Тарифы Услуги Сим-карты

Чему равен закон ома. Школьная энциклопедия. История закона Ома

Мы начинаем публикацию материалов новой рубрики “” и в сегодняшней статье речь пойдет о фундаментальных понятиях, без которых не проходит обсуждение ни одного электронного устройства или схемы. Как вы уже догадались, я имею ввиду ток, напряжение и сопротивление 😉 Кроме того, мы не обойдем стороной закон, который определяет взаимосвязь этих величин, но не буду забегать вперед, давайте двигаться постепенно.

Итак, давайте начнем с понятия напряжения .

Напряжение.

По определению напряжение – это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т. е. первая точка имеет более отрицательный потенциал по сравнению со второй). Из курса физики мы помним, что потенциал электростатического поля – это скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду. Давайте рассмотрим небольшой пример:

В пространстве действует постоянное электрическое поле, напряженность которого равна E . Рассмотрим две точки, расположенные на расстоянии d друг от друга. Так вот напряжение между двумя точками представляет из себя ни что иное, как разность потенциалов в этих точках:

В то же время не забываем про связь напряженности электростатического поля и разности потенциалов между двумя точками:

И в итоге получаем формулу, связывающую напряжение и напряженность:

В электронике, при рассмотрении различных схем, напряжение все-таки принято считать как разность потенциалов между точками. Соответственно, становится понятно, что напряжение в цепи – это понятие, связанное с двумя точками цепи. То есть говорить, к примеру, “напряжение в резисторе” – не совсем корректно. А если говорят о напряжении в какой-то точке, то подразумевают разность потенциалов между этой точкой и “землей” . Вот так плавно мы вышли к еще одному важнейшему понятию при изучении электроники, а именно к понятию “земля” 🙂 Так вот “землей” в электрических цепях чаще всего принято считать точку нулевого потенциала (то есть потенциал этой точки равен 0).

Давайте еще пару слов скажем о единицах, которые помогают охарактеризовать величину напряжения . Единицей измерения является Вольт (В) . Глядя на определение понятия напряжения мы можем легко понять, что для перемещения заряда величиной 1 Кулон между точками, имеющими разность потенциалов 1 Вольт , необходимо совершить работу, равную 1 Джоулю . С этим вроде бы все понятно и можно двигаться дальше 😉

А на очереди у нас еще одно понятие, а именно ток .

Ток, сила тока в цепи.

Что же такое электрический ток ?

Давайте подумаем, что будет происходить если под действие электрического поля попадут заряженные частицы, например, электроны…Рассмотрим проводник, к которому приложено определенное напряжение :

Из направления напряженности электрического поля (E ) мы можем сделать вывод о том, что title="Rendered by QuickLaTeX.com" height="16" width="60" style="vertical-align: -4px;"> (вектор напряженности всегда направлен в сторону уменьшения потенциала). На каждый электрон начинает действовать сила:

Где e – это заряд электрона.

И поскольку электрон является отрицательно заряженной частицей, то вектор силы будет направлен в сторону противоположную направлению вектора напряженности поля. Таким образом, под действием силы частицы наряду с хаотическим движением приобретают и направленное (вектор скорости V на рисунке). В результате и возникает электрический ток 🙂

Ток – это упорядоченное движение заряженных частиц под воздействием электрического поля.

Важным нюансом является то, что принято считать, что ток протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, несмотря на то, что электрон перемещается в противоположном направлении.

Носителями заряда могут выступать не только электроны. Например, в электролитах и ионизированных газах протекание тока в первую очередь связано с перемещением ионов, которые являются положительно заряженными частицами. Соответственно, направление вектора силы, действующей на них (а заодно и вектора скорости) будет совпадать с направлением вектора E . И в этом случае противоречия не возникнет, ведь ток будет протекать именно в том направлении, в котором движутся частицы 🙂

Для того, чтобы оценить ток в цепи придумали такую величину как сила тока. Итак, сила тока (I ) – это величина, которая характеризует скорость перемещения электрического заряда в точке. Единицей измерения силы тока является Ампер . Сила тока в проводнике равна 1 Амперу , если за 1 секунду через поперечное сечение проводника проходит заряд 1 Кулон .

