Тарифы Услуги Сим-карты

Введение в виртуальные Локальные Сети: (Virtual LAN). Новые сетевые архитектуры: открытые или закрытые решения

Еще одной новой проблемой, которую нужно учитывать при объединении трех и более компьютеров, является проблема их адресации, точнее адресации их сетевых интерфейсов. Один компьютер может иметь несколько сетевых интерфейсов. Например, для создания полносвязной структуры из N компьютеров необходимо, чтобы у каждого из них имелся N - 1 интерфейс.

По количеству адресуемых интерфейсов адреса можно классифицировать следующим образом:

Уникальный адрес (unicast) используется для идентификации отдельных интерфейсов;

Групповой адрес (multicast) идентифицирует сразу несколько интерфейсов, поэтому данные, помеченные групповым адресом, доставляются каждому из узлов,входящих в группу;

Данные, направленные по широковещательному адресу (broadcast), должны быть до ставлены всем узлам сети;

Адрес произвольной рассылки (anycast), определенный в новой версии протокола IPv6, так же, как и групповой адрес, задает группу адресов, однако данные, посланные по этому адресу, должны быть доставлены не всем адресам данной группы, а любому из них.

Адреса могут быть числовыми (например, 129.26.255.255 или 81.la.ff.fF) и символьными

(site.domen.ru, willi-winki) .

Символьные адреса (имена) предназначены для запоминания людьми и поэтому обычно несут смысловую нагрузку. Для работы в больших сетях символьное имя может иметь иерархическую структуру, например ftp-arch1 .ucl.ac.uk. Этот адрес говорит о том, что данный компьютер поддерживает ftp-архив в сети одного из колледжей Лондонского университета (University College London - ucl) и эта сеть относится к академической ветви (ас) Интернета Великобритании (United Kingdom - uk). При работе в пределах сети Лондонского университета такое длинное символьное имя явно избыточно и вместо него можно пользоваться кратким символьным именем ftp-arch 1. Хотя символьные имена удобны для людей, из-за переменного формата и потенциально большой длины их передача по сети не очень экономична.

Множество всех адресов, которые являются допустимыми в рамках некоторой схемы адресации, называется адресным пространством.

Адресное пространство может иметь плоскую (линейную) организацию (рис. 1) или иерархическую организацию (рис. 2). При плоской организации множество адресов никак не структурировано. Примером плоского числового адреса является МАС-адрес, предназначенный для однозначной идентификации сетевых интерфейсов в локальных сетях. Такой адрес обычно используется только аппаратурой, поэтому его стараются сделать по возможности компактным и записывают в виде двоичного или шестнадцатеричного числа, например 0081005е24а8. При задании МАС-адресов не требуется выполнение ручной работы, так как они обычно встраиваются в аппаратуру компанией-изготовителем, поэтому их называют также аппаратными адресами (hardware address). Использование плоских адресов является жестким решением - при замене аппаратуры, например сетевого адаптера, изменяется и адрес сетевого интерфейса компьютера.

При иерархической организации адресное пространство структурируется в виде вложенных друг в друга подгрупп, которые, последовательно сужая адресуемую область, в конце концов, определяют отдельный сетевой интерфейс. В показанной на рис. 2 трехуровневой структуре адресного пространства адрес конечного узла задается тремя составляющими: идентификатором группы (К), в которую входит данный узел, идентификатором подгруппы (I) и, наконец, идентификатором узла (и), однозначно определяющим его в подгруппе. Иерархическая адресация во многих случаях оказывается более рациональной, чем плоская. В больших сетях, состоящих из многих тысяч узлов, использование плоских адресов приводит к большим издержкам - конечным

узлам и коммуникационному оборудованию приходится оперировать таблицами адресов, состоящими из тысяч записей. В противоположность этому иерархическая система адресации позволяет при перемещении данных до определенного момента пользоваться только старшей составляющей адреса (например, идентификатором группы К), затем для дальнейшей локализации адресата задействовать следующую по старшинству часть (I)и в конечном счете - младшую часть (п).

