Тарифы Услуги Сим-карты

Метеорологические приборы краткий рассказ. Метеорологические приборы. Метеорологические приборы - приборы и установки для измерения и регистрации значений метеорологических элементов. Для сравнения. Приборы, используемые на метеостанциях

Метеорологические приборы

5 (100%) 2 vote[s]

Основное занятие большинства метеорологов – не предсказание погоды, как обычно думают, а наблюдения за погодой. Без наблюдений не может быть и прогнозов. Более того, чтобы грамотно составить прогноз погоды, нужно иметь результаты наблюдений в десятках и сотнях точек. Наблюдения ведут на метеорологических станциях.

Метеорологическая станция (метеостанция) – учреждение, в котором круглосуточно проводятся регулярные наблюдения за состоянием атмосферы и атмосферными процессами, в том числе отслеживаются изменения отдельных метеорологических элементов (температуры, давления, влажности воздуха, скорости и направления ветра, облачности и осадков и т.д.). На станции имеются метеорологическая площадка, где расположены основные метеорологические приборы, и закрытое помещение для обработки наблюдений. Метеорологические станции страны, области, района составляют метеорологическую сеть.

Только немногие измерения могут проводиться “на глаз”, нужны измерительные приборы, действие их основано на законах физики.

Нередко услышав по радио, что сейчас такая-то температура, мы смотрим на наружный термометр за окошком и обнаруживаем разницу до трех-четырех градусов. Это связано с тем, что, во-первых, метеостанция, по которой нам сообщили сведения, находится на некотором расстоянии от нашего дома; во-вторых, приборы на метеостанции установлены не так, как у нас; и в-третьих, бытовые приборы далеко не так точны, как метеорологические. Наблюдение за погодой на метеостанции считается рутинной работой, потому что она регламентирована строгими инструкциями, нарушать которые нельзя, иначе наблюдения, проведенные на разных метеостанциях (да и разными наблюдателями на одной и той же) нельзя будет сопоставить. Дело не только в том, что на разных станциях должны быть приборы одной и той же конструкции. Результаты наблюдений зависят и от того, как и где эти приборы установлены, как ими пользоваться, как записывать наблюдения и т.д. Но то богатство впечатлений, которое предоставляет нам объект наблюдения – погода, – с лихвой возмещает видимое однообразие методов.

Каждый прибор на метеостанции снабжен сертификатом, в котором указано, какие поправки нужно вносить в его показания. Например в сертификате термометра указано:

от -5,7 до +2,1 +0,2

от +2,2 до +9,4 +0,1.

Это значит, что если термометр показывает -0,2°C, то истинная температура будет (-0,2°C) + (+0,2°C) = 0,0°C; если показывает +5,7°C, то температура +5,8°C. Для другого термометра, даже если он был выпущен на заводе в составе той же серии, поправки почти всегда будут другие. Такие поправки называются инструментальными . Они есть у любых приборов, что бы ими не измеряли.>

Теперь рассмотрим приборы, предназначенные для измерения отдельных метеорологических элементов.

ДАВЛЕНИЕ ВОЗДУХА

Давление воздуха – важнейший метеорологический показатель, даже важнее температуры. Давление измеряют с помощью ртутного барометра, который не претерпел существенных изменений за три с половиной века, с тех пор, как его изобрел Эванджелиста Торричелли. Барометр позволяет определить высоту ртутного столба с точностью до 0,1 мм. Давление в помещении и снаружи одинаково, поэтому прибор вешают на стене в закрытом помещении – наблюдательской, где ведут обработку наблюдений. В шкалу барометра вмонтирован термометр, показывающий температуру в помещении, потому что при повышении температуры ртуть в барометре расширяется, и в показания приходится вводить температурную поправку по специальной таблице.

Кроме того, в величину давления вводят поправку на абсолютную высоту, т.е. вычисляют давление, которое было бы в данной точке, если бы барометр находился на уровне моря. Не будь этой поправки, любая горная страна, в пределах которой расположены на разных высотах многочисленные метеостанции, независимо от погодных условий оказалась бы изображенной на карте изобар как область низкого давления, причем весьма причудливой конфигурации.

В наблюдательской же находится и гораздо более привычный широкой публике барометр-анероид, он считается менее точным прибором, его держат на всякий случай. Основная деталь анероида – круглая жестяная коробочка с рифлеными крышками. Из нее выкачан воздух, и она запаяна. При увеличении атмосферного давления крышки прогибаются внутрь, при уменьшении – распрямляются. Движения крышек через систему рычажков передаются стрелке.

На том же принципе основано действие находящегося здесь же барографа, вычерчивающего кривую изменения давления воздуха. Стрелка с крохотной чернильницей на кончике отклоняется вверх или вниз в соответствии с изменением суммарного прогиба крышек стопки коробочек и вычерчивает кривую изменения давления на ленте, которой обернут барабан. Барабан вращается с помощью часового механизма. Если барабан делает оборот за сутки, кривая плавная; если за неделю, точность отсчетов меньше, но изменения давления видны более четко. Лучше иметь и суточный, и недельный барографы. У других самописцев недельные барабаны применяются редко.