Мы уже рассмотрели понятия силы тока и напряжения , теперь давайте разберемся каким образом эти величины связаны. И для этого нам предстоит изучить, что же из себя представляет сопротивление проводника .

Сопротивление проводника/цепи.

Термин “сопротивление ” уже говорит сам за себя 😉

Итак, сопротивление физическая величина, характеризующая свойства проводника препятствовать (сопротивляться ) прохождению электрического тока.

Рассмотрим медный проводник длиной l с площадью поперечного сечения, равной S :

Сопротивление проводника зависит от нескольких факторов:

Удельное сопротивление – это табличная величина.

Формула, с помощью которой можно вычислить сопротивление проводника выглядит следующим образом:

Для нашего случая будет равно 0,0175 (Ом * кв. мм / м) – удельное сопротивление меди. Пусть длина проводника составляет 0.5 м , а площадь поперечного сечения равна 0.2 кв. мм . Тогда:

Как вы уже поняли из примера, единицей измерения сопротивления является Ом 😉

С сопротивлением проводника все ясно, настало время изучить взаимосвязь напряжения, силы тока и сопротивления цепи .

И тут на помощь нам приходит основополагающий закон всей электроники – закон Ома:

Сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению рассматриваемого участка цепи.

Рассмотрим простейшую электрическую цепь:

Как следует из закона Ома напряжение и сила тока в цепи связаны следующим образом:

Пусть напряжение составляет 10 В, а сопротивление цепи равно 200 Ом. Тогда сила тока в цепи вычисляется следующим образом:

Как видите, все несложно 🙂

Пожалуй на этом мы и закончим сегодняшнюю статью, спасибо за внимание и до скорых встреч! 🙂

В природе существует два основных вида материалов, проводящие ток и не проводящие (диэлектрики). Отличаются эти материалы наличием условий для перемещения в них электрического тока (электронов).

Из токопроводящих материалов (медь, алюминий, графит, и многие другие), делают электрические проводники, в них электроны не связаны и могут свободно перемещаться.

В диэлектриках электроны привязаны к атомам намертво, поэтому ток в них течь не может. Из них делают изоляцию для проводов, детали электроприборов.

Для того чтобы электроны начали перемещаться в проводнике (по участку цепи пошел ток), им нужно создать условия. Для этого в начале участка цепи должен быть избыток электронов, а в конце – недостаток. Для создания таких условий используют источники напряжения – аккумуляторы, батарейки, электростанции.

В 1827 году Георг Симон Ом открыл закон силы электрического тока. Его именем назвали Закон и единицу измерения величины сопротивления. Смысл закона в следующем.

Чем толще труба и больше давление воды в водопроводе (с увеличением диаметра трубы уменьшается сопротивление воде) – тем больше потечет воды. Если представить, что вода это электроны (электрический ток), то, чем толще провод и больше напряжение (с увеличением сечения провода уменьшается сопротивление току) – тем больший ток будет протекать по участку цепи.

Сила тока, протекающая по электрической цепи, прямо пропорциональна приложенному напряжению и обратно пропорциональна величине сопротивления цепи.

Где I – сила тока, измеряется в амперах и обозначается буквой А ; U В ; R – сопротивление, измеряется в омах и обозначается .

Если известны напряжение питания U и сопротивление электроприбора R , то с помощью выше приведенной формулы, воспользовавшись онлайн калькулятором, легко определить силу протекающего по цепи тока I .

С помощью закона Ома рассчитываются электрические параметры электропроводки, нагревательных элементов, всех радиоэлементов современной электронной аппаратуры, будь то компьютер, телевизор или сотовый телефон.

Применение закона Ома на практике

На практике часто приходится определять не силу тока I , а величину сопротивления R . Преобразовав формулу Закона Ома, можно рассчитать величину сопротивления R , зная протекающий ток I и величину напряжения U .

