Тарифы Услуги Сим-карты

Чертеж жесткого диска. Как работает жесткий диск компьютера

Лекция №5: Накопители информации

План

1. Жесткие диски
2. Твердотельные накопители

1. Жесткие диски

Историческая справка

В ходе развития жёстких дисков сменилось шесть типоразмеров – форм-факторов.

Рисунок 1. Типоразмеры HDD

1956 год – жёсткий диск IBM 350 в составе первого серийного компьютера IBM 305 RAMAC. Накопитель занимал ящик размером с большой холодильник и имел вес 971 кг, а общий объём памяти 50 вращавшихся в нём покрытых чистым железом тонких дисков диаметром 610 мм составлял около 5 миллионов 6-битных байт (3,5 Мб в пересчёте на 8-битные байты).
1980 год – первый 5,25-дюймовый Winchester, Shugart ST-506, 5 Мб.
1981 год – 5,25-дюймовый Shugart ST-412, 10 Мб.
1986 год – стандарты SCSI, ATA(IDE).
1991 год – максимальная ёмкость 100 Мб.
1995 год – максимальная ёмкость 2 Гб.
1997 год – максимальная ёмкость 10 Гб.
1998 год – стандарты UDMA/33 и ATAPI.
1999 год – IBM выпускает Microdrive ёмкостью 170 и 340 Мб.
2002 год – стандарт ATA/ATAPI-6 и накопители емкостью свыше 137 Гб.
2003 год – появление SATA.
2005 год – максимальная ёмкость 500 Гб.
– стандарт Serial ATA 3G (или SATA II), появление SAS (Serial Attached SCSI).
2006 год – применение перпендикулярного метода записи в коммерческих накопителях.
– появление первых «гибридных» жёстких дисков, содержащих блок флэш-памяти.
2007 год – Hitachi представляет первый коммерческий накопитель ёмкостью 1 Тб.
2009 год – на основе 500-гигабайтных пластин Western Digital, затем Seagate Technology LLC выпустили модели ёмкостью 2 Тб.
– Western Digital объявила о создании 2,5-дюймовых HDD объемом 1 Тб (плотность записи - 333 Гб на одной пластине)
– появление стандарта SATA 3.0 (SATA 6G).
2010 год – компания Seagate приступает к разработки HDD объемом 3ТБ.

Определение и устройство HDD
Накопитель на жёстких магнитных дисках или НЖМД (англ. Hard Disk Drive, HDD ), жёсткий диск , винчестер , в компьютерном сленге «винт» , хард , хард диск – устройство хранения информации, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

Принципиально HDD состоит из следующих основных блоков:
Блок электроники включает в себя контакты и микросхему, на которой расположены: контроллер управления HDD, разъемы питания, блок перемычек, разъем для шлейфов (интерфейс подключения).
Механический блок состоит из магнитных пластин, шпинделя, коромысла, осей вращения коромысла, сервопривода коромысла, головок чтения и записи.
Корпус – это конструкция в которой расположены все элементы HDD.

Рисунок 2. Схема устройства HDD

Рисунок 3. Устройство HDD

Принципы хранения информации на HDD
Информация в НЖМД записывается на жёсткие (алюминиевые, керамические или стеклянные) пластины, покрытые слоем ферромагнитного материала (оксид железа), чаще всего двуокиси хрома. В НЖМД используется от одной до нескольких пластин на одной оси.
Данные хранятся на пластинах в виде концентрических дорожек, каждая из которых разделена на секторы по 512 байт, состоящие из горизонтально ориентированных доменов. Ориентация доменов в магнитном слое служит для распознавания двоичной информации (0 или 1). Размер доменов определяет плотность записи данных с целью, адресации пространства поверхности пластин диска, которые делятся на дорожки – концентрические кольцевые области. Каждая дорожка делится на равные отрезки – секторы .

Цилиндр – совокупность дорожек, равноотстоящих от центра, на всех рабочих поверхностях пластин жёсткого диска. Номер головки задает используемую рабочую поверхность (то есть конкретную дорожку из цилиндра), а номер сектора – конкретный сектор на дорожке.

Организация считывания/записи данных происходит благодаря головкам чтения/записи (ГЧЗ). В рабочем режиме ГЧЗ не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм ). Отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной зоне (зона парковки), где исключён их нештатный контакт с поверхностью дисков.

Рисунок 4. Организация пластин HDD.

Режимы адресации

Существует 2 основных способа адресации секторов на диске: цилиндр-головка-сектор (англ. cylinder head sector , CHS ) и линейная адресация блоков (англ. linear block addressing , LBA ).

CHS
При этом способе сектор адресуется по его физическому положению на диске 3 координатами - номером цилиндра , номером головки и номером сектора . В современных дисках со встроенными контроллерами эти координаты уже не соответствуют физическому положению сектора на диске и являются «логическими координатами»
Адресация CHS предполагает, что все дорожки в заданной зоне диска имеют одинаковое число секторов. Чтобы использовать адресацию CHS, необходимо знать геометрию используемого диска: общее количество цилиндров, головок и секторов в нем. Первоначально эту информацию требовалось задавать вручную; в стандарте ATA – была введена функция авто определения геометрии (команда Identify Drive).

LBA
При этом способе адрес блоков данных на носителе задаётся с помощью логического линейного адреса. LBA-адресация начала внедряться и использоваться в 1994 году совместно со стандартом EIDE (Extended IDE). Стандарты ATA требуют однозначного соответствия между режимами CHS и LBA:
LBA = [ (Cylinder * no of heads + heads) * sectors/track ] + (Sector-1)
Метод LBA соответствует Sector Mapping для SCSI. BIOS SCSI-контроллера выполняет эти задачи автоматически, то есть для SCSI-интерфейса метод логической адресации был характерен изначально.
Характеристики HDD

В настоящее время выделяют следующие характеристики HDD:

Интерфейс (англ. interface ) – совокупность линий связи, сигналов, посылаемых по этим линиям, технических средств, поддерживающих эти линии правил (протокола) обмена.
Серийно выпускаемые жёсткие диски могут использовать интерфейсы:

Ёмкость (англ. capacity ) - количество данных, которые могут храниться накопителем. С момента создания первых жестких дисков в результате непрерывного совершенствования технологии записи данных их максимально возможная емкость непрерывно увеличивается. Ёмкость современных жестких дисков (с форм-фактором 3.5 дюйма) на начало 2010г. достигает 2000 Гб (2 Терабайта). Однако компания Seagate подтвердила разработку HDD с объемом 3ТБ.

Примечание: в отличие от принятой в информатике системы приставок, обозначающих кратную 1024 величину (см.: двоичные приставки), производителями при обозначении ёмкости жёстких дисков используются величины, кратные 1000. Так, ёмкость жёсткого диска, маркированного как «200 ГБ», составляет 186,2 ГБ.

Физический размер (форм-фактор) (англ. dimension ). Почти все современные (2001-2008 года) накопители для персональных компьютеров и серверов имеют ширину либо 3.5, либо 2.5 дюйма - под размер стандартных креплений для них соответственно в настольных компьютерах и ноутбуках. Также получили распространение форматы 1.8 дюйма, 1.3 дюйма, 1 дюйм и 0.85 дюйма. Прекращено производство накопителей в форм-факторах 8 и 5.25 дюймов.

Время произвольного доступа (англ. random access time ) - время, за которое винчестер гарантированно выполнит операцию чтения или записи на любом участке магнитного диска. Диапазон этого параметра невелик - от 2,5 до 16 мс. Как правило, минимальным временем обладают серверные диски (например, у Hitachi Ultrastar 15K147 — 3,7 мс), самым большим из актуальных - диски для портативных устройств (Seagate Momentus 5400.3 - 12,5).

Скорость вращения шпинделя (англ. spindle speed ) - количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и средняя скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки), 5400, 7200 и 10 000 (персональные компьютеры), 10 000 и 15 000 об/мин (серверы и высокопроизводительные рабочие станции).

Надёжность (англ. reliability ) - определяется как среднее время наработки на отказ (MTBF ). Также подавляющее большинство современных дисков поддерживают технологию S.M.A.R.T.

Количество операций ввода-вывода в секунду - у современных дисков это около 50 оп./с при произвольном доступе к накопителю и около 100 оп./сек при последовательном доступе.

Потребление энергии - важный фактор для мобильных устройств.

Уровень шума - шум, который производит механика накопителя при его работе. Указывается в децибелах. Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже. Шум состоит из шума вращения шпинделя (в том числе аэродинамического) и шума позиционирования.

Сопротивляемость ударам (англ. G shock rating ) - сопротивляемость накопителя резким скачкам давления или ударам, измеряется в единицах допустимой перегрузки во включённом и выключенном состоянии.

Скорость передачи данных (англ. Transfer Rate ) при последовательном доступе:

  • внутренняя зона диска: от 44,2 до 74,5 Мб/с;
  • внешняя зона диска: от 60,0 до 111,4 Мб/с.

Объём буфера - буфером называется промежуточная память, предназначенная для сглаживания различий скорости чтения/записи и передачи по интерфейсу. В дисках 2009 года он обычно варьируется от 8 до 64 Мб.