ТЕМПЕРАТУРА И ВЛАЖНОСТЬ ВОЗДУХА

Температура – наиболее ощущаемый нами метеорологический показатель, погода для нас – это прежде всего “тепло” или “холодно”. Температурой воздуха считается температура, которую показывает термометр, находящийся на высоте 2 м над землей и защищенный от прямых солнечных лучей. Термометры размещают в одной из будок на метеоплощадке. Метеоплощадка – это ровное место метрах в двадцати от помещения метеостанции, с сохраненным естественным покровом (травой мхом, словом, тем, что составляет естественную подстилающую поверхность для данного места). Будки выкрашены в белый цвет, их стенки набраны из дощечек так, что воздух в будку проходит свободно, а солнечные лучи не проникают никогда. Возле будки есть постоянная лесенка.

Два термометра срочные, т.е. показывают температуру в данный момент. Они расположены вертикально, шарик которого обернут полоской ткани, конец которой опущен в стаканчик с водой. Термометры соответственно и называются – сухой и смоченный. Возможно, читателю приходилось видеть такую пару термометров в помещениях, где важно следить за влажностью воздуха, например в музеях. Термометры ртутные. Но при очень низких температурах ртутный термометрах заменяют спиртовым (ртуть замерзает при -39°). Температура, которую показывает сухой термометр, и есть температура воздуха в данный момент.

Пара термометров – сухой и смоченный – составляют прибор, называемый психрометром – измерителем влажности. Поэтому и будка называется психрометрической. На испарение воды затрачивается тепло, и смоченный термометр, как правило, показывает более низкую температуру, чем сухой. Если воздух сух, испарение идет быстро, на него расходуется много тепла и разница в показаниях термометров большая. При влажном воздухе вода испаряется медленно, соответственно уменьшается разница показаний. Когда влажность достигает 100%, испарения нет, показания термометров одинаковы. По специальным таблицам (а это довольно солидный том) наблюдатель определяет абсолютную влажность, относительную влажность и дефицит влажности, т.е. количество пара, которое еще может вместить воздух. Понятно, что при относительной влажности 100% дефицит влажности равен нулю.

Абсолютную влажность воздуха человек не ощущает, относительную же замечает только тогда, когда она сильно отличается от оптимальной (60-70%) – либо воздух слишком сухой (40% и меньше), либо слишком сырой (90-100%). При сухом воздухе значительно легче переносятся мороз и жара. Мороз в 15-20° в Мурманской области при стопроцентной влажности да еще с ветерком (а ветерок иной раз и с ног валит) куда тяжелее, чем знаменитые сибирские морозы при низкой влажности и безветрии.

Влажность фиксируется также еще одним прибором – волосным гигрометром. Его действие основано на том, что в зависимости от влажности обезжиренный человеческий волос – обязательно женский (он тоньше) и светлый (пигмент ухудшает его восприимчивость к влаге) – несколько изменяет свою длину.

Гигрометр помещается в той же будке, что и психрометр. Его показания менее точны, их проверяют по психрометру, но зато он позволяет определить влажность сразу, без расчетов: его шкала отградуирована в процентах относительной влажности.

В той же будке находятся еще два горизонтальных термометра – максимальный и минимальный. Они нужны для того, чтобы знать, каких наибольших и наименьших величин достигала температура в период наблюдения. Максимальный термометр известен всем – это, например, медицинский. Он показывает температуру тела не только тогда, когда его держат под мышкой, но и потом, когда его вынут, до тех пор, пока не стряхнут. Только в максимальном термометре, применяемом в метеорологии, диапазон температур значительно больше, а горлышко меду трубкой и резервуаром пошире, поэтому и стряхивать его легче. Именно поэтому его кладут в будке горизонтально, чтобы ртуть сама случайно не соскользнула в резервуар. Но использовать его в качестве медицинского нельзя: сколько бы мы его под мышкой не держали, он будет показывать температуру ниже нормальной, потому что длинный, а значительная часть ртути принимает температуру окружающего воздуха. Но что это? Сухой термометр показывает 15°, максимальный 19°; к следующему сроку наблюдений температура неуклонно падает, на сухом термометре уже 7°, а на максимальном опять те же 19°! Оказывается, наблюдатель, сняв показания максимального термометра, забыл его встряхнуть. Так бывало. Чтобы этого не повторялось впредь, в записях наблюдений ввели специальную графу: “Показания максимального термометра после встряхивания”.

Нетрудно догадаться, что минимальный термометр должен показывать наименьшую температуру за период наблюдений. Принцип действия этого термометра таков. В капилляре с бесцветным спиртом плавает штифтик. В каждый срок наблюдений, слегка наклоняя термометр, подгоняют штифт к поверхности спирта и кладут термометр горизонтально.

Метеорологические термометры позволяют брать отсчеты с точностью до 0,1°C.

В другой будке помещаются самописцы – термограф и гигрограф, непрерывно фиксирующие изменение температуры и относительной влажности; барабаны с часовым механизмом у них такие же, как у барографа, а стрелки соединены с датчиками температуры и влажности. Датчик влажности – человеческий волос, датчик температуры – биметаллическая пластина.