Типичными представителями иерархических числовых адресов являются сетевые IP - и IPX-адреса. В них поддерживается двухуровневая иерархия, адрес делится на старшую часть - номер сети и младшую - номер узла. Такое деление позволяет передавать сообщения между сетями только на основании номера сети, а номер узла требуется уже после доставки сообщения в нужную сеть; точно так же, как название улицы используется почтальоном только после того, как письмо доставлено в нужный город.

На практике обычно применяют сразу несколько схем адресации, так что сетевой интерфейс компьютера может одновременно иметь несколько адресов-имен. Каждый адрес задействуется в той ситуации, когда соответствующий вид адресации наиболее удобен. А для преобразования адресов из одного вида в другой используются специальные вспомогательные протоколы, которые называют протоколами разрешения адресов. Пользователи адресуют компьютеры иерархическими символьными именами, которые автоматически заменяются в сообщениях, передаваемых по сети, иерархическими числовыми адресами. С помощью этих числовых адресов сообщения доставляются из одной сети в другую, а после доставки сообщения в сеть назначения вместо иерархического числового адреса используется плоский аппаратный адрес компьютера. Проблема установления соответствия между адресами различных типов может решаться как централизованными, так и распределенными средствами.

При централизованном подходе в сети выделяется один или несколько компьютеров (серверов имен), в которых хранится таблица соответствия имен различных типов, например символьных имен и числовых адресов. Все остальные компьютеры обращаются к серверу имен с запросами, чтобы по символьному имени найти числовой номер необходимого компьютера.

При распределенном подходе каждый компьютер сам хранит все назначенные ему адреса разного типа. Тогда компьютер, которому необходимо определить по известному иерархическому числовому адресу некоторого компьютера его плоский аппаратный адрес, посылает в сеть широковещательный запрос. Все компьютеры сети сравнивают содержащийся в запросе адрес с собственным. Тот компьютер, у которого обнаружилось совпадение, посылает ответ, содержащий искомый аппаратный адрес. Такая схема использована в протоколе разрешения адресов (Address Resolution Protocol, ARP) стека TCP/IP .

Достоинство распределенного подхода состоит в том, что он позволяет отказаться от выделения специального компьютера в качестве сервера имен, который, к тому же, часто требует ручного задания таблицы соответствия адресов. Недостатком его является необходимость широковещательных сообщений, перегружающих сеть. Именно поэтому распределенный подход используется в небольших сетях, а централизованный - в больших.

Конечной целью данных, пересылаемых по сети, являются не сетевые интерфейсы или компьютеры, а выполняемые на этих устройствах программы - процессы. Поэтому в адресе назначения наряду с информацией, идентифицирующей интерфейс устройства, должен указываться адрес процесса, которому предназначены посылаемые по сети данные.

Очевидно, что достаточно обеспечить уникальность адреса процесса в пределах компьютера. Примером адресов процессов являются номера портов TCP и UDP, используемые в стеке TCP/IP .

Подсети сегментируют сети на небольшие области, в которых используется свое собственное пространство, они являются аналогом классовых сетей, только содержащими меньше хостов. Для создания адресов подсетей, «заимствуются» часть битов из адреса хоста в IP адресе.

Сетевым администраторам часто необходимо разделять сети, особенно большие, на маленькие сети. Эти небольшие части сети называются подсетями (subnetworks или subnets), которые предоставляют возможность гибкой адресации. В этом разделе описываются назначение и функции подсетей и их схемы адресации.

Компания, занимающая трех этажное здание, может иметь сеть, разделенную по этажам, а затем на каждом этаже разбитую по офисам. Представим здание как сеть, этажи это три подсети, а офисы — персональные адреса хостов.