Плотность записи на пластине (поверхностная плотность) зависит от расстояния между дорожками (поперечная плотность) и минимального размера магнитного домена (продольная плотность). Обобщающим критерием выступает плотность записи на единицу площади диска или емкость пластины. Чем выше плотность записи, тем больше скорость обмена данными между головками и буфером (внутренняя скорость передачи данных). Постепенно резервы роста, обусловленные отмеченным выше технологическим скачком, пошли на убыль. К 2003 г. типовая емкость пластин жестких дисков достигла 80 Гбайт. В 2004 г. появились диски с пластинами емкостью 100 Мбайт, в 2005 г. — 133 Мбайт, в 2009 – 333ГБ

Минимальной адресуемой областью данных на жёстком диске является сектор . Размер сектора традиционно равен 512 байт. В 2006 году IDEMA объявила о переходе на размер сектора 4096 байт, который планируется завершить к 2010 году.

В окончательной версии Windows Vista, вышедшей в 2007 году, присутствует ограниченная поддержка дисков с таким размером сектора.

Технологии записи данных на жесткие диски

Принцип работы жёстких дисков похож на работу магнитофонов. Рабочая поверхность диска движется относительно считывающей головки (например, в виде катушки индуктивности с зазором в магнитопроводе). При подаче переменного электрического тока (при записи) на катушку головки, возникающее переменное магнитное поле из зазора головки воздействует на ферромагнетик поверхности диска и изменяет направление вектора намагниченности доменов в зависимости от величины сигнала. При считывании перемещение доменов у зазора головки приводит к изменению магнитного потока в магнитопроводе головки, что приводит к возникновению переменного электрического сигнала в катушке из-за эффекта электромагнитной индукции.

В последнее время для считывания применяют магниторезистивный эффект и используют в дисках магниторезистивные головки. В них изменение магнитного поля приводит к изменению сопротивления, в зависимости от изменения напряженности магнитного поля. Подобные головки позволяют увеличить вероятность достоверности считывания информации (особенно при больших плотностях записи информации).

Метод параллельной записи
Биты информации записываются с помощью маленькой головки, которая, проходя над поверхностью вращающегося диска, намагничивает миллиарды горизонтальных дискретных областей - доменов. Каждая из этих областей является логическим нулём или единицей, в зависимости от намагниченности.

Максимально достижимая при использовании данного метода плотность записи составляет около 23 Гбит/см². В настоящее время происходит постепенное вытеснение данного метода методом перпендикулярной записи.

Метод перпендикулярной записи
Метод перпендикулярной записи - это технология, при которой биты информации сохраняются в вертикальных доменах. Это позволяет использовать более сильные магнитные поля и снизить площадь материала, необходимую для записи 1 бита. Плотность записи у современныхобразцов - 60 Гбит/см². Жёсткие диски с перпендикулярной записью доступны на рынке с 2005 года.

Метод тепловой магнитной записи
Метод тепловой магнитной записи (англ. Heat- assisted magnetic recording, HAMR ) на данный момент самый перспективный из существующих, сейчас он активно разрабатывается. При использовании этого метода используется точечный подогрев диска, который позволяет головке намагничивать очень мелкие области его поверхности. После того, как диск охлаждается, намагниченность «закрепляется». На рынке ЖД данного типа пока не представлены (на 2009 год), есть лишь экспериментальные образцы, плотность записи которых 150 Гбит/см². Разработка HAMR-технологий ведется уже довольно давно, однако эксперты до сих пор расходятся в оценках максимальной плотности записи. Так, компания Hitachi называет предел в 2,3−3,1 Тбит/см², а представители Seagate Technology предполагают, что они смогут довести плотность записи HAMR-носители до 7,75 Тбит/см². Широкого распространения данной технологии следует ожидать в 2011-2012 годах.

Технология RAID

RAID (англ. redundant array of independent/inexpensive disks) избыточный массив независимых/недорогих жёстких дисков - матрица из нескольких дисков управляемых контроллером, взаимосвязанных скоростными каналами и воспринимаемых как единое целое. В зависимости от типа используемого массива может обеспечивать различные степени отказоустойчивости и быстродействия. Служит для повышения надёжности хранения данных и/или для повышения скорости чтения/записи информации (RAID 0).

RAID 0

RAID 0 («Striping») представляет собой дисковый массив из 2 или более дисков, в котором информация разбита на блоки А n и последовательно записана на жесткие диски. Соответственно информация записывается и читается одновременно, что увеличивает скорость.

Рисунок 5. Схема RAID 0

К сожалению, при отказе одного из дисков информация необратимо теряется, поэтому применяется либо в домашних условиях, либо для хранения файла подкачки, своп файла.

RAID 1

RAID 1 (Mirroring — «зеркалирование»). В данном случае один диск полностью повторяет другой, что гарантирует работоспособность при поломке одного диска, но объем полезного пространства уменьшается вдвое. Поскольку диски покупаются одновременно, в случае бракованной партии возможен отказ обоих дисков. Скорость записи приблизительно равна скорости записи на один диск, возможно чтение сразу с двух дисков (если контроллер поддерживает данную функцию), что увеличивает скорость.

Рисунок 6. Схема RAID 1

Применяется чаще всего в малых офисах под базы данных, либо для хранения операционной системы.

RAID 10

RAID 10 (RAID 1+0). Сочетает в себе принципы RAID 0 и RAID 1. При его применении каждый жесткий диск имеет свою «зеркальную пару», при это используется половина полезного объема. Работоспособен пока существует один рабочий диск из каждой пары. Наиболее высокие показатели записи/перезаписи, сопоставимы с RAID 5 по скорости чтения. Применяется для хранения баз данных, при высокой нагрузке.

RAID 5

RAID 5. В данном случае все данные разбиваются на блоки и для каждого набора считается контрольная сумма, которая хранится на одном из дисков – циклически записывается на все диски массива (попеременно на каждый), и используется для восстановления данных. Устойчив к потере не более чем одного диска.

Рисунок 7. Схема RAID 5

RAID 5 имеет высокие показатели чтения – информация считывается почти со всех дисков, но уменьшенную производительность при записи – требуется вычислять контрольную сумму. Но самая критичная операция перезапись, так как она проходит в несколько этапов:
1) Чтение данных
2) Чтение контрольной суммы
3) Сравнение новых и старых данных
4) Запись новых данных
5) Запись новой контрольной суммы
6) Применяются при необходимости большого объема, и высокой скорости чтения.

RAID 6

RAID 6 (ADG). Логическое продолжение RAID 5. Отличие заключается в том что контрольная сумма высчитывается 2 раза, и, как следствие имеет большую надежность (устойчив при поломке более 2 дисков), и меньшую производительность.

Рисунок 8. Схема RAID 6

Организация работы RAID обеспечивается RAID-контроллерами, которые могут быть: встроенными в материнскую плату, внутренними (в виде платы) и внешними.

Рисунок 9. Внутренний RAID контроллер

Два или более дисков подключаются к контроллеру в сервере либо внешняя дисковая полка подключается к контроллеру, в зависимости от выбранного уровня отказоустойчивости, защищает от поломки одного или более дисков, сохраняя работоспособность.

При наличии энергонезависимого кэша и использовании SAS дисков, защищает от проблем, связанных с перебоями электропитания, за исключением тех случаев, когда происходит электрическое повреждение оборудование. Но при повреждении сервера возможна потеря данных.

Защищает данные от:
— аппаратных проблем — отказ, порча, поломка оборудования. Частично, только от отказа жестких дисков;
— сбои электропитания – частично, защищает данные, хранимые в буфере контроллера в очереди на запись, но ограниченное время и только при наличии аккумулятора на контроллере.

Не защищает от:
— программных сбоев;
— человеческого фактора;
— инфраструктурных проблем (хотя все соединения, как правило, находятся внутри сервера);
— аварий;
— катастроф.

Основная цель применения – защита данных от потери при отказе жесткого диска, так же, одна из причин внедрения — потребность в повышенной производительности дисковой подсистемы.

RAID контроллеры поставляют многие компании: IBM, DELL, SUN, HP, Adaptec, 3ware, LSI, и прочие.

Внешний RAID массив

Рисунок 10. Внешний RAID массив

Начальный уровень. Диски и контроллер вынесены в отдельную внешнюю систему. Один или несколько серверов могут быть подключены к внешнему массиву различными интерфейсами, к примеру SAS, iSCSI, FC. Почти все такие системы имеют дублирование вентиляторов и блоков питания, многие предусматривают возможность установки дублирующего контроллера. Сами по себе, внешние RAID массивы более производительны и надежны по сравнению с внутренними RAID контроллерами и могут расширяться до более чем сотни дисков (при помощи дисковых полок).

На данный момент во многих моделях есть продвинутые средства мониторинга и управления, как самим массивом, так и данными на нём. Средства контроля за состоянием дисков заранее оповещают о возможном отказе, большинство достойных производителей меняют диски только на основании данных сообщений, до факта неработоспособности. У некоторых моделей есть возможно делать мгновенные снимки – (snapshot), что позволяет защитить данные и упрощает резервное копирование.

Защищает данные от:
— аппаратных проблем – частично, при наличии дублирования всех систем.
— Программных сбоев – частично, некоторые массивы обладают функциями создания мгновенных копий, что поможет создавать множественные снимки;
— инфраструктурных проблем – защищают при условии дублирования всех массивов вне сервера;
— сбои электропитания – частично, защищает данные в буфере контроллера на запись при наличии аккумулятора. Наличие дублированных блоков питания гарантирует большую надежность.

Не защищают от:
— человеческого фактора;
— аварий;
— катастроф.

Причиной внедрения является либо потребность в консолидации ресурсов хранения, их более простом управлении, возможности одновременного доступа (например, при создании кластера), либо потребность в высокой производительности, либо потребность в большей надежности (дублирование путей к контроллеру).

Типичные представители класса: Xyratex 5xxx/6xxx, Dell MD3000, IBM 3XXX, HP MSA 2000.