Величину сопротивления может понадобится рассчитать, например, при изготовлении блока нагрузок для проверки блока питания компьютера. На корпусе блока питания компьютера обычно есть табличка, в которой приведен максимальный ток нагрузки по каждому напряжению. Достаточно в поля калькулятора ввести данные величины напряжения и максимальный ток нагрузки и в результате вычисления получим величину сопротивления нагрузки для данного напряжения. Например, для напряжения +5 В при максимальной величине тока 20 А, сопротивление нагрузки составит 0,25 Ом.

Формула Закона Джоуля-Ленца

Величину резистора для изготовления блока нагрузки для блока питания компьютера мы рассчитали, но нужно еще определить какой резистор должен быть мощности? Тут поможет другой закон физики, который, независимо друг от друга открыли одновременно два ученых физика. В 1841 году Джеймс Джоуль, а в 1842 году Эмиль Ленц. Этот закон и назвали в их честь – Закон Джоуля-Ленца .

Потребляемая нагрузкой мощность прямо пропорциональна приложенной величине напряжения и протекающей силе тока. Другими словами, при изменении величины напряжения и тока будет пропорционально будет изменяться и потребляемая мощность.

где P – мощность, измеряется в ваттах и обозначается Вт ; U – напряжение, измеряется в вольтах и обозначается буквой В ; I – сила ток, измеряется в амперах и обозначается буквой А .

Зная напряжения питания и силу тока, потребляемую электроприбором, можно по формуле определить, какую он потребляет мощность. Достаточно ввести данные в окошки ниже приведенного онлайн калькулятора.

Закон Джоуля-Ленца позволяет также узнать силу тока, потребляемую электроприбором зная его мощность и напряжение питания. Величина потребляемого тока необходима, например, для выбора сечения провода при прокладке электропроводки или для расчета номинала .

Например, рассчитаем потребляемый ток стиральной машины. По паспорту потребляемая мощность составляет 2200 Вт, напряжение в бытовой электросети составляет 220 В. Подставляем данные в окошки калькулятора, получаем, что стиральная машина потребляет ток величиной 10 А.

Еще один пример, Вы решили в автомобиле установить дополнительную фару или усилитель звука. Зная потребляемую мощность устанавливаемого электроприбора легко рассчитать потребляемый ток и правильно подобрать сечение провода для подключения к электропроводке автомобиля. Допустим, дополнительная фара потребляет мощность 100 Вт (мощность установленной в фару лампочки), бортовое напряжение сети автомобиля 12 В. Подставляем значения мощности и напряжения в окошки калькулятора, получаем, что величина потребляемого тока составит 8,33 А.

Разобравшись всего в двух простейших формулах, Вы легко сможете рассчитать текущие по проводам токи, потребляемую мощность любых электроприборов – практически начнете разбираться в основах электротехники.

Преобразованные формулы Закона Ома и Джоуля-Ленца

Встретил в Интернете картинку в виде круглой таблички, в которой удачно размещены формулы Закона Ома и Джоуля-Ленца и варианты математического преобразования формул. Табличка представляет собой несвязанные между собой четыре сектора и очень удобна для практического применения

По таблице легко выбрать формулу для расчета требуемого параметра электрической цепи по двум другим известным. Например, нужно определить ток потребления изделием по известной мощности и напряжению питающей сети. По таблице в секторе тока видим, что для расчета подойдет формула I=P/U.

А если понадобится определить напряжение питающей сети U по величине потребляемой мощности P и величине тока I, то можно воспользоваться формулой левого нижнего сектора, подойдет формула U=P/I.

Подставляемые в формулы величины должны быть выражены в амперах, вольтах, ваттах или Омах.

Такими как электрический ток, напряжение, сопротивление и мощность. Настал черед основных электрических законов, так сказать, базиса, без знания и понимания которых невозможно изучение и понимание электронных схем и устройств.