Подсеть разделяет хосты внутри сети. Без подсетей, сеть имеет плоскую топологию (flat topology). Плоская топология обладает небольшой таблицей маршрутизации, и она основывается на втором уровне на основе MAC адресов для доставки пакетов. MAC адреса имеет не иерархической структуру, однако, при росте сети, использование пропускной способности канала становится все менее эффективным.

Здесь приведены недостатки плоской сети:

Все устройства используют одну полосу пропускания.
Все устройства используют общий широковещательный домен уровня 2.
Сложно использовать политику безопасности, потому что нет границ между устройствами.

В Ethernet сети, соединенной концентраторами, каждый хост видит все пакеты данных отправляемых в сеть. В сети с коммутаторами хост будет видеть только все широковещательные рассылки. В ситуации, когда очень большой трафик, это может привести к увеличению коллизий. Коллизии происходят, когда два или более устройства передают данные одновременно в один сегмент сети. Устройства, обнаружившие коллизию, останавливают передачу, а затем начинают повторную отправку через случайный интервал времени. Для пользователей это процесс ощущается как замедление работы сети. В этой ситуации могут использоваться маршрутизаторы, выполняющие помимо других функций, разделение сетей на несколько подсетей.

Здесь приведен ряд преимуществ, которые получаются при разделении сети на подсети:

Небольшие сети проще в управлении и отображении по географическим или функциональным признакам.
Перегрузка сети уменьшается, что может улучшить характеристики.
Проще накладывать ограничения по безопасности при установке соединений между сетями, чем в целой сети.

При такой сетевой конфигурации, каждая подсеть может быть соединена к Интернету через один маршрутизатор. В этом примере, сеть подразделяется на несколько подсетей. Реальная внутренняя структура сети и каким образом сеть разделена на множество подсетей является неважным для других IP сетей.

Виртуализация

Виртуализация позволяет консолидировать серверы и повысить коэффициент использования оборудования, но, в то же время, увеличивает архитектурную сложность, создает новые проблемы управления сетями и может значительно повлиять на сетевой трафик. До внедрения виртуализации стоечный коммутатор (top of rack, ToR) для , мог обслуживать трафик 20-35 серверов. При виртуализации на каждом сервере обычно работает 4-10 виртуальных машин. В результате один коммутатор ToR поддерживает 80 - 350 приложений и становится в значительно большей степени подверженным пиковой нагрузке. Сетевую архитектуру нужно проектировать так, чтобы она справлялась с этим пиковым трафиком.

"Плоская сеть"

Миграция виртуальных машин на третьем сетевом уровне не поддерживается, поэтому возникает необходимость в создании "плоской" сети второго уровня. Такая сеть становится более простой, позволяет уменьшить задержки. При ее построении часто используются только коммутаторы ToR или EoR (end of row), соединяемые с коммутаторами ядра сети. В результате снижаются капитальные затраты, появляется возможность миграции ВМ в большой сети.

Чтобы способствовать реализации сетей второго уровня, предложено несколько протоколов, способных заменить протокол SPT (Spanning Tree Protocol), который снижает пропускную способность и становится неэффективным в крупных сетях второго уровня. TRILL (Transparent Interconnection of Lots of Links) предлагает новый способ многомаршутного балансирования нагрузки в сетях второго уровня и заменяет SPT. Кроме того, он исключает необходимость резервирования соединений для будущего использования.