2. Твердотельные накопители

Рисунок 11. Накопитель SSD

Твердотельный накопитель (англ. SSD, solid-state drive) – компьютерное запоминающее устройство на основе микросхем памяти, управляемые контроллером. SSD накопители не содержат движущихся механических частей.

Различают два вида твердотельных накопителей: SSD на основе памяти, подобной оперативной памяти компьютеров, и SSD на основе флэш-памяти.

В настоящее время твердотельные накопители используются в компактных устройствах: ноутбуках, нетбуках, коммуникаторах и смартфонах. Некоторые известные производители переключились на выпуск твердотельных накопителей уже полностью, например, копания Samsung в 2011 году продала бизнес по производству жёстких дисков компании Seagate.

Существуют гибридные жесткие диски, такие устройства сочетают в одном устройстве накопитель на жёстких магнитных дисках (HDD) и твердотельный накопитель относительно небольшого объёма, в качестве кэша (для увеличения производительности и срока службы устройства, снижения энергопотребления). Пока, такие диски используются, в основном, в переносных устройствах (ноутбуках, сотовых телефонах и т. п.).

Рисунок 12. Гибридный накопитель Seagate Momentus XT 500 GB

Рисунок 13. Гибридный накопитель Seagate Momentus XT 500 GB

Рисунок 14. Блок электроники гибридного накопителя Seagate Momentus XT 500 GB

История развития

1978 год – американская компания StorageTek разработала первый полупроводниковый накопитель современного типа (основанный на RAM-памяти).
1982 год – американская компания Cray представила полупроводниковый накопитель на RAM-памяти для своих суперкомпьютеров Cray-1 со скоростью 100 МБит/с и Cray X-MP со скоростью 320 МБит/с, объемом 8, 16 или 32 миллиона 64 разрядных слов.
1995 год – израильская компания M-Systems представила первый полупроводниковый накопитель на flash-памяти.
2008 год – Южнокорейской компании Mtron Storage Technology удалось создать SSD накопитель со скоростью записи 240 МБ/с и скоростью чтения 260 МБ/с, который она продемонстрировала на выставке в Сеуле. Объём данного накопителя - 128 ГБ. По заявлению компании, выпуск таких устройств начнётся уже в 2009 году.
2009 год – Super Talent Technology выпустила SSD объёмом 512 гигабайт., OCZ представляет SSD объёмом 1 терабайт.

В настоящее время наиболее заметными компаниями, которые интенсивно развивают SSD-направление в своей деятельности, можно назвать Intel, Kingston, Samsung Electronics, SanDisk, Corsair, Renice, OCZ Technology, Crucial и ADATA. Кроме того, свой интерес к этому рынку демонстрирует Toshiba.

Устройство и функционирование

SSD накопители бывают двух типов:

NAND SSD
NAND SSD – накопители, построенные на использовании энергонезависимой памяти (NAND SSD), появились относительно недавно с гораздо более низкой стоимостью (от 2 долларов США за гигабайт), и, начали уверенное завоевание рынка. До недавнего времени существенно уступали традиционным накопителям – жестким дискам – в скорости записи, но компенсировали это высокой скоростью поиска информации (начального позиционирования). Сейчас уже выпускаются твердотельные накопители Flash со скоростью чтения и записи, в разы превосходящие возможности жестких дисков. Характеризуются относительно небольшими размерами и низким энергопотреблением.

RAM SSD
RAM SSD– это накопители, построенные на использовании энергозависимой памяти (такой же, какая используется в ОЗУ ПК) характеризуются сверхбыстрыми чтением, записью и поиском информации. Основным их недостатком является чрезвычайно высокая стоимость (от 80 до 800 долларов США за Гигабайт). Используются, в основном, для ускорения работы крупных систем управления базами данных и мощных графических станций. Такие накопители, как правило, оснащены аккумуляторами для сохранения данных при потере питания, а более дорогие модели - системами резервного и/или оперативного копирования.

Преимущества и недостатки
Преимущества , по сравнению с жёсткими дисками (HDD):

  • отсутствие движущихся частей;
  • высокая скорость чтения/записи, нередко превосходящая пропускную способность интерфейса жесткого диска (SAS/SATA II 3 Gb/s, SAS/SATA III 6 Gb/s, SCSI, Fibre Channel и т. д.);
  • низкое энергопотребление;
  • полное отсутствие шума из-за отсутствия движущихся частей и охлаждающих вентиляторов;
  • высокая механическая стойкость;
  • широкий диапазон рабочих температур;
  • стабильность времени считывания файлов вне зависимости от их расположения или фрагментации;
  • малые габариты и вес;
  • большой модернизационный потенциал как у самих накопителей так и у технологий их производства.
  • намного меньшая чувствительность к внешним электромагнитным полям.

Недостатки :

  • Главный недостаток SSD - ограниченное количество циклов перезаписи. Обычная (MLC, Multi-level cell, многоуровневые ячейки памяти) флеш-память позволяет записывать данные примерно 10 000 раз. Более дорогостоящие виды памяти (SLC, Single-level cell, одноуровневые ячейки памяти) - более 100 000 раз Для борьбы с неравномерным износом применяются схемы балансирования нагрузки. Контроллер хранит информацию о том, сколько раз какие блоки перезаписывались и при необходимости «меняет их местами»;
  • Проблема совместимости SSD накопителей с устаревшими и даже многими актуальными версиями ОС семейства Microsoft Windows, которые не учитывают специфику SSD накопителей и дополнительно изнашивают их. Использование операционными системами механизма свопинга (подкачки) на SSD также, с большой вероятностью, уменьшает срок эксплуатации накопителя;
  • Цена гигабайта SSD-накопителей существенно выше цены гигабайта HDD. К тому же, стоимость SSD прямо пропорциональна их ёмкости, в то время как стоимость традиционных жёстких дисков зависит от количества пластин и медленнее растёт при увеличении объёма накопителя.

Microsoft Windows и компьютеры данной платформы с твердотельными накопителями.

В ОС Windows 7 введена специальная оптимизация для работы с твердотельными накопителями. При наличии SSD-накопителей, эта операционная система работает с ними иначе, чем с обычными HDD-дисками. Например, Windows 7 не применяет к SSD-диску дефрагментацию, технологии Superfetch и ReadyBoost и другие техники упреждающего чтения, ускоряющие загрузку приложений с обычных HDD-дисков.

Предыдущие версии Microsoft Windows такой специальной оптимизации не имеют и рассчитаны на работу только с обычными жесткими дисками. Поэтому, например, некоторые файловые операции Windows Vista, не будучи отключенными, могут уменьшить срок службы SSD-накопителя. Операция дефрагментации должна быть отключена, так как она практически никак не влияет на производительность SSD-носителя и лишь дополнительно изнашивает его.

Компания ASUS ещё в 2007 г. выпустила нетбук EEE PC 701 с SSD-накопителем объёмом 4Гб. Компания Dell 9 сентября 2011 года заявила о первой на рынке комплектации ноутбуков Dell Precision твердотельной памятью объемами 512Гб одним накопителем и 1Тб двумя накопителями для моделей компьютеров M4600 и M6600 соответственно. Производитель установил цену за один 512Гб SATA3 накопитель на момент объявления в $1120 долларов США.

На SSD-накопителе работают планшеты компании Acer - модели Iconia Tab W500 и W501, Fujitsu Stylistic Q550 под управлением Windows 7.

Mac OS X и компьютеры Макинтош с твердотельными накопителями

Операционная система Mac OS X начиная с версии 10.7 (Lion) полностью осуществляет TRIM-поддержку для установленной в системе твердотельной памяти.

С 2010 года компания Apple представила компьютеры линейки Air полностью комплектуемые только твердотельной памятью на основе Флеш-NAND памяти. До 2010 г. покупатель мог выбрать для данного компьютера обычный жесткий диск в комплектации, но дальнейшее развитие линейки в пользу максимального облегчения и уменьшения корпуса компьютеров данной серии потребовало полного отказа от обычных жестких дисков в пользу твердотельных накопителей. Объем комплектуемой памяти в компьютерах серии Air составляет от 64Гб до 512Гб. По данным J.P. Morgan с момента представления было продано 420 000 компьютеров этой серии полностью на твердотельной Флэш-NAND памяти.

3. Магнитные и оптические накопители

Самостоятельное изучение.

Как хорошо известно большинству пользователей персонального компьютера, все данные в ПК хранятся на жестком диске - устройстве хранения информации произвольного доступа, которое работает на основе принципа магнитной записи. Современные жесткие диски способны вместить в себе информацию, общим объемом до 6 терабайт (емкость самого вместительного на данный момент диска, выпущенного фирмой HGST), что еще десять лет назад казалось невозможным. Помимо того, что жесткий диск компьютера обладает колоссальной емкостью, благодаря применяющимся в его работе сложным современным технологиям он еще и позволяет получать практически мгновенный доступ к хранящейся на нем информации, без чего продуктивная работа ПК была бы невозможной. Как же устроено это чудо современной техники, и каким образом оно работает?

Устройство жесткого диска

Если снять верхнюю крышку жесткого диска, вы увидите лишь плату электроники и еще одну крышку, под которой находится герметическая зона. Именно в этой гермозоне и расположены основные элементы HDD. Несмотря на распространенное мнение, что гермозона жесткого диска содержит вакуум, это вовсе не так – внутри гермозона заполнена очищенным от пыли сухим воздухом, а в крышке обычно имеется небольшое отверстие с очищающим фильтром, предназначенное для выравнивания давления воздуха внутри гермозоны.