Закон Ома

Электрический ток, напряжение, сопротивление и мощность, безусловно, между собой связаны. А взаимосвязь между ними описывается, без сомнения, самым главным электрическим закономзаконом Ома . В упрощенном виде этот закон называется: закон Ома для участка цепи. И звучит этот закон следующем образом:

«Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи».

Для практического применения формулу закона Ома можно представить в виде вот такого треугольника, который помимо основного представления формулы, поможет определить и остальные величины.

Работает треугольник следующим образом. Чтобы вычислить одну из величин, достаточно закрыть ее пальцем. Например:

В предыдущей статье мы проводили аналогию между электричеством и водой , и выявили взаимосвязь между напряжением, током и сопротивлением. Также хорошей интерпретацией закона Ома может послужить следующий рисунок, наглядно отображающий сущность закона:

На нем мы видим, что человечек «Вольт» (напряжение) проталкивает человечка «Ампера» (ток) через проводник, который стягивает человечек «Ом» (сопротивление). Вот и получается, что чем сильнее сопротивление сжимает проводник, тем тяжелее току через него проходить («сила тока обратно пропорциональна сопротивлению участка цепи» – или чем больше сопротивление, тем хуже приходится току и тем он меньше). Но напряжение не спит и толкает ток изо всех сил (чем выше напряжение, тем больше ток или – «сила тока в участке цепи прямо пропорциональна напряжению»).

Когда фонарик начинает слабо светить, мы говорим – «разрядилась батарейка». Что с ней произошло, что значит разрядилась? А значит это, что напряжение батарейки снизилось и оно больше не в состоянии «помогать» току преодолевать сопротивление цепей фонарика и лампочки. Вот и получается, что чем больше напряжение – тем больше ток.

Последовательное подключение – последовательная цепь

При последовательном подключении потребителей, например обычных лампочек, сила тока в каждом потребителе одинаковая, а вот напряжение будет отличаться. На каждом из потребителей напряжение будет падать (снижаться).

А закон Ома в последовательной цепи будет иметь вид:

При последовательном соединении сопротивления потребителей складываются. Формула для расчета общего сопротивления:

Параллельное подключение – параллельная цепь

При параллельном подключении, к каждому потребителю прикладывается одинаковое напряжение, а вот ток через каждый из потребителей, в случае, если их сопротивление отличается – будет отличаться.

Закон Ома для параллельной цепи, состоящей из трех потребителей, будет иметь вид:

При параллельном соединении общее сопротивление цепи всегда будет меньше значения самого маленького отдельного сопротивления. Или еще говорят, что «сопротивление будет меньше наименьшего».

Общее сопротивление цепи, состоящей из двух потребителей, при параллельном соединении:

Общее сопротивление цепи, состоящей из трех потребителей, при параллельном соединении:


Для большего числа потребителей расчет производится исходя из того, что при параллельном соединении проводимость (величина обратная сопротивлению) рассчитывается как сумма проводимостей каждого потребителя.

Электрическая мощность

Мощность – это физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Рассчитывается мощность по следующей формуле:

Таким образом зная, напряжение источника и измерив потребляемый ток, мы можем определить мощность потребляемую электроприбором. И наоборот, зная мощность электроприбора и напряжение сети, можем определить величину потребляемого тока. Такие вычисления порой необходимы. Например, для защиты электроприборов используются предохранители или автоматические выключатели. Чтобы правильно подобрать средство защиты нужно знать потребляемый ток. Предохранители, применяемые в бытовой технике, как правило подлежат ремонту и для их восстановления достаточно

Что же собой представляет закон Ома для полной цепи? Итак, это формула, в которой наглядно видна связь основных параметров электрической цепи: тока, напряжения и сопротивления. Для того чтобы понять суть закона, давайте для начала разберемся с некоторыми понятиями.

Что называют электрической цепью?