Для определения скорости ветра существует множество приборов самых разных конструкций. Суть большинства их сводится к одному: ветер крутит вертушку, а счетчик оборотов (механический или электрический) измеряет скорость вращения. Такие приборы называются анемометрами (в переводе с греческого – ветромер). Подобные устройства сейчас можно видеть во многих городах: на вертикальной оси закреплено что-то вроде большой полой дыни, разрезанной пополам; половинки смещены относительно друг друга, на каждой половинке – реклама какой-то фирмы. Втер довольно свободно обтекает половинку, которая обращена к нему выпуклой стороной, а на вогнутую сторону другой половинки оказывает заметное давление. И все устройство начинает вращаться – тем быстрее, чем сильнее ветер. нетрудно сообразить, что вращение всегда будет в одну сторону, куда бы ни дул ветер.

Но для метеостанций стандартным является не анемометр, а довольно простой прибор, сконструированный более ста лет назад директором Главной геофизической обсерватории в Петербурге Г.И. Вильдом. Флюгер Вильда состоит из флюгарки – металлического флажка, свободно вращающегося на оси, и свисающей металлической доски, поворачивающейся вместе с флюгаркой и всегда располагающейся поперек ветрового потока. Под флюгаркой закреплены штыри, указывающие стороны горизонта – основные (север, восток, юг, запад) – и промежуточные, – всего 8. Направление ветра – это сторона горизонта, откуда дует ветер, поэтому оно определятся не по флюгарке, повернутой куда дует ветер, а по противовесу к ней, обращенному всегда навстречу ветру. Металлическая доска отклоняется от вертикального положения тем больше, чем сильнее ветер. Рядом с доской приварена металлическая дуга со штифтами, по которым и определяют степень отклонения доски, а затем, уже по таблице, – скорость ветра. Впрочем, поработав неделю-другую, наблюдатель пишет скорость ветра уже не глядя в таблицу. Флюгер помещают на высоте около 10 м над землей, на отдельно стоящем столбе или над крышей метеостанции. Чаще флюгеров два – с легкой доской для слабого ветра (до 20 м/с) и с тяжелой для сильного (от 12-15 м/с). Здесь, правда, нужна оговорка. Под воздействием ровного, без завихрений, ветра доска никогда не примет горизонтального положения. Завихрения, турбулентность потока, могут расположить доску и горизонтально, и даже (на которое время) задрать ее вверх. Например, если направление между западом и юго-западом, а легкая доска – между вторым и третьим штифтами, а при порывах же достигает четвертого, запись, сделанная в момент наблюдения выглядит так: “ЗЮЗ, л.д. 2-3(4)”. если лоска неподвижна, пишут: “Тихо”.

Скорость ветра измеряют в м/с; исключение составляют авиационные и морские метеостанции: первые дают скорость в км/ч, вторые – в узлах (морских милях в час), чтобы легче было сравнивать скорость ветра со скоростью соответственно воздушных и морских судов.

Нетрудно подсчитать, что 1 м/с = 3,6 км/ч = 1,94 узла (1 морская миля = 1852 м). 15 м/с – это шторм; 30 м/с – ураган, при котором еле стоишь на ногах. Скорости более 40 м/с флюгер уже не берет, нужны специальные приборы. Один из них, ураганометр, рассчитанный на 60 м/с, в Хибинах при отдельных порывах тоже зашкаливал. А в Антарктиде зафиксировали однажды около 90 м/с. Судя по разрушениям, причиняемым тропическими циклонами (тайфунами), в них скорость ветра может превышать 100 м/с.

СОЛНЕЧНОЕ СИЯНИЕ

В каждый срок наблюдения нужно отметить солнечное сияние. Если Солнце ничем не закрыто и светит ярко, возле значка Солнца в записи ставится двойка – вторая степень. Если Солнце слегка затуманено (обычно это бывает при высоких облаках), но предметы отбрасывают тени, показатель степени не ставится, т.е. подразумевается первая степень. Когда теней нет, но положение Солнца на небе все же можно определить, пишут нулевую степень. Если Солнце закрыто плотными облаками или находится под горизонтом, значок вообще на ставят.

Постоянно же фиксирует солнечное сияние прибор гелиограф. Это уникальный измерительный прибор,отличающийся от всех других тем, что в нем нет ни одной движущейся части. Даже рулетку, даже портновский сантиметр мы должны подвинуть, расположить так, чтобы нуль шкалы совпал с началом измеряемого отрезка. У термометра подвижен столбик ртути; у термографа, барографа есть часовой механизм, который поворачивает барабан, и стрелка, которая поднимается и опускается.