В целом жесткий диск состоит из следующих основных компонентов:

Принцип работы жесткого диска

Что же происходит, когда на жесткий диск компьютера подается питание и он начинает работать? Следуя команде электронного контроллера, двигатель жесткого диска начинает вращаться, приводя тем самым в движение и магнитные диски, которые жестко прикреплены к его оси. Как только скорость вращения шпинделя достигает значения, достаточного для того, чтобы над поверхностью диска образовался постоянный поток воздуха, который не даст считывающейся головке упасть на поверхность накопителя, механизм коромысла начинает двигать считывающие головки, и они зависают над поверхностью диска. При этом расстояние от считывающей головки до магнитного слоя накопителя составляет всего лишь около 10 нанометров, что равно одной миллиардной части метра.

Первым делом при включении жесткого диска происходит считывание с накопителя служебной информации (ее также называют «нулевой дорожкой»), которая содержит сведения о диске и его состоянии. Если сектора со служебной информацией повреждены, то винчестер не будет работать.

Затем начинается непосредственно работа с данными, расположенными на диске. Частицы ферромагнитного материала, которым покрыта поверхность диска, под воздействием магнитной головки условно формируют биты – единицы хранения цифровой информации. Данные на жестком диске распределены по дорожкам, представляющим собой кольцевую область на поверхности одного магнитного диска. Дорожка в свою очередь поделена на одинаковые отрезки, называемые секторами. Таким образом, паря над рабочей поверхностью диска, магнитная головка может посредством изменения магнитного поля осуществлять запись данных строго в определенное место накопителя, а с помощью улавливания магнитного потока происходит считывание информации по секторам.

Форматирование жесткого диска

Для того, чтобы на жесткий диск можно было наносить данные, его предварительно подвергают процессу форматирования. Также форматирование иногда требуется при переустановке операционной системы, правда во втором случае форматируется не весь диск, а лишь один его логический раздел.

Во время форматирования на диск наносится служебная информация, а также данные о нахождении секторов и треков на поверхности диска. Это необходимо для точного позиционирования магнитных головок при работе с жестким диском.

Характеристики жесткого диска

Современный рынок жестких дисков предлагает на выбор самые разнообразные модели винчестеров, отличающиеся между собой по различным техническим параметрам. Вот основные характеристики, по которым различаются жесткие диски:

  • Интерфейс подключения. Большинство современных жестких дисков подключаются к материнской плате посредством интерфейса SATA, однако встречаются модели и с другими типами подключений: eSATA, FireWire, Thunderbolt и IDE.
  • Емкость. Величина, характеризующая количество информации, способное поместиться на жестком диске. На данный момент наибольшей популярностью пользуются накопители емкостью 500 Гб и 1 Тб.
  • Форм-фактор. Современные жесткие диски выпускают в двух физических размерах: 2,5 дюйма и 3,5 дюйма. Первые предназначены для использования в ноутбуках и компактных версиях ПК, вторые используются в обычных настольных компьютерах.
  • Скорость вращения шпинделя. Чем выше скорость вращения шпинделя жесткого диска, тем быстрее он работает. Основная масса винчестеров на рынке имеют скорость вращения 5400 или 7200 оборотов за минуту, однако встречаются также диски со скоростью вращения шпинделя 10000 об/мин.
  • Объем буфера. Для сглаживания разницы в скорости чтения/записи и передачи через интерфейс в жестких дисках используется промежуточная память, именуемая буфером. Объем буфера составляет от 8 до 128 мегабайт.
  • Время произвольного доступа. Это время, которое требуется для выполнение операции по позиционированию магнитной головки на произвольный участок поверхности жесткого диска. Может составлять от 2,5 до 16 миллисекунд.

Почему жесткий диск называют винчестером?

Согласно одной из версий, свое неофициальное прозвище «винчестер» жесткий диск получил в 1973 году, когда был выпущен первый в мире HDD, в котором считывающие аэродинамические головки размещались в одной герметичной коробке с магнитными пластинами. Данный накопитель имел емкость 30 Мбайт плюс 30 Мбайт в сменном отсеке, из-за чего инженеры, которые трудились над его разработкой дали ему кодовое название 30-30, что было созвучно с обозначением популярного ружья, использующего патрон.30-30 Winchester. В начале девяностых годов название «винчестер» вышло из употребления в странах Европы и США, но до сих пор пользуется популярностью в русскоязычных странах. Также нередко можно услышать более сокращенную сленговую версию названия винчестер – «винт», употребляемую в основном компьютерными специалистами.

Как выглядит современный жёсткий диск (HDD) внутри? Как его разобрать на части? Как называются части и какие функции в общем механизме хранения информации выполняют? Ответы на эти и другие вопросы можно узнать здесь, ниже. Кроме того, мы покажем связь между русскоязычной и англоязычной терминологиями, описывающими компоненты жёстких дисков.

Для наглядности, разберём 3.5-дюймовый SATA диск. Это будет совершенно новый терабайтник Seagate ST31000333AS. Осмотрим нашего подопытного кролика.


Зелёная закреплённая винтами пластина с проступающим узором дорожек, разъёмами питания и SATA называется платой электроники или платой управления (Printed Circuit Board, PCB). Она выполняет функции электронного управления работой жёсткого диска. Её работу можно сравнить с укладкой в магнитные отпечатки цифровых данных и распознание обратно по первому требованию. Например, как прилежный писарь с текстами на бумаге. Чёрный алюминиевый корпус и его содержимое называется гермоблоком (Head and Disk Assembly, HDA). В среде специалистов принято называть его «банкой». Сам корпус без содержимого также называют гермоблоком (base).

Теперь снимем печатную плату (понадобиться отвертка «звёздочка» T-6) и изучим размещённые на ней компоненты.


Первым в глаза бросается большой чип, расположенный посередине – Система на кристалле (System On Chip, SOC). В ней можно выделить два крупных составляющих:

  1. Центральный процессор, который производит все вычисления (Central Processor Unit, CPU). Процессор имеет порты ввода-вывода (IO ports) для управления остальными компонентами, расположенными на печатной плате, и передачи данных через SATA-интерфейс.
  2. Канал чтения/записи (read/write channel) – устройство, преобразующее поступающий с головок аналоговый сигнал в цифровые данные во время операции чтения и кодирующий цифровые данные в аналоговый сигнал при записи. Так же выполняет слежение за позиционированием головок. Иными словами, создает магнитные образы при записи и распознает их при чтении.

Чип памяти (memory chip) представляет собой обычную DDR SDRAM память. Объём памяти определяет размер кэша жёсткого диска. На этой печатной плате установлена память Samsung DDR объемом 32 Мб, что в теории даёт диску кэш в 32 Мб (и именно такой объём приводится в технических характеристиках жёсткого диска), но это не совсем верно. Дело в том, что память логически разделена на буферную память (кэш) и память прошивки (firmware). Процессору требуется некоторый объём памяти для загрузки модулей прошивки. Насколько известно, только производитель HGST указывают действительный объём кэша в описании технических характеристик; относительно остальных дисков, о реальном объёме кэша остаётся только гадать. В спецификации ATA составители не стали расширять ограничение, заложенное в ранних версиях, равное 16 мегабайт. Поэтому, программы не могут отобразить объем более максимального.

Следующий чип – контроллер управления шпиндельным двигателем и звуковой катушкой, перемещающий блок головок (Voice Coil Motor and Spindle Motor controller, VCM&SM controller). На жаргоне специалистов – это «крутилка». Кроме того, этот чип управляет вторичными источниками питания, расположенными на плате, от которых питается процессор и микросхема предусилителя-коммутатора (preamplifier, preamp), расположенная в гермоблоке. Это главный потребитель энергии на печатной плате. Он управляет вращением шпинделя и движением головок. Так же при отключении питания переключает останавливающийся двигатель в режим генерации и полученную энергию подает на звуковую катушку для плавной парковки магнитных головок. Ядро VCM-контроллера может работать даже при температуре в 100°C.

Часть программы управления (прошивки) диска хранится во флэш-памяти (на рисунке обозначено: Flash). При подаче питания на диск микроконтроллер загружает сначала маленькое boot-ПЗУ внутри себя, а дальше переписывает содержимое флэш-чипа в память и приступает к исполнению кода уже из ОЗУ. Без корректно загруженного кода, диск даже не пожелает запускать двигатель. Если на плате отсутствует флэш-чип, значит, он встроен в микроконтроллер. На современных дисках (где-то с 2004 года и новее, однако исключение составляют жёсткие диски Samsung и они же с наклейками от Seagate) flash-память содержит таблицы с кодами настроек механики и головок, которые уникальны для данного гермоблока и не подойдут к другому. Поэтому операция «перекинуть контроллер» всегда заканчивается либо тем, что диск «не определяется в BIOS», либо определяется заводским внутренним названием, но все равно доступ к данным не даёт. Для рассматриваемого диска Seagate 7200.11 утрата оригинального содержимого flash-памяти приводит к полной потере доступа к информации, так как подобрать или угадать настройки не получится (во всяком случае, автору такая методика не известна).

На youtube-канале R.Lab есть несколько примеров перестановки платы с перепайкой микросхемы c неисправной платы на исправную:
PC-3000 HDD Toshiba MK2555GSX PCB change
PC-3000 HDD Samsung HD103SJ PCB change

Датчик удара (shock sensor) реагирует на опасную для диска тряску и посылает сигнал об этом контроллеру VCM. Контроллер VCM немедленно паркует головки и может остановить вращение диска. Теоретически, такой механизм должен защищать диск от дополнительных повреждений, но на практике он не работает, так что не роняйте диски. Ещё при падении может заклинить шпиндельный двигатель, но об этом позже. На некоторых дисках датчик вибрации обладает повышенной чувствительностью, реагируя на малейшие механические колебания. Полученные с датчика данные позволяют контроллеру VCM корректировать движение головок. На таких дисках установлено, кроме основного, ещё два дополнительных датчика вибрации. На нашей плате дополнительные датчики не припаяны, но места под них есть - обозначены на рисунке как «Vibration sensor».