В среде виртуализации используется такой подход как программные виртуальные коммутаторы, работающие на сервере и обслуживающие сетевые соединения ВМ. Однако каждый такой коммутатор - это сетевое устройство, и им нужно управлять, присваивать сетевые политики. Разработанные IEEE стандарт EVB (Edge Virtual Bridging) нацелен на решение проблем управления. EVB включает в себя две части - VEPA и VN-Tag. VEPA (Virtual Ethernet Port Aggregator) позволяет обойтись без виртуальных коммутаторов - все функции передаются физическому коммутатору. Политики безопасности, сетевых соединений и управления трафика задаются на уровне этого коммутатора. При увеличении числа ВМ возрастает и потребность в VEPA, поскольку программные коммутаторы загружают процессоры серверов. Перенос функций виртуальных коммутаторов на физические коммутаторы разгружает серверы и упрощает обеспечение QoS, безопасности и других параметров в рамках всей сетевой инфраструктуры. В дополнение к VEPA стандарт IEEE определяет также "многоканальный" VEPA, позволяющий определять на уровне одного физического соединения Ethernet несколько виртуальных каналов и управлять ими. VN-Tag - разработка Cisco, альтернативная VEPA, - определяет дополнительное поле заголовка кадра Ethernet для идентификации виртуальных интерфейсов. Cisco уже реализовала VN-Tag в некоторых продуктах.

Миграция ВМ

При миграции виртуальных машин в виртуализированном ЦОД мигрировать должны также VLAN и профили портов. Если осуществлять этот процесс вручную, то он сильно повлияет на гибкость центра данных. Проблему решает автоматизированная миграция, когда администратору сети не нужно переназначать VLAN и профили портов вручную.

Конвергенция сетей

Конвергенция - еще одна важная тенденция в сетях ЦОД. Она помогает объединить раздельные сети LAN и SAN, а унифицированная коммутация упрощает управление, позволяет сэкономить на оборудовании, электропитании и кабельной инфраструктуре. Ее обеспечивают три связанных друг с другом протокола - Fibre Channel over Ethernet (FCoE), Ethernet с усовершенствованием в виде Data Center Bridging (DCB) и 40/100GB Ethernet. FCoE инкапсулирует трафик Fibre Channel в Ethernet и позволяет одному коммутатору обслуживать трафик серверов и систем хранения. DCB превращает Ethernet в протокол без потерь, пригодный для трафика FCoE. Стандарты FCoE и DCB должны поддерживаться сетевыми платами и коммутаторами ЦОД. Переход на 40GB и 100GB Ethernet в конвергентных сетях ЦОД позволит передавать огромные объемы трафика. В ближайшем будущем серверы будут оснащаться сетевыми картами 10GbE. В коммутаторах ToR потребуется поддержка 40GB Ethernet для соединения с ядром сети.

Некоторые из перечисленных протоколов еще разрабатываются, однако именно они будут определять архитектуру сетей ЦОД в будущем. Перспектива ближайших двух лет - переход на 10GbE. Затем по мере снижения цен произойдет переход на 40/100GbE. В течение текущего года ожидается значительное снижение цен за порт 10GbE. Сетевая среда станет динамичной частью виртуальной инфраструктуры, определяющей будущие изменения в ЦОД.

По материалам издательства "Открытые системы".


Количество показов: 4346

Введение в виртуальные Локальные Сети: (Virtual LAN)
В коммутируемых сетях уровня 2 сеть представляется "плоской" (см. рис.1). Любой широковещательный пакет пересылается всем устройствам, вне зависимости от того, нужно ли устройству принимать эти данные.

Поскольку коммутация на уровне 2 формирует отдельные домены конфликтов для каждого подключенного к переключателю устройства, снижаются ограничения на длину сегмента Ethernet, т.е. можно строить более крупные сети. Увеличение количества пользователей и устройств приводит к увеличению количества широковещательных рассылок и пакетов, обрабатываемых каждым устройством. Еще одной проблемой "плоской" коммутации уровня 2 является безопасность сети. Имейте в виду, что все пользователи "видят" все устройства. Нельзя отменить широковещательные рассылки в устройстве и ответы пользователей на эти рассылки. Увеличить уровень безопасности позволяет защита паролями серверов и других устройств. Создание виртуальной локальной сети VLAN помогает решить многие проблемы коммутации уровня 2, что и будет показано ниже.

