Тарифы Услуги Сим-карты

Шеннон кодирование информации. Префиксный код Шеннона-Фано

Алгоритм построения сжимающего кода Шеннона – Фано заключается в следующем.

1. Все символов дискретного источника располагаются в порядке убывания вероятностей их появления (табл. 4.2).

Таблица 4.2. Построение кода Шеннона-Фано

2. Образованный столбец символов делится на две группы таким образом, чтобы суммарные вероятности каждой группы мало отличались друг от друга.

3. Верхняя группа кодируется символом «1», а нижняя – «0».

4. Каждая группа делится на две подгруппы с близкими суммарными вероятностями; верхняя подгруппа кодируется символом «1», а нижняя – «0».

5. Процесс деления и кодирования продолжается до тех пор, пока в каждой подгруппе не окажется по одному символу сообщения источника.

6. Записывается код для каждого символа источника; считывание кода осуществляется слева направо.

При использовании простейшего равномерного кода для кодирования шести элементов алфавита источника потребуется по три двоичных символа на каждую букву сообщения. Если же используется код Шеннона – Фано, то среднее число символов на одну букву

Алгоритм метода Шеннона-Фано - один из первых алгоритмов сжатия, который впервые сформулировали американские учёные Шеннон и Фано, и он имеет большое сходство с алгоритмом Хаффмана. Алгоритм основан на частоте повторения. Так, часто встречающийся символ кодируется кодом меньшей длины, а редко встречающийся - кодом большей длины.
В свою очередь, коды, полученные при кодировании, префиксные. Это и позволяет однозначно декодировать любую последовательность кодовых слов. Но все это вступление.

Для работы оба алгоритма должны иметь таблицу частот элементов алфавита.

Итак, алгоритм Хаффмана работает следующим образом:

  1. На вход приходят упорядоченные по невозрастанию частот данные .
  2. Выбираются две наименьших по частоте буквы алфавита, и создается родитель (сумма двух частот этих «листков»).
  3. Потомки удаляются и вместо них записывается родитель, «ветви» родителя нумеруются: левой ветви ставится в соответствие «1», правой «0».
  4. Шаг два повторяется до тех пор, пока не будет найден главный родитель - «корень».

Алгоритм Шеннона-Фано работает следующим образом:

  1. На вход приходят упорядоченные по невозрастанию частот данные.
  2. Находится середина, которая делит алфавит примерно на две части. Эти части (суммы частот алфавита) примерно равны. Для левой части присваивается «1», для правой «0», таким образом мы получим листья дерева
  3. Шаг 2 повторяется до тех пор, пока мы не получим единственный элемент последовательности, т.е. листок

Таким образом, видно, что алгоритм Хаффмана как бы движется от листьев к корню, а алгоритм Шеннона-Фано, используя деление, движется от корня к листям.

Ну вот, быстро осмыслив информацию, можно написать код алгоритма Шеннона-Фано на паскале. Попросили именно на нем написать. Поэтому приведу листинг вместе с комментариями.

Program ShennonFano; uses crt; const a:array of char = ("a","b","c","d","e","f"); { символы } af:array of integer = (10, 8, 6, 5, 4, 3); { частота символов } { Процедура для поиска кода каждой буквы } procedure SearchTree(branch:char; full_branch:string; start_pos:integer; end_pos:integer); var dS:real; { Среднее значение массива } i, m, S:integer; { m - номер средней буквы в последовательности, S - сумма чисел, левой ветки } c_branch:string; { текущая история поворотов по веткам } begin { проверка если это вход нулевой то очистить историю } if (a<>" ") then c_branch:= full_branch + branch else c_branch:= ""; { Критерий выхода: если позиции символов совпали, то это конец } if (start_pos = end_pos) then begin WriteLn(a, " = ", c_branch); exit; end; { Подсчет среднего значения частоты в последовательности } dS:= 0; for i:=start_pos to end_pos do dS:= dS + af[i]; dS:= dS/2; { Тут какой угодно можно цикл for, while, repeat поиск середины } S:= 0; i:= start_pos; m:= i; while ((S+af[i] to show"); ReadLn; ClrScr; { Поиск кода Фано, входные параметры начало и конец последовательности } SearchTree(" "," ", 1, 6); ReadLn; end;

Ну вот собственно и все, о чем я хотел рассказать. Всю информацию можно взять из википедии. На рисунках приведены частоты сверху.

Спасибо за внимание!

Оптимальное кодирование

Теорема кодирования Шеннона. Методы побуквенного оптимального кодирования. Критерии оптимальности кода. Блочное кодирование. Единая система кодирования текстовой информации.

Кодирование , минимизирующее избыточность кода , называется оптимальным .

Вопрос существования таких кодов составляет суть одной из основных теорем теории информации – теоремы кодирования, доказанной К. Шенноном. Приведем одну из эквивалентных формулировок данной теоремы.

Теорема кодирования . Сообщения произвольного источника информации Z с энтропией H (Z ) всегда можно закодировать последовательностями в алфавите B , состоящем из M символов , так , что средняя длина кодового слова будет сколь угодно близка к величине , но не меньше нее.