Электроцепь - это путь в электрической схеме, которым протекают заряды (электрические элементы, провода и другие устройства). Конечно же, ее началом считается источник электропитания. Под воздействием электромагнитного поля, фотонных явлений или химических процессов электрические заряды стремятся перейти на противоположную клемму этого источника электропитания.

Что такое электрический ток?

Направленное движение заряженных частиц при воздействии на них электрического поля либо других сторонних сил и называется электрическим током. Его направление определяется направленностью протонов (положительных зарядов). Ток будет постоянным, если с течением времени не изменилась ни его сила, ни направление.

История закона Ома

При проведении экспериментов с проводником физику Георгу Ому удалось установить, что сила тока пропорциональна напряжению, которое приложено к его концам:

I / sim U или I = G / U,

где G - электропроводность, а величина R = 1 / G - электрическое сопротивление проводника. Это открытие было установлено знаменитым немецким физиком в 1827 году.

Законы Ома

Для полной цепи определение будет следующим: сила тока в электроцепи равна отношению электродвижущей силы (далее ЭДС) источника к сумме сопротивлений:

I = E / (R + r),

где R - сопротивление внешней цепи, а r - внутреннее сопротивление Довольно часто формулировка закона вызывает затруднения, поскольку не всем знакомо понятие ЭДС, ее отличие от напряжения, далеко не все знают, что означает и откуда появляется внутреннее сопротивление. Для этого и нужны пояснения, ведь закон Ома для полной цепи имеет глубокий смысл.

Формулировку закона для участка цепи можно назвать прозрачной. Речь идет о том, что для ее понимания не нужны дополнительные разъяснения: ток в цепи прямо пропорционален напряжению и обратно пропорционален сопротивлению:

Смысл

Закон Ома для полной цепи прочно связан с законом сохранения энергии. Давайте предположим, что источник тока не имеет внутреннего сопротивления. Что же в таком случае должно происходить? Оказывается, если бы отсутствовало сопротивление, то во внешнюю цепь отдавался бы ток большей величины, соответственно и мощность была бы большей.

Теперь пришло время разобраться с понятием электродвижущей силы. Эта величина представляет собой разность между электрическими потенциалами на клеммах источника, но только без какой-либо нагрузки. В качестве примера давайте возьмем напор воды в приподнятом баке. Уровень воды будет находиться на месте, пока ее не начнут расходовать. При открытии крана уровень жидкости будет уменьшаться, поскольку нет подкачки. Попадая в трубу, вода испытывает сопротивление, то же самое происходит и с электрическими зарядами в проводе.

При отсутствии нагрузок, клеммы находятся в разомкнутом состоянии, получается, что ЭДС и напряжение совпадают по величине. Если же мы, к примеру, включим лампочку, цепь замкнется, а электродвижущая сила создаст напряжение в ней, выполняя полезную работу. Часть энергии из-за внутреннего сопротивления рассеется (это называют потерями).

В том случае, если сопротивление потребителя меньше внутреннего, то на источнике тока выделяется большая мощность. И тогда происходит падение ЭДС во внешней цепи, а на внутреннем сопротивлении теряется существенная часть энергии. Суть законов сохранения заключается в том, что природа не может взять больше, чем отдать.

Хорошо знакома сущность внутреннего сопротивления обитателям «хрущевок», у которых в квартирах имеются кондиционеры, а старая проводка так и не была заменена. Электрический счетчик вращается с бешеной скоростью, нагревается розетка и стена в тех местах, где проходят старые алюминиевые провода, в результате чего кондиционер еле-еле охлаждает воздух в помещении.

Природа r

«Полный Ом» (как привыкли закон называть электрики) плохо понимается, поскольку у внутреннего сопротивления источника, как правило, не электрическая природа. Давайте разберемся с этим на примере солевой батарейки. Известно, что электрическая батарея состоит из нескольких элементов, мы же будем рассматривать лишь один. Итак, у нас имеется готовая батарея «Крона», состоящая из 7 последовательно соединенных элементов.