На плате имеется ещё одно защитное устройство – ограничитель переходного напряжения (Transient Voltage Suppression, TVS). Он защищает плату от скачков напряжения. При скачке напряжения TVS перегорает, создавая короткое замыкание на землю. На этой плате установлено два TVS, на 5 и 12 вольт.

Электроника для старых дисков была менее интегрированная, и каждая функция была разделена на одну и более микросхем.


Теперь рассмотрим гермоблок.


Под платой находятся контакты мотора и головок. Кроме того, на корпусе диска имеется маленькое, почти незаметное отверстие (breath hole). Оно служит для выравнивания давления. Многие считают, что внутри жёсткого диска находится вакуум. На самом деле это не так. Воздух нужен для аэродинамического взлета головок над поверхностью. Это отверстие позволяет диску выровнять давление внутри и снаружи гермозоны. С внутренней стороны это отверстие прикрыто фильтром (breath filter), который задерживает частицы пыли и влаги.

Теперь заглянем внутрь гермозоны. Снимем крышку диска.


Сама крышка не представляет собой ничего интересного. Это просто стальная пластина с резиновой прокладкой для защиты от пыли. Наконец, рассмотрим начинку гермозоны.


Информация хранится на дисках, называемых также «блинами», магнитными поверхностями или пластинами (platters). Данные записываются с двух сторон. Но иногда с одной из сторон головка не установлена, либо физически головка присутствует, но отключена на заводе. На фотографии вы видите верхнюю пластину, соответствующую головке с самым большим номером. Пластины изготавливаются из полированного алюминия или стекла и покрываются несколькими слоями различного состава, в том числе ферромагнитным веществом, на котором, собственно, и хранятся данные. Между пластинами, а также над верхней из них, мы видим специальные вставки, называемыми разделителями или сепараторами (dampers or separators). Они нужны для выравнивания потоков воздуха и снижения акустических шумов. Как правило, их изготавливают из алюминия или пластика. Алюминиевые разделители успешнее справляются с охлаждением воздуха внутри гермозоны. Ниже приведен пример модели прохождения потока воздуха внутри гермоблока.


Вид на пластины и сепараторы сбоку.


Головки чтения-записи (heads), устанавливаются на концах кронштейнов блока магнитных головок, или БМГ (Head Stack Assembly, HSA). Парковочная зона – это область, в которой должны находиться головки исправного диска, если шпиндель остановлен. У этого диска, парковочная зона расположена ближе к шпинделю, что видно на фотографии.


На некоторых накопителях, парковка производится на специальных пластиковых парковочных площадках, расположенных за пределами пластин.


Парковочная площадка накопителя Western Digital 3.5”

В случае парковки головок внутри пластин для съёма блока магнитных головок нужен специальный инструмент, без него снять БМГ очень сложно без повреждения. Для внешней парковки можно вставить между головками пластиковые трубочки, подходящие по размеру, и вынуть блок. Хотя, и для этого случая так же есть съемники, но они более простой конструкции.

Жёсткий диск – механизм точного позиционирования, и для его нормальной работы требуется очень чистый воздух. В процессе использования внутри жёсткого диска могут образовываться микроскопические частицы металла и смазки. Для немедленной очистки воздуха внутри диска имеется циркуляционный фильтр (recirculation filter). Это высокотехнологичное устройство, которое постоянно собирает и задерживает мельчайшие частицы. Фильтр находится на пути потоков воздуха, создаваемых вращением пластин


Теперь снимем верхний магнит и посмотрим, что скрывается под ним.


В жёстких дисках используются очень мощные неодимовые магниты. Эти магниты настолько мощны, что могут поднимать вес в 1300 раз больший их собственного. Так что не стоит класть палец между магнитом и металлом или другим магнитом – удар получится очень чувствительным. На этой фотографии изображены ограничители БМГ. Их задача – ограничить движение головок, оставляя их на поверхности пластин. Ограничители БМГ разных моделей устроены по-разному, но их всегда два, они используются на всех современных жёстких дисках. На нашем накопителе второй ограничитель расположен на нижнем магните.

Вот что можно там увидеть.


Ещё мы видим здесь катушку (voice coil), которая является частью блока магнитных головок. Катушка и магниты образуют привод БМГ (Voice Coil Motor, VCM). Привод и блок магнитных головок образуют позиционер (actuator) – устройство, которое перемещает головки.

Чёрная пластиковая деталь сложной формы называется фиксатором (actuator latch). Он бывает двух типов: магнитный и воздушный (air lock). Магнитный работает как простая магнитная защёлка. Высвобождение осуществляется подачей электрического импульса. Воздушная защёлка освобождает БМГ после того, как шпиндельный двигатель наберёт достаточное число оборотов, чтобы давление воздуха отодвинуло фиксатор с пути звуковой катушки. Фиксатор защищает головки от вылета головок в рабочую область. Если по какой-то причине фиксатор со своей функцией не справился (диск уронили или ударили во включенном состоянии), то головки прилипнут к поверхности. Для дисков 3.5“ последующее включение из-за большей мощности мотора просто оторвет головки. А вот у 2.5“ мощность мотора меньше и шансы восстановить данные, высвободив «из плена» родные головки, довольно высоки.

Теперь снимем блок магнитных головок.


Точность и плавность движения БМГ поддерживается прецизионным подшипником. Самая крупная деталь БМГ, изготовленная из алюминиевого сплава, обычно называется кронштейном или коромыслом (arm). На конце коромысла находятся головки на пружинной подвеске (Heads Gimbal Assembly, HGA). Обычно сами головки и коромысла поставляют разные производители. Гибкий кабель (Flexible Printed Circuit, FPC) идёт к контактной площадке, стыкующейся с платой управления.

Рассмотрим составляющие БМГ подробнее.

Катушка, соединенная с кабелем.


Подшипник.


На следующей фотографии изображены контакты БМГ.


Прокладка (gasket) обеспечивает герметичность соединения. Таким образом, воздух может попасть внутрь блока с дисками и головками только через отверстие для выравнивания давления. У этого диска контакты покрыты тонким слоем золота для предотвращения окисления. А вот со стороны платы электроники окисление случается частенько, что приводит к неисправности HDD. Удалить окисление с контактов можно стирательной резинкой (eraser).


Это классическая конструкция коромысла.


Маленькие чёрные детали на концах пружинных подвесов называют слайдерами (sliders). Многие источники указывают, что слайдеры и головки – это одно и то же. На самом же деле слайдер помогает считывать и писать информацию, поднимая головку над поверхностью магнитных дисков. На современных жёстких дисках головки двигаются на расстоянии 5-10 нанометров от поверхности. Для сравнения: человеческий волос имеет диаметр около 25000 нанометров. Если под слайдер попадёт какая-нибудь частица, это может привести к перегреву головок из-за трения и выходу их из строя, именно поэтому так важна чистота воздуха внутри гермозоны. Ещё попадание пыли может вызвать царапины. От них образуются новые пылинки, но уже магнитные, которые прилипают к магнитному диску и вызывают новые царапины. Это приводит к тому, что диск быстро покрывается царапинами или на жаргоне «запиливается». В таком состоянии ни тонкий магнитный слой, ни магнитные головки уже не работают, и жёсткий диск стучит (клик смерти).

Сами считывающие и записывающие элементы головки находятся на конце слайдера. Они так малы, что разглядеть их можно только в хороший микроскоп. Ниже приведен пример фотографии (справа) через микроскоп и схематическое изображение (слева) взаимного расположения пишущего и читающего элементов головки.


Рассмотрим поверхность слайдера поближе.


Как видите, поверхность слайдера не плоская, на ней имеются аэродинамические канавки. Они помогают стабилизировать высоту полёта слайдера. Воздух под слайдером образует воздушную подушку (Air Bearing Surface, ABS). Воздушная подушка поддерживает почти параллельный поверхности блина полёт слайдера.

Вот ещё одно изображение слайдера.


Здесь хорошо видны контакты головок.

Это ещё одна важная часть БМГ, которая пока не обсуждалась. Она называется предусилителем (preamplifier, preamp). Предусилитель – это чип, управляющий головками и усиливающий поступающий к ним или от них сигнал.


Предусилитель располагают прямо в БМГ по очень простой причине - сигнал, идущий с головок, очень слаб. На современных дисках он имеет частоту более 1 ГГц. Если вынести предусилитель за пределы гермозоны, такой слабый сигнал сильно затухнет по пути к плате управления. Установить же усилитель прямо на голове нельзя, так как она существенно нагревается во время работы, что делает не возможным работу полупроводникового усилителя, вакуумно-ламповых усилителей таких малых размеров ещё не придумали.

От предусилителя к головкам (справа) ведёт больше дорожек, чем к гермозоне (слева). Дело в том, что жёсткий диск не может одновременно работать более чем с одной головкой (парой пишущих и считывающих элементов). Жёсткий диск посылает сигналы на предусилитель, и он выбирает головку, к которой в данный момент обращается жёсткий диск.

Хватит о головках, давайте разбирать диск дальше. Снимем верхний сепаратор.

Вот как он выглядит.


На следующей фотографии вы видите гермозону со снятыми верхним разделителем и блоком головок.


Стал виден нижний магнит.