Основная деталь гелиографа – шар диаметром около 100 мм, сделанный из хорошего оптического стекла и хорошо отшлифованный. Такой шар представляет собой собирающую линзу, которая в отличие от привычных нам линз, применяемых в очках, микроскопах, биноклях и т.п., не имеет единственной главной оптической оси: любая прямая, проведенная через центра шара, – это его оптическая ось. Как всякая линза шар имеет свое фокусное расстояние, у него оно одинаково во всех направлениях. На этом расстоянии вдоль поверхности шара в специальной обойме помещают картонную ленту с делениями. Солнце, совершая видимое движение по небосводу, прожигает в ленте след. В какой-то момент Солнце скрывается за облаками и перестает прожигать ленту; оно продолжает свое движение за облаками, и, когда небо проясняется, появляется новый прожог. Каждое большое деление на ленте соответствует 1 ч. Ленты хватает на 8 ч; после этого, если день длится больше, ставят новую ленту и поворачивают обойму на 120° – именно такую дугу описывает Солнце за 8 ч. Зимой дни короткие, ставится одна лента – с 8 до 16 ч. Весной и осенью (а в тропиках – круглый год) – две, с 4 до 12 и с 12 до 20 ч. Детом даже на широте Москвы уже требуются три ленты, потому что день длится более 16 ч, а еще дальше к северу Солнце может и не заходить, ленты ставят в 0, 8, 16 ч.

Гелиограф может работать как самописец потому, что движется сам вместе с вращающейся Землей, подставляя Солнцу для прожога то одну точку своей ленты, то другую. Сравнимы с ними только солнечные часы – практически тот же прибор, только не самопишущий.

Облака – один из самых сложных для наблюдения метеорологических элементов, поэтому приборов нет. Нужно на глаз определить степень покрытия небосвода облаками (10% – 1 балл облачности, 30% – 3 балла, весь небосвод покрыт облаками – 10 баллов), род и вид облаков, хотя бы приблизительно – их высоту. Правда, есть метеостанции, запускающие в каждый срок наблюдений шар-пилот, скорость подъема которого известна; скрылся шар в облаках через столько-то секунд – и известна высота. Но во-первых, далеко не все станции запускают такие шары, во-вторых, шар может проскочить между кучевыми облаками, и в-третьих – и это самое главное – удачей считается именно последний случай, потому что шар-пилот нужен в первую очередь для определения не высоты облаков, а направления ветра на разных высотах.

Есть, правда, довольно примитивный прибор нефоскоп, якобы позволяющий определить направление и скорость движения облаков, но я что-то не припомню случая, чтобы им кто-то пользовался…

Количество осадков – это толщина слоя воды, который образовался бы от выпадения дождя, снега и т.п., если бы вода не стекала и не испарялась. Измеряется в миллиметрах. Прибор (осадкомер) представляет собой просто цилиндрическое ведро, которое помещают на столбе. В каждый срок наблюдений накопившуюся в нем воду сливают в мерный цилиндр с делениями, позволяющий измерять объем с точностью до 0,1 мм. Если осадки твердые (снег, град, крупа), ведро вносят в наблюдательскую, а когда осадки растают, воду сливают в стакан. Летом, а особенно в жаркую погоду, измерять количество выпавших осадков нужно сразу после дождя, иначе вода испарится.

Вокруг ведра осадкомера расположены металлические пластины, образующие что-то вроде цветка. Они препятствуют выдуванию осадков (в основном, конечно, снега) из ведра.

ТЕМПЕРАТУРА ПОЧВЫ. СНЕЖНЫЙ ПОКРОВ

Температуру почвы измеряют такими же термометрами, как и в психрометрической будке, только лежат все три на поверхности земли (зимой – на снегу) и не защищены от прямых солнечных лучей. Кроме того, на агрометеорологических станциях измеряют температуру почвы на разных глубинах, обычно 5, 10 и 15 см. Термометры по форме напоминают хоккейную клюшку: резервуар со ртутью помещается горизонтально на нужной глубине, а шкала выступает над поверхностью. Но в показания этих термометров нужно вносить поправки, т.к. выступающая часть корпуса, в частности столбик ртути, подвержены влиянию температуры воздуха и прямых солнечных лучей.

Со времени установления осенью постоянного снежного покрова и до его схода весной по ней высота снежного покрова регулярно фиксируется с помощью снегомерной рейки.

МЕТЕОРОЛОГИЧЕСКИЕ ЯВЛЕНИЯ

О них упомянем только вкратце, потому что наблюдения ведут в основном без приборов и носят качественный характер, измерения почти отсутствуют.

Метеоролог должен постоянно выглядывать в окно и почаще выходить из здания, иначе можно многое пропустить. Начался дождь – отметь время; слабый дождь перешел в умеренный – сновать отметь. Нужно зафиксировать время начала и окончания осадков, тумана, метели, радуги, полярного сияния и многого другого. Для каждого явления существует свой значок, поэтому запись напоминает китайские иероглифы вперемешку с цифрами.

За последние десятилетия все больше входят в научный и технический обиход электронные приборы. Но сохраняют свое место и традиционные измерительные приборы; они обычно служат эталонами, по которым все остальные приборы поверяют, по которым их настраивают.

Газета "Физика", №23’99.

Слайд 2

Презентация по географии уч. 6 класса А ГОУСОШ № 1257 г. Москва Гнеушевой Нади 2008-2009 уч.год

Слайд 3

1. Что такое метеорологические приборы. 2. Что такое метеорологические элементы 3. Термометр 4. Барометр 5. Гигрометр 6. Осадкомер 7. Снегомерная рейка 8. Термограф 9. Гелиограф 10. Нефоскоп 11. Облакомер 12. Анемометр 13.Гидрологическая наблюдательная установка 14. Метелемер 15. Метеорограф 16. Радиозонд 17. Шар-зонд 18. Шар-пилот 19. Метеорологическая ракета 20. Метеорологический спутник Содержание

Слайд 4

Метеорологические приборы - приборы и установки для измерения и регистрации значений метеорологических элементов. Для сравнения результатов измерений, производимых на различных метеостанциях, метеорологические приборы делают однотипными и устанавливают так, чтобы их показания не зависели от случайных местных условий.