Широковещательные рассылки свойственны любому протоколу, но их частота зависит от особенностей протокола, исполняемых в объединенной сети приложений и методов использования сетевых служб. Иногда приходится переписывать старые приложения, чтобы сократить количество широковещательных рассылок. Однако приложения нового поколения требовательны к полосе пропускания и занимают все ресурсы, которые обнаруживают. Мультимедийные приложения интенсивно пользуются широковещательными и многоадресными рассылками. На степень интенсивности широковещательных рассылок приложения влияют сбои оборудования, неадекватная сегментация и плохо разработанные брандмауэры. Во время проектирования сети рекомендуется принимать специальные меры, поскольку широковещательные рассылки распространяются по коммутируемой сети. По умолчанию маршрутизаторы возвращают такие рассылки только в исходную сеть, но переключатели направляют широковещательные рассылки во все сегменты. Именно поэтому сеть называется "плоской", ведь формируется единый домен широковещательных рассылок. Сетевой администратор обязан гарантировать правильность сегментации сети, чтобы проблемы отдельного сегмента не распространялись на всю сеть. Эффективнее всего сделать это с помощью коммутации и маршрутизации. Поскольку переключатель имеет лучшее отношение стоимости к эффективности, многие компании переходят от "плоских" сетей к сетям с полной коммутацией или к сетям VLAN. Все устройства сети VLAN являются членами одного широковещательного домена и получают все широковещательные рассылки. По умолчанию широковещательные рассылки фильтруются на всех портах переключателей, которые не являются членами одной сети VLAN. Маршрутизаторы, переключатели уровня 3 и модули коммутации путей RSM (route switch module) надо использовать совместно с переключателями, чтобы предоставить соединения между сетями VLAN и предотвращения распространения по всей сети широковещательных рассылок. Безопасность Еще одной проблемой плоских сетей является безопасность, что определяется соединением концентраторов и переключателей через маршрутизаторы. Защита сети обеспечивается маршрутизаторами. Однако любой человек, подключившийся к физической сети, получает доступ к ее ресурсам. Кроме того, пользователь может подключить сетевой анализатор к концентратору и наблюдать весь сетевой трафик. Дополнительная проблема связана с включением пользователя в рабочую группу - достаточно подключить сетевую станцию к концентратору. Использование VLAN и создание нескольких групп широковещательных рассылок позволит администратору управлять каждым портом и пользователем. Пользователи уже не смогут самостоятельно подключать свои рабочие станции к произвольному порту переключателя и получать доступ к сетевым ресурсам. Администратор контролирует каждый порт и все предоставляемые пользователям ресурсы. Группы формируются на основе требований пользователей к сетевым ресурсам, поэтому переключатель можно настроить на режим уведомления сетевой станции управления о любых попытках неавторизованного доступа к сетевым ресурсам. Если присутствуют коммуникации между сетями VLAN, можно реализовать ограничения на доступ через маршрутизаторы. Ограничения накладываются на аппаратные адреса, протоколы и приложения. Гибкость и масштабируемость Переключатель уровня 2 не фильтрует, а только читает кадры, поскольку не анализирует сведения протокола сетевого уровня. Это приводит к перенаправлению переключателем всех широковещательных рассылок. Однако создание сети VLAN формирует домены широковещательных рассылок. Эти рассылки из узла одной сети VLAN не будут направлены в порты другой сети VLAN. За счет присваивания коммутируемых портов и пользователей определенной группе VLAN одного переключателя или группы связанных переключателей (такая группа называется фабрикой коммутации - switch fabric) мы увеличиваем гибкость при добавлении пользователя только в один домен широковещательной рассылки, причем вне зависимости от физического местоположения пользователя. Это предотвращает распространение во всей объединенной сети шторма широковещательных рассылок при неисправности сетевого адаптера (NIC, network interface card) или приложения. Когда сеть VLAN становится очень большой, можно сформировать новые сети VLAN, не позволив широковещательным рассылкам занять слишком много полосы пропускания. Чем меньше пользователей в сети VLAN, тем на меньшее количество пользователей действуют широковещательные рассылки. Для понимания того, как VLAN выглядит с точки зрения переключателя, полезно сначала рассмотреть обычные локализованные магистрали. На рис. 2 показана локализованная магистраль (collapsed backbone), созданная за счет подключения физических локальных сетей к маршрутизатору. Каждая сеть подключена к маршрутизатору и имеет собственный логический номер сети. Каждый узел отдельной физической сети должен соблюдать этот сетевой номер для взаимодействия в полученной объединенной сети. Рассмотрим ту же схему на основе переключателя. Рис. 3 показывает, как переключатель устраняет физические границы взаимодействия в объединенной сети. Переключатель обладает большей гибкостью и масштабируемостью, чем маршрутизатор. Можно группировать пользователей в сообщества по интересам, что называется организационной структурой сети VLAN.