Доказательство этой теоремы в силу его сложности не рассматривается.

Теорема утверждает, что разность можно сделать как угодно малой. В этом и заключается задача методов оптимального кодирования.

Вернемся к рассмотрению алфавитного источника информации, генерирующего сообщения в символах алфавита А . Поскольку избыточность кода задается формулой

очевидно, что чем меньше , тем оптимальнее код. Для уменьшения следует кодировать часто встречающиеся символы более короткими словами и наоборот. На соблюдении этого требования основаны все методы оптимального кодирования. Кроме того, для обеспечения декодирования неравномерного кода важно соблюдать принцип префиксности : никакое кодовое слово не должно являться началом другого кодового слова.

Приведем два наиболее известных метода оптимального побуквенного кодирования. Для простоты изложения возьмем двоичный алфавит в качестве кодового.

Шаг 1. Упорядочиваем символы исходного алфавита в порядке невозрастания их вероятностей. (Записываем их в строку.)

Шаг 2. Не меняя порядка символов, делим их на две группы так, чтобы суммарные вероятности символов в группах были по возможности равны.

Шаг 3. Приписываем группе слева "0", а группе справа "1" в качестве элементов их кодов.

Шаг 4. Просматриваем группы. Если число элементов в группе более одного, идем на Шаг 2. Если в группе один элемент, построение кода для него завершено.

Рис. 4.1. Двоичное дерево, соответствующее кодированию по методу Шеннона – Фано

Рассмотрим работу описанного алгоритма на примере кодирования алфавита , символы которого встречаются с вероятностями (0,25; 0,05; 0,25; 0,1; 0,25; 0,1) соответственно. Результат кодирования изображен на рис. 4.1.

Очевидно, что процесс построения кода в общем случае содержит неоднозначность, так как мы не всегда можем поделить последовательность на два равновероятных подмножества. Либо слева, либо справа сумма вероятностей будет больше. Критерием лучшего варианта является меньшая избыточность кода. Заметим также, что правильное считывание кода – от корня дерева к символу – обеспечит его префиксность.

Для определенности будем рассматривать кодирование в двоичном алфавите (m = 2). Буквы (или любые сообщения, подлежащие кодированию) исходного алфавита записывают в порядке убывающей вероятности. Упорядоченное таким образом множество букв разбивают на две части так, чтобы суммарные вероятности этих подмножеств были примерно равны. Всем знакам (буквам) верхней половины в качестве первого символа присваивают кодовый элемент 1, а всем нижним - 0. Затем каждое подмножество снова разбивается на два подмножества с соблюдением того же условия равенства вероятностей и с тем же условием присваивания кодовых элементов в качестве второго символа. Такое разбиение продолжается до тех пор, пока в подмножестве не окажется только по одной букве кодируемого алфавита. При каждом разбиении буквам верхнего подмножества присваивается кодовый элемент 1, а буквам нижнего подмножества - 0.

Пример. Провести эффективное кодирование ансамбля из восьми знаков:

(знак) x i

Вероят-ность p i

Кодовые последовательности

Длина l i

р i l i

i log р i

Номер разбиения

2,7 и
.

Как видно, l ср = H , следовательно, полученный код является оптимальным.

Заметим, что при равномерном (не учитывающем статистических характеристик) кодировании с использованием m =2 знаков количество элементов в кодовой последовательности будет l  log m n = log 2 8 = 3, т.е. для представления каждого знака использованного алфавита потребуется три двоичных символа.

При кодировании по методике Шеннона - Фано некоторая избыточность в последовательностях символов, как правило, остается (l ср > H ).

Эту избыточность можно устранить, если перейти к кодированию достаточно большими блоками .

Пример. Рассмотрим процедуру эффективного кодирования сообщений, образованных с помощью алфавита, состоящего всего из двух знаков x 1 и x 2 с вероятностями появления соответственно

p (х 1) = 0,9; p (x 2) = 0,1.

Так как вероятности не равны, то последовательность из таких букв будет обладать избыточностью. Однако, при побуквенном кодировании мы никакого эффекта не получим. Действительно, на передачу каждой буквы требуется символ либо 1, либо 0, в то время как энтропия равна
, т.е. оказывается
.

При кодировании блоков, содержащих по две буквы, получим коды:

Вероятности

комбинации

номер разбиения

Так как знаки статистически не связаны, вероятности блоков определяют как произведение вероятностей составляющих знаков. Среднее число символов на блок
а на букву 1,29/2 = 0,645, т.е. приблизилось к Н = 0,47, и таким образом удалось повысить эффективность кодирования.

Кодирование блоков, содержащих по три знака, дает еще больший эффект:

Вероятность

кодовые комбинации

номер разбиения

Среднее число символов на блок равно 1,59, а на знак - 0,53, что всего на 12% больше энтропии.

Оптимальным кодом можно определить тот, в котором каждый двоичный символ будет передавать максимальную информацию. В силу формул Хартли и Шеннона максимум энтропии достигается при равновероятных событиях, следовательно, двоичный код будет оптимальным, если в закодированном сообщении символы 0 и 1 будут встречаться одинаково часто.