Слайд 5

Метеорологические приборы предназначены для работы в естественных условиях в любых климатических зонах. Поэтому они должны безотказно работать, сохраняя стабильность показаний в большом диапазоне температур, при большой влажности, выпадении осадков, и не должны бояться больших ветровых нагрузок, пыли.

Слайд 6

Метеорологические элементы, характеристики состояния атмосферы: температура, давление и влажность воздуха, скорость и направление ветра, облачность, осадки, видимость (прозрачность атмосферы), а также температура почвы и поверхности воды, солнечная радиация, длинноволновое излучение Земли и атмосферы. К Метеорологическим элементам относят также различные явления погоды: грозы, метели и т. п. Изменения Метеорологических элементов являются результатом атмосферных процессов и определяют погоду и климат.

Слайд 7

Термометр От греч.Therme - тепло + Metreo - измеряю Термометр - прибор для измерения температуры воздуха, почвы, воды и т.д. при тепловом контакте между объектом измерений и чувствительным элементом термометра. Термометры применяются в метеорологии, гидрологии и других науках и отраслях хозяйства. На метеостанциях, где измерения температур проводятся в определенные сроки, для фиксации максимальных температур между сроками наблюдения служит максимальный термометр (ртутный); наименьшую температуру между сроками фиксирует минимальный термометр (спиртовой).

Слайд 8

Барометр От греч.Baros - тяжесть + Metreo - измеряю Барометр - прибор для измерения атмосферного давления. Барометры подразделяются на жидкостные барометры и барометры-анероиды.

Слайд 9

Гигрометр От греч.Hygros - влажный Гигрометр - прибор для измерения влажности воздуха или других газов. Различают волосные, конденсационные и весовые гигрометры, а также регистрирующие гигрометры (гигрографы).

Слайд 10

Осадкомер Дождемер; Плювиометр Осадкомер - прибор для сбора и измерения количества выпавших атмосферных осадков. Осадкомер представляет собой цилиндрическое ведро строго определенного сечения, устанавливаемое на метеоплощадке. Количество осадков определяется путем сливания попавших в ведро осадков в специальный дождемерный стакан, площадь сечения которого также известна. Твердые осадки (снег, крупа, град) предварительно растапливаются. Конструкция осадкомера предусматривает защиту от быстрого испарения осадков и от выдувания попавшего в ведро осадкомера снега.

Слайд 11

Снегомерная рейка Снегомерная рейка - рейка, предназначенная для измерения толщины снежного покрова при метеонаблюдениях.

Слайд 12

Термограф От греч.Therme - тепло + Grapho - пишу Термограф - прибор-самописец, непрерывно регистрирующий температуру воздуха и записывающий ее изменения в виде кривой. Термограф располагается на метеостанции в специальной будке.

Слайд 13

Гелиограф От греч.Helios - Солнце + Grapho - пишу Гелиограф - прибор-самописец, регистрирующий продолжительность солнечного сияния. Основная часть прибора - хрустальный шар диаметром около 90 мм, работающий как собирающая линза при освещении с любой стороны, причем фокусное расстояние во всех направлениях одинаково. На фокусном расстоянии параллельно поверхности шара располагается картонная лента с делениями. Солнце, передвигаясь в течение дня по небу, прожигает в этой ленте полоску. В те часы, когда Солнце закрыто облаками, прожог отсутствует. Время, когда Солнце светило и когда оно было скрыто, читается по делениям на ленте.

Слайд 14

Нефоскоп Нефоскоп - прибор, предназначенный для определения относительной скорости движения облаков и направления их движения.

Слайд 15

Облакомер Облакомер - прибор для определения высоты нижней и верхней границы облаков, поднимаемый на шаре-зонде. Действие облакомера основано: - либо на изменении сопротивления фотоэлемента, реагирующего на изменении освещенности при входе в облака и выходе из них; - либо на изменении сопротивления проводника с гигроскопичным покрытием при попадании на его поверхность облачных капель.

Слайд 16

Анемометр От греч.Anemos - ветер + Metreo - измеряю Анемометр - прибор для измерения скорости ветра и газовых потоков по числу оборотов вращающейся под действием ветра вертушки. Существуют анемометры разных типов: ручные и постоянно закрепленные на мачтах и др. Отличают регистрирующие анемометры (анемографы).

Слайд 17

Гидрологическая наблюдательная установка Гидрологическая наблюдательная установка - стационарная установка для проведения наблюдений за элементами гидрологического режима.

Слайд 18

Метелемер Метелемер - устройство, применяемое для определения количества снега, переносимого ветром.

Слайд 19

Радиозонд Радиозонд - прибор для метеорологических исследований в атмосфере до высоты 30-35 км. Радиозонд поднимается на выпущенном в свободный полет воздушном шаре и автоматически передает на землю радиосигналы, соответствующие значениям давления, температуры, влажности воздуха. На большой высоте шар лопается, а приборы спускаются на парашюте и могут быть использованы вновь.