Теперь прижимное кольцо (platters clamp).


Это кольцо удерживает блок пластин вместе, не давая им двигаться друг относительно друга.

Блины нанизаны на шпиндель (spindle hub).


Теперь, когда блины ничто не удерживает, снимем верхний блин. Вот что находится под ним.


Теперь понятно, за счёт чего создается пространство для головок – между блинами находятся разделительные кольца (spacer rings). На фотографии виден второй блин и второй сепаратор.

Разделительное кольцо – высокоточная деталь, изготовленная из немагнитного сплава или полимеров. Снимем его.


Вытащим из диска все остальное, чтобы осмотреть дно гермоблока.


Так выглядит отверстие для выравнивания давления. Оно располагается прямо под воздушным фильтром. Рассмотрим фильтр внимательнее.

Так как поступающий снаружи воздух обязательно содержит пыль, фильтр имеет несколько слоёв. Он гораздо толще циркуляционного фильтра. Иногда он содержит частицы силикагеля для борьбы с влажностью воздуха. Однако, если жёсткий диск поместить в воду, то она наберется внутрь через фильтр! И это совсем не означает, что попавшая внутрь вода будет чистая. На магнитных поверхностях кристаллизуются соли и наждачка вместо пластин обеспечена.

Немного подробнее про шпиндельный двигатель. Схематически его конструкция показана на рисунке.


Внутри spindle hub закреплен постоянный магнит. Обмотки статора, меняя магнитное поле, заставляют ротор вращаться.


Моторы бывают двух видов, с шариковыми подшипниками и с гидродинамическими (Fluid Dynamic Bearing, FDB). Шариковые перестали использовать более 10 лет назад. Это связано с тем, что у них биение высокое. В гидродинамическом подшипнике биения намного ниже и работает он значительно тише. Но есть и пару минусов. Во-первых, он может заклинить. С шариковыми такого явления не происходило. Шариковые подшипники если и выходили из строя, то начинали громко шуметь, но информация хоть медленно, но читалась. Сейчас же, в случае клина подшипника, нужно при помощи специального инструмента снять все диски и установить их на исправный шпиндельный двигатель. Операция очень сложная и редко приводит к удачному восстановлению данных. Клин может возникнуть от резкого изменения положения за счет большого значения силы Кориолиса, действующей на ось и приводящей к ее сгибанию. Например, есть внешние 3.5” диски в коробочке. Стояла коробочка вертикально, задели, упала горизонтально. Казалось бы, не далеко улетел то?! А нет - клин двигателя, и никакой информации уже не достать.

Во-вторых, из гидродинамического подшипника может вытечь смазка (она там жидкая, ее довольно много, в отличие от смазки-геля, используемой шариковых), и попасть на магнитные пластины. Чтобы предотвратить попадание смазки на магнитные поверхности используют смазку с частицами, имеющими магнитные свойства и улавливающими их магнитные ловушки. Еще используют вокруг места возможной протечки абсорбционное кольцо. Вытеканию способствует перегрев диска, поэтому важно следить за температурным режимом эксплуатации.


Уточнение связи между русскоязычной и англоязычной терминологией выполнено Леонидом Воржевым.


Обновление 2018, Сергей Яценко

Перепечатка или цитирование разрешены при условии сохранения ссылки на перво

Н акопитель на жестком диске является, чуть ли не одним из самых важных элементов современного компьютера. Так как он предназначен в первую очередь для долгосрочного хранения ваших данных, это могут быть игры, фильмы и другие объемные файлы, хранящиеся у вас на вашем ПК. И было бы очень жалко если он мог бы неожиданно сломаться, в результате чего вы можете потерять все свои данные, которые бывает очень сложно восстановить. И чтобы правильно эксплуатировать и заменять этот элемент, необходимо понимать как он работает и что из себя представляет – жесткий диск.


Из этой статьи вы узнаете о работе жесткого диска, его компонентах и технических характеристиках.

Обычно главными элементами жесткого диска являются несколько круглых пластин из алюминия. В отличие от гибких дисков(забытых дискеток) их сложно согнуть, поэтому и появилось название жесткий диск. В некоторых устройствах они устанавливаются несъемные, и называются фиксированными (fixeddisk). Но в обычных стационарных компьютерах и даже некоторых моделей ноутбуков и планшетов их можно без проблем заменить.

Рисунок: Жесткий диск без верхней крышки

Заметка!

Почему жесткие диски иногда называют – винчестер и какое отношение они имеют к огнестрельному оружию. Когда то в 1960-х годах компания IBMвыпустила скоростной на тот момент жесткий диск с номером разработки 30-30. Что совпало с обозначением известного нарезного оружия Winchester, и поэтому этот термин вскоре закрепился в компьютерном жаргонном сленге. А на самом же деле жесткие диски не имеют ничего общего с настоящими винчестерами.

Как работает накопитель на жестких дисках

Запись и считывание информации, находящейся на концентрических окружностях жесткого диска, разбитых на секторы, производится посредствам универсальных головок записи/чтения.

Все стороны диска предусматривают свою собственную дорожку для записи и чтения, однако головки располагаются на общем для всех дисков приводе. По этой причине головки перемещаются синхронно.

Видео YouTube: Работа открытого жесткого диска

Нормальная работа накопителя не допускает касаний между головками и магнитной поверхностью диска. Однако в случае отсутствия электроэнергии и остановки устройства головки все же опускаются на магнитную поверхность.

Во время работы жесткого диска между поверхностью вращающейся пластины и головкой образуется незначительный воздушный промежуток. Если в этот промежуток проникает пылинка или устройство подвергается встряске, велика вероятность того, что головка столкнется с вращающейся поверхностью. Сильный удар может стать причиной выхода из строя головки. Результатом этого выхода может быть повреждение нескольких байтов или же полная неработоспособность устройства. По этой причине во многих устройствах магнитная поверхность легируется, после чего на нее наносится специальная смазка, позволяющая справляться с периодической встряской головок.

Некоторые современные диски используют механизм загрузки/разгрузки, который не позволяет головкам касаться магнитной поверхности даже в случае отключения электропитания.

Форматирование высокого и низкого уровня

Использование форматирования высокого уровня позволяет операционной системе создавать структуры, упрощающую работу с хранящимися на жестком диске файлами и данными. Все имеющиеся разделы (логические диски) снабжаются загрузочным сектором тома, двумя копиями таблицы размещения файлов и корневым каталогом. Посредствам вышеуказанных структур, операционной системе удается производить распределение дискового пространства, отслеживание расположения файлов, а также обход поврежденных участков на диске.

Другими словами, форматирования высокого уровня сводится к созданию оглавлений диска и файловой системы (FAT, NTFS и т.п.). К «настоящему» форматированию можно отнести лишь форматирование низкого уровня, во время которого происходит деление диска по дорожкам и секторам. Посредствам DOS-команды FORMAT гибкий диск подвергается сразу обоим типам форматирования, тогда как жесткий - лишь форматированию высокого уровня.

Для того, что бы произвести низкоуровневое форматирование на жестком диске, необходимо использование специальной программы, чаще всего предоставляемой компанией-производителем диска. Форматирование гибких дисков посредствам FORMAT подразумевает выполнение обеих операций, тогда как в случае с жесткими дисками вышеуказанные операции следует выполнять по раздельности. Более того, жесткий диск подвергается и третьей операции - созданию разделов, которые являются необходимым условием для использования на одном ПК более одной операционной системы.

Организация нескольких разделов предоставляет возможность устанавливать на каждый из них свою операционную инфраструктуру с отдельным томом и логическими дисками. Каждый том или логический диск имеет своё буквенное обозначение(например диск C,D или E).

Из чего состоит жесткий диск

Практически каждый современный винчестер включает один и тот же набор компонентов:

диски (их количество чаще всего доходит до 5 штук);

головки чтения/записи (их количество чаще всего доходит до 10 штук);

механизм привода головок (данный механизм устанавливает головки в необходимое положение);

двигатель привода дисков (устройство, приводящее во вращение диски);

воздушный фильтр (фильтры, расположенные внутри корпуса накопителя);

печатную плату со схемами управления (посредствам этого компонента производится управление накопителем и контроллером);

кабели и разъемы (электронные компоненты HDD).

В качестве корпуса для дисков, головок, механизма привода головок и двигателя привода дисков чаще всего используется герметичный короб — HDA. Обычно данный короб является единым узлом, который практически никогда не вскрывается. Иные компоненты, не входящие в HDA, к числу которых можно отнести элементы конфигурации, печатную плату и лицевую панель, — съемные.

Автоматическая парковка головок и система контроля

На случай отключения питания предусмотрена контактная парковочная система, задача которой сводится к тому, чтобы опустить штангу с головками на сами диски. Независимо от того, что накопитель выдерживает десятки тысяч подъемов и спусков считывающих головок, происходить это все должно на специально отведенных для этих действий участках.

Во время постоянных подъемов и спусков происходит неизбежная абразия магнитного слоя. Если после износа накопитель подвергнется встряске, то вероятней всего произойдет повреждение диска или головок. Для предотвращения вышеуказанных неприятностей, современные накопители снабжаются специальным механизмом загрузки/разгрузки, представляющим собой пластину, которая помещается на внешнюю поверхность жестких дисков. Эта мера позволяет предотвратить касание головки и магнитной поверхности даже в случае отключения питания. При отключении напряжения накопитель самостоятельно «паркует» головки на поверхности наклонной пластины.

