на их алгебраические дополнения равна определителю d.

Следствие . Частный случай теоремы Лапласа - разложение определителя по строке или столбцу. Он позволяет представить определитель квадратной матрицы в виде суммы произведений элементов любой её строки или столбца на их алгебраические дополнения.

Пусть - квадратная матрица размера . Пусть также задан некоторый номер строки i либо номер столбца j матрицы A. Тогда определитель A может быть вычислен по следующим формулам:

Разложение по i-й строке:

Разложение по j-й строке:

где - алгебраическое дополнение к минору, расположенному в строке с номером i и столбце с номером j.

Утверждение является частным случаем теоремы Лапласа. Достаточно в ней положить k равным 1 и выбрать -ую строку, тогда минорами, расположенными в этой строке будут сами элементы.

Примеры для самостоятельного решения .

1.Найти х из уравнений и проверить подстановкой корень в определитель.

а); б)

Очевидно, что для системы из n линейных уравнений с n неизвестными получим матрицу коэффициентов размером :

Введем понятие определителя n -го порядка.

Определение 4.1:

Определителем n -го порядка называется число равное

Сумме n ! слагаемых;

Каждое слагаемое есть произведение n элементов матрицы, взятых по одному из каждой строки и каждого столбца;

Каждое слагаемое берется со знаком «+», если перестановка из вторых индексов четная, и со знаком «-», если перестановка из вторых индексов нечетная, при условии, что первые индексы образуют натуральный ряд чисел.

Т.о.

Здесь å берется по всем возможным перестановкам , составленным из чисел 1,2,…,n .

5. Основные свойства определителей.

Установим основные свойства определителей, которые для простоты будем показывать на определителе 2-го порядка.

1. При замене строк соответствующими столбцами (именуемой транспони­рованием ) определитель остается неизменным. Действительно:

Следовательно, , что и требовалось доказать.

Примечание : Полученный выше результат дает нам право утверждать, что строки и столбцы определителя, именуемые в дальней­шем рядами, равноправны.

2. При перестановке двух рядов определитель меняет знак на противоположный.

Действительно, Поменяем местами строки и вычислим определитель

что и требовалось доказать.

3. Если в определителе два параллельных ряда одинаковы, то он равен нулю. Действительно, поменяем местами две одинаковых строки. Тогда величина определителя не изменится, а знак в силу свойства 2. поменяется. Единственное число, которое не меняется при изменении знака – ноль.

4. Общий множитель членов любого ряда можно вынести за знак определителя.

Что и требовалось доказать.

5. Если все элементы любого ряда являются суммами одинакового числа слагаемых, то определитель равен сумме определителей, в которых элементами рассматриваемого ряда служат отдельные слагаемые.

что и требовалось доказать.

6. Определитель не изменится, если к элементам любого ряда прибавить соответствующие элементы параллельного ряда, умноженные на не­которое число.



Умножим вторую строку на и прибавим ее к первой строке:

Действительно, в силу свойств 3,4,5

=

что и требовалось доказать.

6. Миноры и алгебраические дополнения элементов оп­ределителя.

Рассмотрим определитель n -го порядка:

.

Выделим в определителе i -ю строку и j -й столбец. На пересечении этих рядов стоит элемент

Если в определителе мы вычеркнем i -юстроку и j -йстолбец, то получим определитель по­рядка п -1 (т. е. имеющий порядок, на единицу меньший по сравнению с исходным определителем), называемый мино­ром элемента определителя . Будем обозначать мино­р элемента символом .

Определение 6.1. А лгебраическим дополнением эле­мента определителя называется минор , взятый со знаком , и обозначается символом . Согласно определению получим

.

Пример 6.1. Найти минор и алгебраическое дополнение определителя