Слайд 20

Шар-зонд Шар-зонд - резиновый воздушный шар с прикрепленным к нему метеорографом, выпускаемый в свободный полет. На определенной высоте после разрыва оболочки метеорограф спускается на землю на парашюте.

Слайд 21

Шар-пилот Шар-пилот - резиновый шар, наполненный водородом, выпускаемый в свободный полет. Определяя его положение с помощью теодолитов или методами радиолокации, можно вычислить скорость и направление ветра.

Слайд 22

Метеорологическая ракета Метеорологическая ракета - ракетный аппарат, запускаемый в атмосферу для исследования ее верхних слоев, главным образом мезосферы и ионосферы. Приборы исследуют атмосферное давление, магнитное поле Земли, космическое излучение, спектры солнечного и земного излучений, состав воздуха и т.д. Показания приборов передаются в виде радиосигналов.

Слайд 23

Метеорологический спутник Метеорологический спутник - искусственный спутник Земли, регистрирующий и передающий на Землю различные метеорологические данные. Метеорологический спутник предназначен для наблюдения за распределением облачного, снегового и ледового покровов, измерения теплового излучения земной поверхности и атмосферы и отраженной солнечной радиации с целью получения метеорологических данных для прогноза погоды.

Слайд 24

Источники информации

1. Большая Энциклопедия для детей. Том 1 2. www.yandex.ru 3. Картинки – поисковая система www.yandex.ru

Посмотреть все слайды

Настич Надежда Валентиновна

Термометр

Термо́метр - прибор для измерения температуры воздуха, почвы, воды и так далее. Существует несколько видов термометров:

    жидкостные;

    механические;

    электронные;

    оптические;

  • инфракрасные.

Психрометр

Психро́метр - прибор для измерения влажности воздуха и его температуры . Простейший психрометр состоит из двух спиртовых термометров . Один термометр - сухой, а второй имеет устройство увлажнения. Спиртовая колба влажного термометра обёрнута батистовой лентой, конец которой находится в сосуде с водой. Вследствие испарения влаги увлажнённый термометр охлаждается.

Барометр

Баро́метр - прибор для измерения атмосферного давления . Ртутный барометр был изобретён итальянским математиком и физиком Эванджелистой Торричелли в 1644 году , это была тарелка с налитой в неё ртутью и пробиркой (колбой), поставленной отверстием вниз. Когда атмосферное давление повышалось, ртуть поднималась в пробирке, когда же оно понижалось - ртуть опускалась.

В быту обычно используются механические барометры. В анероиде жидкости нет. В переводе греческого «анероид» - «без воды». Он показывает атмосферное давление, действующее на гофрированную тонкостенную металлическую коробку, в которой создано разрежение.

Анемометр

Анемо́метр, ветроме́р - прибор для измерения скорости движения газов, воздуха в системах, например, вентиляции. В метеорологии применяется для измерения скорости ветра .

По принципу действия различают механические анемометры, тепловые анемометры, ультразвуковые анемометры.

Наиболее распространённый тип анемометра - это чашечный анемометр. Изобретён доктором Джоном Томасом Ромни Робинсоном , работавшем в обсерватории Армы, в 1846 году. Состоит из четырёх полусферических чашек, симметрично насаженных на крестообразные спицы ротора, вращающегося на вертикальной оси.

Ветер любого направления вращает ротор со скоростью, пропорциональной скорости ветра.

Осадкомер

Осадкомер, дождемер, плювиометр или плювиограф - прибор для измерения атмосферных жидких и твёрдых осадков .

Устройство осадкомера Третьякова

Комплект осадкомера состоит из двух металлических сосудов для сбора и сохранения выпадающих осадков, одной крышки к ним, тагана для установки осадкомерных сосудов, ветровой защиты и двух измерительных стаканов.

Плювиограф

Прибор, предназначенный для непрерывной регистрации количества и интенсивности выпадающих жидких осадков с привязкой ко времени (начало осадков, окончание и т.д.), а на современных флюгерах - с помощью электронного прибора .

Флюгер часто служит декоративным элементом - для украшения дома. Флюгер может использоваться и для защиты дымовой трубы от задувания.
















1 из 15

Презентация на тему: Метеорологические приборы

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

Метеорологические приборы предназначены для работы в естественных условиях в любых климатических зонах. Поэтому они должны безотказно работать, сохраняя стабильность показаний в большом диапазоне температур, при большой влажности, выпадении осадков, и не должны бояться больших ветровых нагрузок, пыли. Для сравнения результатов измерений, производимых на различных метеостанциях, метеорологические приборы делают однотипными и устанавливают так, чтобы их показания не зависели от случайных местных условий.

№ слайда 3

Описание слайда:

Термометр метеорологический Термометр метеорологический максимальный. Ртутный стеклянный термометр для определения максимальной температуры за отрезок времени. Изготавливается по ГОСТ 112-78. Внесен в Государственный реестр средств измерений и имеет сертификат "об утверждении типа средств измерений". Технические характеристики: Марка ТМ-1, Диапазон измерения температуры -35...+50 ºC, Цена деления шкалы - 0,5 ºC, Термом. Жидкость 18.0±1 Конструкция Стеклянный термометр с вложенной шкальной пластиной из листового стекла молочного цвета. Имеет специальное устройство, препятствующее спаданию ртутного столбика при охлаждении, что позволяет зафиксировать максимальную температуру за определенный промежуток времени.