Использование переключателя вроде бы отменяет необходимость в маршрутизаторе. Это не так. На рис. 3 видны четыре сети VLAN (домены широковещательных рассылок). Узлы в каждой сети VLAN могут взаимодействовать друг с другом, но не с другими сетями VLAN или с их узлами. Во время конфигурации VLAN узлы должны находиться в пределах локализованной магистрали (см. рис. 2). Что же нужно хосту на рис. 2 для обращения к узлу "или хосту другой сети? Хосту необходимо обратиться через маршрутизатор или другое устройство уровня 3, как и при коммуникации внутри VLAN (см. рис. 3). Взаимодействие между сетями VLAN, как и между физическими сетями, должно проводиться через устройство уровня 3.

Членство в сети VLAN

Сеть VLAN обычно создается администратором, который присваивает ей порты переключателя. Такой способ называется статической виртуальной локальной, сетью (static VLAN) . Если администратор немного постарается и присвоит через базу данных аппаратные адреса всех хостов, переключатель можно настроить на динамическое создание сети VLAN. Статические сети VLAN Статические сети VLAN являются типичным способом формирования.таких сетей и отличаются высокой безопасностью. Присвоенные сети VLAN порты переключателей всегда сохраняют свое действие, пока администратор не выполнит новое присваивание портов. Этот тип VLAN легко конфигурировать и отслеживать, причем статические VLAN хорошо подходят для сетей, где контролируется перемещение пользователей. Программы сетевого управления помогут выполнить присваивание портов. Однако подобные программы использовать не обязательно. Динамические сети VLAN Динамические сети VLAN автоматически отслеживают присваивание узлов. Использование интеллектуального программного обеспечения сетевого управления допускает формирование динамических VLAN на основе аппаратных адресов (MAC), протоколов и даже приложений. Предположим, МАС-адрес был введен в приложение централизованного управления VLAN. Если порт будет затем подключен к неприсвоенному порту переключателя, база данных управления VLAN найдет аппаратный адрес, присвоит его и сконфигурирует порт переключателя для нужной сети VLAN. Это упрощает административные задачи по управлению и настройке. Если пользователь перемещается в другое место сети, порт переключателя будет автоматически присвоен снова в нужную сеть VLAN. Однако для первоначального наполнения базы данных администратору придется поработать.

Администраторы сетей Cisco могут пользоваться службой VMPS (VLAN Management Policy Server, сервер политики управления виртуальной локальной сетью) для установки базы данных МАС-адресов, которая используется при создании динамических сетей VLAN. VMPS - это база данных для преобразования МАС-адресов в сети VLAN.