Как же происходит выработка тока? В сосуд с электролитом поместим угольный стержень в марганцевой оболочке, состоящий из положительных электродов или анодов. Конкретно в данном примере угольный стержень выступает токосъемником. Металлический цинк составляют отрицательные электроды (катоды). В покупных батарейках, как правило, гелевый электролит. Жидкий используется очень редко. В качестве отрицательного электрода выступает цинковый стаканчик с электролитом и анодами.

Оказывается, секрет батарейки кроется в том, что у марганца электрический потенциал не так высок, как у цинка. Поэтому электроны притягиваются к катоду, а он, в свою очередь, отталкивает положительно заряженные ионы цинка к аноду. В результате катод постепенно расходуется. Пожалуй, каждый знает, что если севшую батарейку своевременно не заменить, то она может потечь. С чем же это связано? Все очень просто: через разъединенный стаканчик начнет вытекать электролит.

При движении зарядов на угольном стержне в марганцевой оболочке накапливаются положительные заряды, в то время как на цинке собираются отрицательные. Поэтому их и называют анодом и катодом, однако внутри батарейки выглядят иначе. Разность между зарядами и создаст электродвижущую силу Заряды прекратят движение в электролите, когда разность потенциалов материала электрода приравняется к величине ЭДС, а силы притяжения будут равны силам отталкивания.

Давайте теперь замкнем цепь: для этого достаточно подключить лампочку к батарейке. Проходя через искусственный источник света, заряды будут возвращаться каждый на свое место («дом»), а лампочка загорится. Внутри батарейки снова начнется движение электронов и ионов, поскольку заряды ушли наружу, и снова появилась притягивающая или отталкивающая сила.

На самом деле батарейка вырабатывает ток, почему и светится лампочка, происходит это за счет расхода цинка, превращающегося при этом процессе в иные химические соединения. Для извлечения чистого цинка, согласно закону сохранения энергии, нужно ее затратить, но не в электрическом виде (ровно столько же, сколько было отдано лампочке).

Теперь наконец-то мы можем разобраться с природой внутреннего сопротивления источника. В батарейке - это препятствие движению больших ионов. Движение электронов без ионов невозможно, потому что отсутствует сила притяжения.

В промышленных генераторах r появляется не только из-за электрического сопротивления обмоток, но и за счет внешних причин. Так, к примеру, в гидроэлектростанциях значение величины зависит от КПД турбины, сопротивления тока воды в водоводе, а также от потерь в механической передаче. Кроме того, некоторое влияние оказывает температура воды и то, насколько она заилена.

Переменный ток

Мы уже рассмотрели закон Ома для всей цепи для постоянного тока. Как же изменится формула при переменном токе? Прежде чем мы это узнаем, давайте охарактеризуем само понятие. Переменный ток - это движение электрически заряженных частиц, направление и значение которых изменяется с течением времени. В отличие от постоянного он сопровождается дополнительными факторами, порождающими новый вид сопротивления (реактивного). Свойственно оно конденсаторам и катушкам индуктивности.

Закон Ома для полной цепи для переменного тока имеет вид:

где Z - комплексное сопротивление, состоящее из активных и реактивных.

Не все так плохо

Закон Ома для полной цепи, помимо того что указывает на потери энергии, еще и подсказывает способы их устранения. Обычные электрики редко используют формулу нахождения комплексного сопротивления при наличии в схеме емкостей или индуктивностей. В большинстве случае ток измеряют клещами или специальным тестером. А когда известно напряжение, можно без затруднений вычислить комплексное сопротивление (если это действительно необходимо).

Если изолированный проводник поместить в электрическое поле \(\overrightarrow{E} \), то на свободные заряды \(q\) в проводнике будет действовать сила \(\overrightarrow{F} = q\overrightarrow{E}\) В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, скомпенсирует полностью внешнее поле. Результирующее электростатическое поле внутри проводника будет равно нулю.

Однако, в проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда.

Направленное движение заряженных частиц называется электрическим током.

За направление электрического тока принято направление движения положительных свободных зарядов. Для существования электрического тока в проводнике необходимо создать в нем электрическое поле.