№ слайда 4

Описание слайда:

Психро метр Психро метр (др.-греч. Ψυχρός - холодный) тж. Гигрометр психро метрический - прибор для измерения влажности воздуха и его температуры. Простейший психрометр состоит из двух спиртовых термометров, один - обычный сухой термометр, а второй имеет устройство увлажнения. Термометры имеют точную градуировку с ценой деления 0,2-0,1 градуса. Термодатчик влажного термометра обернут хлопчатобумажной тканью, которая находится в сосуде с водой. Вследствие испарения влаги, увлажнённый термометр охлаждается. Для определения относительной влажности, снимают показания с сухого и влажного термометров, а далее используют психрометрическую таблицу. Обычно входными величинами в психрометрической таблице являются показания сухого термометра и разница температур сухого и влажного термометров. Современные психрометры можно разделить на три категории: станционные, аспирационные и дистанционные. В станционных психрометрах термометры закреплены на специальном штативе в метеорологической будке.

№ слайда 5

Описание слайда:

Гигрометр Прибор для измерения влажности воздуха. Существует несколько типов Г., действие которых основано на различных принципах: весовой, волосной, плёночный и др. Плёночный Гигрометр имеет чувствительный элемент из органической плёнки, которая растягивается при повышении влажности и сжимается при понижении. Изменение положения центра плёночной мембраны 1 передаётся стрелке 2. Плёночный Гигрометр в зимнее время является основными приборами для измерения влажности воздуха.

№ слайда 6

Описание слайда:

Гигрограф Гигрограф (др.-греч. ὑγρός - влажный и γράφω - пишу) -прибор для непрерывной регистрации относительной влажности воздуха. Чувствительным элементом гигрографа служит пучок обезжиренных человеческих волос или органическая плёнка. Запись происходит на разграфленной ленте, надетой на барабан, вращаемый часовым механизмом. В зависимости от продолжительности оборота барабана гигрографы бывают суточные и недельные.

№ слайда 7

Описание слайда:

Барометр Барометр - прибор для измерения атмосферного давления. Наиболее распространены: жидкостные барометры, основанные на уравновешивании атмосферного давления весом столба жидкости; деформационные барометры, принцип действия которых основан на упругих деформациях мембранной коробки. Наиболее точными стандартными приборами являются ртутные барометры: ртуть благодаря большой плотности позволяет получить в барометре сравнительно небольшой столб жидкости, удобный для измерения. Ртутные барометры представляют собой два сообщающихся сосуда, наполненных ртутью; одним из них служит запаянная сверху стеклянная трубка длиной около 90 см, не содержащая воздуха. За меру атмосферного давления принимается давление столба ртути, выраженное в мм рт. ст. или в мбар.

№ слайда 8

Описание слайда:

Анероид (от греч. а - отрицательная частица, nērys - вода, т. е. действующий без помощи жидкости) Барометр-анероид, прибор для измерения атмосферного давления. Приёмной частью анероида служит круглая металлическая коробка с гофрированными основаниями, внутри которой создано сильное разрежение. При повышении атмосферного давления коробка сжимается и тянет прикрепленную к ней пружину; при понижении давления пружина разгибается и верхнее основание коробки поднимается. Перемещение конца пружины передаётся стрелке, перемещающейся по шкале. К шкале прикреплен дугообразный термометр, который служит для внесения поправки в показания на температуру.

№ слайда 9

Описание слайда:

Актинометр Актинометр (от греч. ακτίς - луч и μέτρον - мера) - измерительный прибор, который служит для измерения интенсивности электромагнитного излучения, преимущественно видимого и ультрафиолетового света. В метеорологии применяется для измерения прямой солнечной радиации. Актинометром названы также приборы, измеряющие количество лучистой теплоты, испускаемой в небесное пространство.

№ слайда 10

Описание слайда:

Альбедометр Альбедометр - прибор для измерения альбедо. Работает на принципе интегрального шарового фотометра. Альбедо земной поверхности измеряют проходным альбедометром - два соединенных пиранометра, приемная поверхность одного из которых повернута к земле и воспринимает рассеянный свет, второго - к небу и регистрирует падающее излучение. Используют и один пиранометр, приемная поверхность которого поворачивается то вверх, то вниз.

№ слайда 11

Описание слайда:

Анемометр Анемометр - прибор для измерения скорости ветра. По конструкции приемной части различают два основных вида анемометров: а) чашечные - для измерения средней скорости ветра любого направления в пределах 1-20 м/с; б) крыльчатые - для измерения средней скорости направленного воздушного потока от 0,3 до 5 м/с. Крыльчатые анемометры применяются в основном в трубках и каналах вентиляционных систем. Трёхмерный ультразвуковой анемометр Принцип действия анемометров ультразвукового типа - в измерении скорости звука, которая изменяется в зависимости от направления ветра. Различают двумерные ультразвуковые анемометры, трехмерные ультразвуковые анемометры и термоанемометры. Двумерный анемометр способен измерять скорость и направление горизонтального ветра. Трехмерный анемометр проводит измерение первичных физических параметров - времен проходов импульсов, а затем пересчитывает их в три компоненты направления ветра. Термоанемометр, помимо трех компонент направления ветра, способен измерять еще и температуру воздуха ультразвуковым методом.