Идентификация сетей VLAN Сеть VLAN может распространяться на несколько соединенных переключателей. Устройства в такой коммутационной фабрике отслеживает как сами кадры, так и их принадлежность определенной сети VLAN. Для этого выполняется маркирование кадров (frame tagging). Переключатели смогут направлять кадры в соответствующие порты. В такой среде коммутации существуют два разных типа связей: Связи доступа (Access link) Связи, принадлежащие только одной сети VLAN и считающиеся основной связью отдельного порта переключателя. Любое устройство, подключенное к связи доступа, не подозревает о своем членстве в сети VLAN. Это устройство считает себя частью широковещательного домена, но не подозревает о реальном членстве в физической сети. Переключатели удаляют всю информацию о VLAN еще до передачи кадра в связь доступа. Устройства на связях доступа не могут взаимодействовать с устройствами вне своей сети VLAN, если только пакеты не проходят через маршрутизатор. Магистральные связи (Trunk link) Магистральные линии способны обслуживать несколько сетей VLAN. Название этих линий заимствовано из телефонных систем, где магистральные линии способны одновременно передавать несколько телефонных переговоров. В компьютерных сетях магистральные линии служат для связи переключателей с переключателями, маршрутизаторами и даже с серверами. В магистральных связях поддерживаются только протоколы Fast Ethernet или Gigabit Ethernet. Для идентификации в кадре принадлежности к определенной сети VLAN, построенной на технологии Ethernet, переключатель Cisco поддерживает две разные схемы идентификации: ISL и 802. lq. Магистральные связи служат для транспорта VLAN между устройствами и могут настраиваться на поддержку всех или только нескольких сетей VLAN. Магистральные связи сохраняют принадлежность к "родной" VLAN (т.е. виртуальной локальной сети по умолчанию), которая используется при отказе магистральной линии.

Маркировка кадров

Переключателю объединенной сети необходимо отслеживать пользователей и кадры, которые проходят через коммутационную фабрику и сеть VLAN. Коммутационной фабрикой называют группу переключателей, совместно использующих одинаковую информацию о сети VLAN. Идентификация {маркировка) кадров предполагает присваивание кадрам уникального идентификатора, определенного пользователем. Часто это называют присваиванием VLAN ID или присваиванием цвета. Компания Cisco разработала метод маркировки кадров, используемый для передачи кадров Ethernet по магистральным связям. Маркер (тег) сети VLAN удаляется перед выходом кадра из магистральной связи. Любой получивший кадр переключатель обязан идентифицировать VLAN ID, чтобы определить дальнейшие действия с кадром на основе таблицы фильтрации. Если кадр попадает в переключатель, подключенный к другой магистральной связи, кадр направляется в порт этой магистральной линии. Когда кадр попадает в конец магистральной связи и должен поступить в связь доступа, переключатель удаляет идентификатор VLAN. Оконечное устройство получит кадр без какой-либо информации о сети VLAN.