Немного о воздушных фильтрах и воздухе

Практически все жесткие диски снабжены двумя воздушными фильтрами: барометрическим и фильтром рециркуляции. Отличает вышеуказанные фильтры от сменяемых моделей, используемых в накопителях старшего поколения, то, что они помещены внутрь корпуса и их замена не предусматривается до конца эксплуатационного срока.

Старые диски использовали технологию постоянной перегонки воздуха внутрь корпуса и обратно, используя при этом фильтр, который нуждался в периодической смене.

Разработчикам современных накопителей от этой схемы пришлось отказаться, а потому фильтр рециркуляции, который расположен в герметичном корпусе HDA, применяется лишь для фильтрации находящегося внутри короба воздуха от мельчайших частиц, оказавшихся внутри корпуса. Независимо от всех предпринятых мер предосторожности, мелкие частицы все же образуются после многократных «посадок» и «взлетов» головок. С учетом того, что корпус накопителя отличается своей герметичностью и в нем происходит перекачка воздуха, он продолжает функционировать даже в условиях сильно загрязненной окружающей среды.

Интерфейсные разъемы и соединения

Многие современные накопители на жестких дисках снабжены несколькими интерфейсными разъемами, предназначенными для подключения к источнику питания и к системе в целом. Как правило, накопитель содержит минимум три разновидности разъемов:

интерфейсные разъемы;

разъем для подачи питания;

разъем для заземления.

Отдельного внимания заслуживают интерфейсные разъемы, поскольку они предназначены для получения/передачи накопителем команд и данных. Многие стандарты не исключают возможность подключения нескольких накопителей к одной шине.

Как уже упоминалось выше, накопители на HDD могут быть снабжены несколькими интерфейсными разъемами:

MFM и ESDI - вымершие разъемы, использовавшиеся на первых винчестерах;

IDE/ATA - разъем для подключения накопителей, который долгое время был самым распространённым по причине своей невысокой стоимости. Технически этот интерфейс схож с 16-разрядной шиной ISA. Последующее развитие стандартов IDE поспособствовало росту скорости обмена данными, а также появлению возможности напрямую обратиться к памяти посредствам DMA технологии;

Serial ATA - разъем, заменивший собой IDE, который физически является однонаправленной линией, используемой для последовательной передачи данных. Будучи в режиме совместимости схож с IDE интерфейсом, однако, наличие «родного» режима позволяет воспользоваться дополнительным набором возможностей.

SCSI - универсальный интерфейс, который активно применялся на серверах для подключения HDD и иного рода устройств. Несмотря на хорошие технические показатели, не стал таким распространенным как IDE по причине своей дороговизны.

SAS - последовательный аналог SCSI.

USB - интерфейс, который необходим для подключения внешних винчестеров. Обмен информацией в данном случае происходит посредствам протокола USB Mass Storage.

FireWire - разъем аналогичный USB, необходим для подключения внешнего HDD.

Fibre Channel -интерфейс, используемый системами высокого класса за счет высокой скорости передачи данных.

Показатели качества жестких дисков

Емкость — объем информации, вмещаемый накопителем. Этот показатель в современных винчестерах может достигать до 4 терабайт(4000 гигабайт);

Быстродействие . Данный параметр оказывает непосредственное влияние на время отклика и среднюю скорость передачи информации;

Надежность – показатель, определяемый средним временем наработки на отказ.

Ограничения физической емкости

Максимальный объем емкости, используемой жестким диском, зависит от целого ряда факторов, к числу которых можно отнести интерфейс, драйвера, операционную и файловую систему.

У первого накопителя АТА, выпущенного в 1986 году, имелось ограничение емкости, максимальное значение которого составляло 137 Гб.

Разные версии BIOS также способствовали уменьшению максимальной емкости жестких дисков, а потому системы, скомпонованные до 1998 г., имели емкость – до 8,4 Гб, а системы, выпущенные до 1994 г., - 528 Мб.

Даже после решения проблем с BIOS ограничение емкости накопителей с интерфейсом подключения АТА осталось, максимальное его значение составляло в 137 Гб. Это ограничение было преодолено посредствам стандарта ATA-6, выпущенного в 2001 г. Данный стандарт использовал расширенную схему адресации, что, в свою очередь, поспособствовало увеличению емкости накопителей до 144 Гб. Подобное решение позволило явить свету накопители с интерфейсами PATA и SATA, у которых объем вмещаемой информации — выше указанного ограничения в 137 Гб.

Ограничения ОС на максимальный объем

Практически все современные операционные системы не накладывают каких-либо ограничений на такой показатель как емкость жестких дисков, чего нельзя сказать о более ранних версиях операционных систем.

Так, например, DOS не распознавал жесткие диски, емкость которых превышала 8,4 Гб, поскольку доступ к накопителям в данном случае выполнялся посредствам LBA-адресации, при этом в DOS 6.x и более ранних версиях поддерживалась лишь CHS-адресация.

Ограничение емкости жесткого диска также имеется в случае установки ОС Windows 95. Максимальное значение этого ограничения — 32 Гб. Помимо этого, обновленными версиями Windows 95 поддерживается лишь файловая система FAT16, которая, в свою очередь, налагает ограничение в размере 2 Гб на размеры разделов. Из этого следует, что в случае использования жесткого диска на 30 Гб, его нужно поделить на 15 разделов.

Ограничения операционной системы Windows 98 допускают использование жестких дисков большего объема.

Характеристики и параметры

Каждый жёсткий диск обладает перечнем технических характеристик, согласно которым и устанавливается его иерархия использования.

Первым делом, на что следует обратить внимание, так это на тип используемого интерфейса. С недавних пор каждый компьютер в качестве усовершенствованного и более скоростного интерфейса начал использовать SATA .

Второй не менее важный момент — объём свободного места на жёстком диске. Минимальное его значение на сегодняшний день составляет лишь 80 Гб, при этом максимальное – 4 Тб.

Еще одной важной характеристикой в случае приобретения ноутбука является форм-фактор жесткого диска.

Наиболее востребованными в этом случае считаются модели, размер которых — 2,5 дюйма, при этом в настольных ПК размер составляет 3,5 дюйма.

Не стоит пренебрегать и скоростью вращения шпинделя, минимальные значения – 4200, максимальные – 15000 оборотов в минуту. Все вышеуказанные характеристики оказывают непосредственное влияние на скорость работы винчестера, которая выражается в Мб/С.

Скорость работы жесткого диска

Немаловажным значением обладают скоростные показатели жёсткого диска, которые определяются:

Скоростью вращения шпинделя , измерение которой проводится в оборотах в минуту. В ее задачу не входит непосредственное выявление реальной скорости обмена, она лишь позволяет отличить более скоростное устройство от менее скоростного устройства.

Временем доступа . Данный параметр вычисляет затрачиваемое винчестером время от получения команды до передачи информации по интерфейсу. Чаще всего фигурирую среднее и максимальное значения.

Временем позиционирования головок . Это значение указывает затрачиваемое головками время для перемещения и установки с одного трека на другой трек.

Пропускной способностью или производительностью диска во время последовательной передачи больших объёмов данных.

Внутренней скоростью передачи данных или скоростью передаваемой информации от контроллера к головкам.

Внешней скоростью передачи данных или скоростью передаваемой информации по внешнему интерфейсу.

Немного о S.M.A.R.T.

S.M.A.R.T. – утилита, предназначенная для самостоятельной проверки состояния современных винчестеров, поддерживающих интерфейс PATA и SATA, а также работающих в персональных компьютерах с операционной системой Windows (от NT до Vista).

S.M.A.R.T. производит подсчет и анализ состояния подключенных жестких дисков через равные отрезки времени, независимо от того запущена операционная система или нет. После того, как анализ был проведен, значок результата диагностики отображается в правом углу панели задач. Основываясь на результатах, полученных во время S.M.A.R.T. диагностики, значок может указывать:

На отличное состояние каждого подключенного к компьютеру винчестера, поддерживающего S.M.A.R.T. технологию;

На то, что один или несколько показателей состояния не соответствуют пороговому значению, при этом у параметров Pre-Failure / Advisory нулевое значение. Вышеуказанное состояние жесткого диска не считается предаварийным, однако если этот винчестер содержит важную информацию, рекомендуется как можно чаще сохранять ее на другом носителе или произвести замену HDD.

На то, что один или несколько показателей состояния не соответствуют пороговому значению, при этом у параметров Pre-Failure / Advisory активное значение. По мнению разработчиков жестких дисков, это состояние предаварийное, и хранить информацию на таком винчестере не стоит.

Фактор надежности

Такой показатель, как надежность хранения данных является одним из наиболее важных характеристик жесткого диска. Фактор отказа у винчестера — раз в сто лет, из чего можно сделать вывод, что HDD считается наиболее надежным источником хранения данных. При этом на надежность каждого диска непосредственное влияние оказывает условие эксплуатации и само устройство. Порой производители поставляют на рынок еще совсем «сырой» продукт, а потому пренебрегать резервным копированием и полностью полагаться на винчестер нельзя.

Стоимость и цена

С каждым днем стоимость HDD становится всё меньше. Так, например, сегодня цена жесткого диска ATA на 500 Гб составляет в среднем 120 долларов, к сравнению, в 1983 г. винчестер емкостью 10 Мб стоил 1800 долларов.

Из вышесказанного утверждения можно сделать вывод, что стоимость HDD будет продолжать падать, а потому в дальнейшем все желающие смогут приобрести довольно емкие диски по приемлемым ценам.

Во всех современных компьютерах имеется жесткий диск, который предназначен для хранения данных, а также для загрузки операционной системы. Лет 15-20 назад практически все компьютеры оснащались дисководами для гибких дисков, которые использовались для загрузки программ и операционной системы. Операционная система MS-DOS загружалась в оперативную память с дискеты.