№ слайда 12

Описание слайда:

Гипсотермометр (от греч. hýpsos - высота) прибор для измерения атмосферного давления по температуре кипящей жидкости. Кипение жидкости наступает, когда упругость образующегося в ней пара достигает величины внешнего давления. Измерив температуру пара кипящей жидкости, по специальным таблицам находят величину атмосферного давления. Гипсотермометр состоит из специального термометра 1, позволяющего отсчитывать температуру с точностью 0,01°, и кипятильника, который состоит из металлического сосуда 3 с дистиллированной водой и раздвижной трубки 2 с двойными стенками. Термометр помещается внутри этой трубки и омывается парами кипящей воды. Выпускаются гипсотермометры, у которых деления на шкале термометра нанесены в единицах давления (мм рт. ст. или мб).

Описание слайда:

Электрометр Механические электрометры в настоящее время применяются почти исключительно в учебных целях. В науке и технике они широко применялись ещё в первой трети 20 века (в частности, в исследованиях радиоактивности и космических лучей с помощью электрометров измерялась скорость потери заряда, вызванная ионизацией воздуха ионизирующими излучениями). Современные электрометры являются электронными вольтметрами с очень высоким входным сопротивлением, достигающим 1014 ом.

№ слайда 15

Описание слайда:

Флюгер Флю гер (нидерл. Vleugel) метеорологический прибор для измерения направления (иногда и скорости) ветра. Флюгер представляет собой металлический флаг, расположенный на вертикальной оси и поворачивающийся под воздействием ветра. Противовес флага направлен в сторону, откуда дует ветер. Направление ветра может определяться по горизонтальным штифтам, ориентированным по восьмирумбам, а на современных флюгерах - с помощью электронного прибора (энкодера).

МЕТЕОРОЛОГИЧЕСКИЕ ПРИБОРЫ - приборы и установки для измерения и регистрации физических характеристик земной атмосферы (температуры, давления и влажности воздуха, скорости и направления ветра, облачности, осадков, прозрачности атмосферы), а также температуры воды и почвы, интенсивности солнечной радиации и т. д. С помощью М. п. обнаруживают и оценивают физ. процессы, к-рые не могут быть восприняты непосредственно, а также проводят научные исследования. М. п. применяются в различных областях науки и техники, во многих отраслях народного хозяйства.

В мед.-биол, практике М. п. используются для исследования и оценки климата отдельных районов, а также микроклимата жилых и производственных зданий.

Первый М. п. был создан в Индии более 2 тыс. лет назад для измерения количества выпадающих осадков, однако регулярно М. п. стали применять только в 17 в. после изобретения термометра и барометра. В России систематические климатол. инструментальные наблюдения проводятся с 1724 г.

В зависимости от способа регистрации данных М. п. разделяются на показывающие и самопишущие. С помощью показывающих М. п. получают визуальные данные, к-рые через имеющиеся в этих приборах отсчетные устройства позволяют определять значения измеряемых величин. К показывающим М. п. относятся термометры, барометры, анемометры, гигрометры, психрометры и др. Самопишущие М. п. (термографы, барографы, гигрографы и др.) автоматически записывают показания на движущейся бумажной ленте.

Температура воздуха, воды, почвы измеряется термометрами: жидкостными - ртутными и спиртовыми, биметаллическими, а также электротермометрами, в к-рых первичное восприятие температуры осуществляется посредством датчиков (см.) - термоэлектрических, терморезистивных, транзисторных и других преобразователей (см. Термометрия). Регистрация температуры производится при помощи термографов, а также посредством термоэлектрических преобразователей, соединенных (в т. ч. и дистанционно) с регистрирующими приборами. Влажность воздуха измеряется психрометрами (см.) и гигрометрами (см.) различного типа, а для регистрации изменения влажности во времени используют гигрографы.

Измерение и регистрацию скорости и направления ветра проводят с помощью анемометров, анемографов, анеморумбометров, флюгеров и т. д. (см. Анемометр). Количество выпадающих осадков измеряют осадкомерами и дождемерами (см. Дождемер), а регистрируют плювиографами. Атмосферное давление измеряют ртутными барометрами, анероидами, гипсотермометрами, а регистрируют барографами (см. Барометр). Интенсивность солнечной радиации, излучение земной поверхности и атмосферы измеряют пиргелиометрами, пир-геометрами, актинометрами, альбедо-метрами, а регистрируют пиранографами (см. Актинометрия).

Все большее значение приобретают дистанционные и автоматические М. п.

Библиография: Метеорологические приборы и автоматизация метеорологических измерений, под ред. Л. П. Афиногенова и М. С. Стернзата, Л., 1966; Рейфер А. Б. и др. Справочник по гидрометеорологическим приборам и установкам, Л., 1976.

В. П. Падалкин.