Рассмотрим в качестве примера оптимальное двоичное кодирование букв русского алфавита вместе с символом пробела «-». Полагаем, что известны вероятности появления в сообщении символов русского алфавита, например, приведенные в таблице 3.

Таблица 3.Частота букв русского языка (предположение)

К. Шеннон и Р. Фано независимо предложили в 1948-1949 гг. способ построения кода, основанный на выполнении условия равной вероятности символов 0 и 1 в закодированном сообщении.

Все кодируемые символы (буквы) разделяются на две группы так, что сумма вероятностей символов в первой группе равна сумме вероятностей символов второй группы (то есть вероятность того, что в сообщении встретится символ из первой группы, равна вероятности того, что в сообщении встретится символ из второй группы).

Для символов первой группы значение первого разряда кода присваивается равным «0», для символов второй группы – равными «1».

Далее каждая группа разделяется на две подгруппы, так чтобы суммы вероятностей знаков в каждой подгруппе были равны. Для символов первой подгруппы каждой группы значение второго разряда кода присваивается равным «0», для символов второй подгруппы каждой группы – «1». Такой процесс разбиения символов на группы и кодирования продолжается до тех пор, пока в подгруппах не остается по одному символу.

Пример кодирования символов русского алфавита приведен в табл. 4

Таблица 4. Пример кодирования букв русского алфавита с помощью кода Шеннна-Фано.

Анализ приведенных в таблице кодов приводит к выводу, что часто встречающиеся символы кодируются более короткими двоичными последовательностями, а редко встречающиеся - более длинными. Значит, в среднем для кодирования сообщения определенной длины потребуется меньшее число двоичных символов 0 и 1, чем при любом другом способе кодирования.

Вместе с тем процедура построения кода Шеннона-Фано удовлетворяет критерию различимости Фано. Код является префиксным и не требует специального символа, отделяющего буквы друг от друга для однозначного него декодирование двоичного сообщения.

Таким образом, проблема помехоустойчивого кодирования представляет собой обширную область теоретических и прикладных исследований. Основными задачами при этом являются следующие: отыскание кодов, эффективно исправляющих ошибки требуемого вида; нахождение методов кодирования и декодирования и простых способов их реализации.

Наиболее разработаны эти задачи применительно к систематическим кодам. Такие коды успешно применяются в вычислительной технике, различных автоматизированных цифровых устройствах и цифровых системах передачи информации.

Заключение

Мы рассмотрели задачу кодирования, которая включает в себя:

1.Обеспечение экономичности передачи информации посредством устранения избыточности.

2. Обеспечение надежности (помехоустойчивости) передачи информации

3.Согласование скорости передачи информации с пропускной способностью канала

Задача кодирования является одним из главных понятий информатики, так как кодирование предшествует передаче и хранению информации, и, соответственно, является основой их успешного осуществления.

При передаче сообщений по каналам связи могут возникать помехи, способные привести к искажению принимаемых знаков. Эта проблема решается с помощью помехоустойчивого кодирования. Помехоустойчивое кодирование передаваемой информации позволяет в приемной части системы обнаруживать и исправлять ошибки. Коды, применяемые при помехоустойчивом кодировании, называются корректирующими кодами. Впервые, исследование эффективного кодирования произвел Клод Шеннон. Для теории связи важнейшее значение имеют две теоремы, доказанные Шенноном.

В работе были рассмотрены эти теоремы, и можно прийти к выводу, что первая – затрагивает ситуацию с кодированием при передаче сообщения по линии связи, в которой отсутствуют помехи, искажающие информацию, т.е. эта теорема является эталоном, какими должны быть помехоустойчивые коды, Вторая теорема относится к реальным линиям связи с помехами.

Если рассмотреть примеры кодирования, на основе первой теоремы Шеннона, то можно прийти к выводам, что это кодирования является достаточно эффективным, так как получаемый код практически не имеет избыточности, но, к сожалению, в реальных линиях связи множество помех, и такой результат недостижим. Поэтому код Шеннона не является таким же эффективным как, например код Хафмена. Но, несмотря на это нужно отметить, что Клод Шеннон был одним из основателей теории кодирования и его работы внесли огромный вклад в развитие информатики.

Список литературы:

1. Журнал "Радио", номер 9, 1999г.

наук, г. Москва

2. Кловский Д.Д. Теория передачи сигналов. -М.: Связь, 1984.

3. Кудряшов Б.Д. Теория информации. Учебник для вузов Изд-во ПИТЕР,

4. Рябко Б.Я Фионов А.Н. Эффективный метод адаптивного

арифметического кодирования для источников с большими алфавитами

// Проблемы передачи информации 1999 Т.35, Вып С.95 - 108.

5. Семенюк В.В. Экономное кодирование дискретной информации СПб.:

СПбГИТМО (ТУ), 2001

6. Дмитриев В.И. Прикладная теория информации. М.: Высшая школа,

7. Нефедов В.Н Осипова В.А. Курс дискретной математики. М.: МАИ,

8. Колесник В.Д Полтырев Г.Ш. Курс теории информации. М.: Наука,