Количественной мерой электрического тока служит сила тока \(I\) - скалярная физическая величина, равная отношению заряда \(\Delta q\), переносимого через поперечное сечение проводника (рис. 1.8.1) за интервал времени \(\Delta t\), к этому интервалу времени:

$$I = \frac{\Delta q}{\Delta t} $$

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным .

В Международной системе единиц СИ сила тока измеряется в Амперах (А). Единица измерения тока 1 А устанавливается по магнитному взаимодействию двух параллельных проводников с током.

Постоянный электрический ток может быть создан только в замкнутой цепи , в которой свободные носители заряда циркулируют по замкнутым траекториям. Электрическое поле в разных точках такой цепи неизменно во времени. Следовательно, электрическое поле в цепи постоянного тока имеет характер замороженного электростатического поля. Но при перемещении электрического заряда в электростатическом поле по замкнутой траектории, работа электрических сил равна нулю. Поэтому для существования постоянного тока необходимо наличие в электрической цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения . Такие устройства называются источниками постоянного тока . Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами .

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Источник тока в электрической цепи играет ту же роль, что и насос, который необходим для перекачивания жидкости в замкнутой гидравлической системе. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.

Физическая величина, равная отношению работы \(A_{ст}\) сторонних сил при перемещении заряда \(q\) от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

$$ЭДС=\varepsilon=\frac{A_{ст}}{q}. $$

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в Вольтах (В).

При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа сторонних сил равна сумме ЭДС, действующих в этой цепи, а работа электростатического поля равна нулю.

Цепь постоянного тока можно разбить на отдельные участки. Те участки, на которых не действуют сторонние силы (т. е. участки, не содержащие источников тока), называются однородными . Участки, включающие источники тока, называются неоднородными .

При перемещении единичного положительного заряда по некоторому участку цепи работу совершают как электростатические (кулоновские), так и сторонние силы. Работа электростатических сил равна разности потенциалов \(\Delta \phi_{12} = \phi_{1} - \phi_{2}\) между начальной (1) и конечной (2) точками неоднородного участка. Работа сторонних сил равна по определению электродвижущей силе \(\mathcal{E}\), действующей на данном участке. Поэтому полная работа равна

$$U_{12} = \phi_{1} - \phi_{2} + \mathcal{E}$$

Величину U 12 принято называть напряжением на участке цепи 1-2. В случае однородного участка напряжение равно разности потенциалов:

$$U_{12} = \phi_{1} - \phi_{2}$$

Немецкий физик Г. Ом в 1826 году экспериментально установил, что сила тока \(I\), текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению \(U\) на концах проводника:

$$I = \frac{1}{R} U; \: U = IR$$

где \(R\) = const.

Величину R принято называть электрическим сопротивлением . Проводник, обладающий электрическим сопротивлением, называется резистором . Данное соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

В СИ единицей электрического сопротивления проводников служит Ом (Ом). Сопротивлением в 1 Ом обладает такой участок цепи, в котором при напряжении 1 В возникает ток силой 1 А.

Проводники, подчиняющиеся закону Ома, называются линейными . Графическая зависимость силы тока \(I\) от напряжения \(U\) (такие графики называются вольт-амперными характеристиками , сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при токах достаточно большой силы наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Для участка цепи, содержащего ЭДС, закон Ома записывается в следующей форме:

$$IR = U_{12} = \phi_{1} - \phi_{2} + \mathcal{E} = \Delta \phi_{12} + \mathcal{E}$$
$$\color{blue}{I = \frac{U}{R}}$$

Это соотношение принято называть обобщенным законом Ома или законом Ома для неоднородного участка цепи .

На рис. 1.8.2 изображена замкнутая цепь постоянного тока. Участок цепи (cd ) является однородным.

Рисунок 1.8.2.

Цепь постоянного тока

По закону Ома

$$IR = \Delta\phi_{cd}$$

Участок (ab ) содержит источник тока с ЭДС, равной \(\mathcal{E}\).