Методы идентификации VLAN

Для отслеживания кадров, перемещающихся через коммутационную фабрику, используется идентификатор VLAN. Он отмечает принадлежность кадров определенной сети VLAN . Существует несколько методов отслеживания кадров в магистральных связях: Протокол ISL Протокол ISL (Inter-Switch Link - связи между переключателями) лицензирован для переключателей компании Cisco и используется только в линиях сетей FastEthernet и Gigabit Ethernet. Протокол может применяться к порту переключателя, интерфейсу маршрутизатора или интерфейсу сетевого адаптера на сервере, который является магистральным. Такой магистральный сервер пригоден для создания сетей VLAN, не нарушающих правила "80/20". Магистральный сервер одновременно является членом всех сетей VLAN (доменов широковещательных рассылок). Пользователям не нужно пересекать устройство уровня 3 для доступа к серверу, совместно используемому в организации. IEEE 802.1q Протокол создан институтом IEEE в качестве стандартного метода маркирования кадров. Протокол предполагает вставку в кадр дополнительного поля для идентификации VLAN. Для создания магистральной связи между коммутируемыми линиями Cisco и переключателем другого производителя придется использовать протокол 802.lq, который обеспечит работу магистральной связи. LANE Протокол эмуляции локальной сети LANE (LAN emulation) служит для взаимодействия нескольких VLAN поверх ATM. 802.10 (FDDI) Позволяет пересылать информацию VLAN поверх FDDL. Использует поле SAID в заголовке кадра для идентификации VLAN. Протокол лицензирован для устройств Cisco. Протокол ISL Протокол ISL (Inter-Switch Link) является способом явного маркирования информации о VLAN в кадрах Ethernet. Маркировка позволяет мультиплексировать VLAN в магистральных линиях с помощью внешнего метода инкапсуляции. За счет LSL можно обеспечить межсоединения нескольких переключателей при сохранении информации о VLAN, причем при перемещении трафика как через переключатель, так и по магистральной связи. Протокол ISL характеризуется небольшой задержкой и высокой производительностью на уровне линий связи для FastEthernet в полу и полнодуплексном режиме. Протокол ISL разработан компанией Cisco, поэтому ISL считают лицензионным только для устройств Cisco. Если необходим нелицензионный протокол для VLAN, используйте 802.lq (см. в книге CCNP: Switching Study Guide). ISL является внешним процессом маркирования, т.е. исходный кадр никак не изменяется, но дополняется новым 26-байтным заголовком ISL. Кроме того, в конец кадра вставляется второе 4-байтное поле проверочной последовательности кадра FCS (frame check sequence). Поскольку кадр инкапсулируется, прочитать его смогут только устройства, поддерживающие протокол ISL. Кадры не должны превышать 1522 байтов. Получившее кадр ISL устройство может посчитать этот кадр слишком большим, учитывая, что в Ethernet максимальная длина сегмента равна 1518 байт. В портах нескольких VLAN (магистральные порты) каждый кадр маркируется при поступлении в переключатель. Сетевой адаптер (NIC, network interface card), поддерживающий протокол ISL, позволяет серверу получать и отправлять маркированные кадры для нескольких сетей VLAN. Причем кадры могут проходить по нескольким VLAN без пересечения маршрутизатора, что снижает задержку. Такая технология может использоваться в сетевых зондах и анализаторах. Пользователь сможет подключиться к серверу, не пересекая маршрутизатор при каждом обращении к любому информационному ресурсу. Например, сетевой администратор может п ользоваться технологией ISL для одновременного включения файлового сервера в несколько сетей VLAN.Важно понять, что информация протокола ISL о VLAN добавляется в кадр только при перенаправлении в порт, настроенный на режим магистральной связи. Инкапсуляция ISL удаляется из кадра, как только он попадает в связь доступа. Магистральные связи Магистральные линии являются соединениями "точка-точка" на скорости 100- или 1000 Мбит/с между двумя переключателями, между переключателем и маршрутизатором или между переключателем и сервером. Магистральные связи способны доставлять трафик в несколько сетей VLAN (одновременно поддерживается от 1 до 1005 сетей). Не допускается работа магистральных связей в линиях 10 Мбит /с. Магистральная связь позволяет одновременно сделать порт членом нескольких сетей VLAN, чтобы, например, магистральный сервер смог одновременно находиться в двух широковещательных доменах. Пользователи смогут не пересекать устройство уровня 3 (маршрутизатор) при входе и использовании сервера. Кроме того, при соединении переключателей магистральная связь позволит переносить по линии отдельную или всю информацию VLAN. Если не сформировать магистральную связь между переключателями, то по умолчанию эти устройства смогут передавать по связи только информацию одной сети VLAN. Все сети VLAN конфигурируются с магистральными связями, если только они не создаются администратором вручную. Переключатели Cisco используют протокол DTP (Dynamic Trunking Protocol, протокол динамических магистральных взаимодействий) для управления отказом от магистрального режима в программном двигателе переключателя Catalyst версии 4.2 или выше и использования протокола ISL или 802.lq. DTP - это протокол "точка-точка", который создан для передачи информации о магистральных связях по магистральным линиям 802. lq.