По закону Ома для неоднородного участка,

$$Ir = \Delta \phi_{ab} + \mathcal{E}$$

Сложив оба равенства, получим:

$$I(R+r) = \Delta\phi_{cd} + \Delta \phi_{ab} + \mathcal{E}$$

Но \(\Delta\phi_{cd} = \Delta \phi_{ba} = -\Delta \phi_{ab}\).

$$\color{blue}{I=\frac{\mathcal{E}}{R + r}}$$

Эта формула выражает закон Ома для полной цепи : сила тока в полной цепи равна электродвижущей силе источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи (внутреннего сопротивления источника).

Сопротивление r неоднородного участка на рис. 1.8.2 можно рассматривать как внутреннее сопротивление источника тока . В этом случае участок (ab ) на рис. 1.8.2 является внутренним участком источника. Если точки a и b замкнуть проводником, сопротивление которого мало по сравнению с внутренним сопротивлением источника (\(R\ \ll r\)), тогда в цепи потечет ток короткого замыкания

$$I_{кз}=\frac{\mathcal{E}}{r}$$

Сила тока короткого замыкания - максимальная сила тока, которую можно получить от данного источника с электродвижущей силой \(\mathcal{E}\) и внутренним сопротивлением \(r\). У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик и вызывать разрушение электрической цепи или источника. Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер). Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей.

В ряде случаев для предотвращения опасных значений силы тока короткого замыкания к источнику последовательно подсоединяется некоторое внешнее сопротивление. Тогда сопротивление r равно сумме внутреннего сопротивления источника и внешнего сопротивления, и при коротком замыкании сила тока не окажется чрезмерно большой.

Если внешняя цепь разомкнута, то \(\Delta \phi_{ba} = -\Delta \phi_{ab} = \mathcal{E}\), т. е. разность потенциалов на полюсах разомкнутой батареи равна ее ЭДС.

Если внешнее нагрузочное сопротивление R включено и через батарею протекает ток I , разность потенциалов на ее полюсах становится равной

$$\Delta \phi_{ba} = \mathcal{E} - Ir$$

На рис. 1.8.3 дано схематическое изображение источника постоянного тока с ЭДС равной \(\mathcal{E}\) и внутренним сопротивлением r в трех режимах: «холостой ход», работа на нагрузку и режим короткого замыкания (к. з.). Указаны напряженность \(\overrightarrow{E}\) электрического поля внутри батареи и силы, действующие на положительные заряды:\(\overrightarrow{F}_{э}\) - электрическая сила и \(\overrightarrow{F}_{ст}\) - сторонняя сила. В режиме короткого замыкания электрическое поле внутри батареи исчезает.

Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы - вольтметры и амперметры .

Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов. Любой вольтметр обладает некоторым внутренним сопротивлением \(R_{В}\). Для того, чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен. Для цепи, изображенной на рис. 1.8.4, это условие записывается в виде:

$$R_{В} \gg R_{1}$$

Это условие означает, что ток \(I_{В} = \Delta \phi_{cd} / R_{В}\), протекающий через вольтметр, много меньше тока \(I = \Delta \phi_{cd} / R_{1}\), который протекает по тестируемому участку цепи.

Поскольку внутри вольтметра не действуют сторонние силы, разность потенциалов на его клеммах совпадает по определению с напряжением. Поэтому можно говорить, что вольтметр измеряет напряжение.

Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением \(R_{А}\). В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи. Для цепи на рис. 1.8.4 сопротивление амперметра должно удовлетворять условию

$$R_{А} \ll (r + R_{1} + R{2})$$

чтобы при включении амперметра ток в цепи не изменялся.

Измерительные приборы - вольтметры и амперметры - бывают двух видов: стрелочные (аналоговые) и цифровые. Цифровые электроизмерительные приборы представляют собой сложные электронные устройства. Обычно цифровые приборы обеспечивают более высокую точность измерений.