Но постепенно, как того и требует прогресс, размер про грамм стал увеличиваться. Для работы в современных операционных системах требуется объем дискового пространства как минимум несколько сот мегабайт. Представляете, сколько дискет понадо бится, чтобы сохранить этот объем? Гибкие диски, несмотря на все ухищрения разработчиков, уже не могли вместить достаточное количество файлов, со держащих графические образы компьютерных игр и звуки. А пользователи требовали все более красочных игр. И, наконец, было принято решение, в результате которого разработали новое устройство - жесткий диск.

Жесткий диск, он же Hard Disk Drive, HDD, винчестер, накопитель на жестких магнитных дисках (НЖМД), или с использова нием жаргона "винт", является прямым потомком дисковода для гибких дисков.

Основное предназначение жесткого дис ка - он должен предоставить пользователю дисковое пространство, столь нужное для хранения файлов операционной системы и всех необходимых программ.

Особенностью жесткого диска в отличие от дисковода для гибких дисков является высокая надежность хранения данных.

Единственный недостаток нового изобретения - отсутствие мобильности носителя, из-за чего остро встала проблема переноса данных. Но жесткий диск изначально создавал ся как несъемное устройство.

Сведения из истории: в 1973 году на фирме IBM по новой технологии был разработан первый жесткий диск, который мог хранить до 16 Кбайт информации. Поскольку этот диск имел 30 цилиндров (дорожек), каждая из которых была разбита на 30 секторов, то поначалу ему присвоили незамысловатое название -30/30. По аналогии с автоматическими винтовками, имеющими калибр 30/30, такие жесткие диски получили прозвище «винчестер».



Внешне жесткий диск похож на небольшую металлическую коробку.

Сверху на корпусе, как правило, имеется наклейка, на которой нанесены основные технические параметры данной модели, такие как на именование производителя, название модели, номинальное напряжение пи тания, информация о положении перемычек, предназначенных для конфи гурирования винчестера, и т. п. Снизу на корпусе прикреплена печатная плата, представляющая собой встроенный контроллер жесткого диска, ко торый необходим для обеспечения его нормальной работы.

Корпус винчестера

Корпус винчестера защищает жесткий диск от повреждений. Воздух, которым заполнен корпус, обязательно должен быть очищен от пыли, иначе даже самая маленькая частица при попадании внутрь может привести в негодность все устройство. Поэтому практически все модели винчестеров имеют фильтр, который представляет собой небольшое окошко, закрытое прочным материалом, пропускающим незначительное количество воздуха.

Внутри корпуса размещаются практически все элементы, необходимые для работы винчестера: носитель информации, который представляет собой все те же, но жесткие диски, а также устройство считывания/записи информа ции (магнитные головки и устройство позиционирования).

Габаритные размеры современных жестких дисков характеризуются так на зываемым форм-фактором, который указывает горизонтальный и верти кальный размеры корпуса. Возможны следующие горизонтальные размеры: 1,8; 2,5; 3,5 или 5,25", из них наиболее распространены два последних (хотя самый последний встречается все реже и реже).

Носитель информации

Винчестер содержит один или несколько дисков (platters), то есть это носитель, который смонтирован на оси-шпинделе, приводимом в движение специальным двигателем (часть привода). Скорость вращения современных винчестеров может быть 5400, 7200, 10000 об/мин. Достигнуты скорости вплоть до 15 000 об/мин., но такие винчестеры пока что слишком дороги для среднего пользователя. Понятно, что чем выше скорость вращения, тем быстрее считывается информация с диска. Следует иметь в виду, что чем выше скорость вращения, тем выше уровень шума, издаваемый винчесте ром. Это является довольно неприятной платой за высокую скорость работы.

Сами диски представляют собой обработанные с высокой точностью керамические или алюминиевые пластины, на которые и нанесен специальный магнитный слой (покрытие). С обеих сторон диски покрыты тончайшим слоем ферромагнитного материала (окисью какого-нибудь металла), подобного тому, что применяется для производства, например, дискет. От прочности покрытия зависят некоторые эксплуатационные характеристики, к примеру, ударопрочность винчестеров. В качестве рабочей поверхности обычно ис пользуют обе стороны каждого диска, кроме дисков, расположенных по краям пакета - у этих дисков внешние поверхности, повернутые в сторону корпуса, для хранения информации не используются. Они являются защит ными.

Количество дисков может быть различным – от одного до пяти и выше, число рабочих поверхностей при этом соответственно в два раза больше, правда, не всегда. Иногда наружные поверхности крайних дисков или одного из них не используются для хранения данных, при этом число рабочих поверхностей уменьшается и может оказаться нечетным.

Магнитные головки

Наиболее важной частью любого накопителя являются головки чтения-записи (read-write head). Головки представляют собой магнитные управляемые контуры с сердечни ками, на обмотки которых подается переменное напряжение. Принцип дей ствия очень похож на принцип работы головок обычного магнитофона, только требования к ним предъявляются значительно более жесткие.

Количество магнитных головок всегда равно количеству физических по верхностей, используемых для хранения данных. Каждая пара головок одета на своеобразную "вилку", обхватывающую диск с обеих сторон. Данная "вилка" имеет очень длинный "хвост", который заканчивает массивным хво стовиком, составляющим противовес головкам и их несущим. Когда винче стер не работает, головки благодаря упругости "вилки" прижимаются к по верхности диска, что позволяет исключить их "дребезг" во время транспор тировки. Все магнитные головки объединены в единый блок, что позволяет организовать их синхронное перемещение.

Практически все современные жесткие диски имеют функцию автоматиче ской "парковки" головок. Парковкой называется процесс перемещения магнитных головок в специальную зону диска, которая называется парковочной зоной" (от англ. Landing Zone). Эта зона не содержит абсолютно никакой по лезной информации, кроме специальной сервисной метки, указывающей на местоположение места "парковки". В "запаркованном" состоянии жесткий диск можно транспортировать при достаточно плохих физических услови ях - вибрация, легкие удары, сотрясения.

Функция "парковки" реализована достаточно просто. В нерабочем состоя нии хвостовик блока головок "приклеивается" к небольшому магниту, рас положенному в устройстве позиционирования. При поступлении напряже ния питания на жесткий диск генерируется достаточно мощный электро магнитный импульс, который "отрывает" хвостовик от посадочного места. Пока жесткий диск работает, постоянно удерживаемое электромагнитное поле не дает хвостовику "прилипнуть" к магниту. Когда же напряжение пи тания исчезает, то головки за счет притяжения постоянного магнита прак тически мгновенно перемещаются в зону парковки, где они благополучно приземляются на поверхность дисков.

Заметим, что в современных винчестерах головки как бы «летят» на расстоянии доли микрона от поверхности дисков, не касаясь их.

Устройство позиционирования

Устройство позиционирования, которое перемещает магнитные головки, внешне очень похоже на башенный кран. С одной стороны находятся длинные тонкие несущие магнитных головок, а с другой - короткий и зна чительно более массивный хвостовик с обмоткой электромагнитного приво да. Обмотку позиционера окружает статор, представляющий собой постоян ный магнит. При подаче в обмотку электромагнита тока определенной величины и полярности хвостовик начинает поворачиваться в соответст вующую сторону с ускорением, пропорциональным силе тока. При измене нии полярности тока хвостовик начинает движение в обратную сторону. Динамически изменяя уровень и полярность тока, можно устанавливать магнитные головки в любое возможное положение (от центра до края дис ков). Такую систему иногда называют Voice Coil (звуковая катушка) - по аналогии с диффузором громкоговорителя. Данное устройство позициони рования еще называют линейным двигателем. Применение в качестве дви жущей силы электромагнитного поля придает головкам равномерное ли нейное перемещение, чего так не хватает шаговым двигателям, которые ис пользуются в дисководах для гибких дисков.

Для определения необходимого положения головок служат специальные сервисные метки, записанные на носитель при изготовлении винчестера и считываемые при позиционировании. В некоторых моделях винчестеров под сервисную информацию отводят отдельную поверхность и специализи рованную магнитную головку, позволяющую с высокой скоростью опреде лить точное местоположение остальных головок, двигающихся синхронно с ней. Если сервисные метки записаны на тех же дорожках, что и данные, то для них выделяется специальный сектор, а чтение производится теми же головками, что и чтение данных. Благодаря использованию линейного дви гателя появилась возможность "тонкой настройки" головок путем их незна чительного перемещения относительно дорожки, что помогает более точно отследить центр окружности сервисной метки. В результате повышается достоверность считываемых данных и исключается необходимость времен ных затрат на процедуры коррекции положения головок, как это происхо дит в дисководах.

Плата электроники

Внутри любого винчестера обязательно находится печатная плата с электронными компонентами. Печатная плата, на которой расположены электронные компоненты систе мы управления жестким диском, обычно прикрепляется к нижней плоско сти корпуса при помощи обычных винтов. В зависимости от модели элек троника может быть либо закрыта металлической пластиной, либо открыта для любых механических воздействий - производители по-разному пред ставляют реальные условия эксплуатации жесткого диска. С внутренней частью винчестера плата соединяется при помощи специального разъема.

Плата электроники предназначена для управления работой механических подвижных частей устройства и формирования электрических импульсов при чтении/записи. Она содержит:

  1. микропроцессор, управляющий всей остальной электроникой жесткого диска;
  2. буферную память, предназначенную для временного хранения данных, которые записываются на диск или считываются с него;
  3. микросхему ПЗУ, используемую для хранения алгоритмов работы, как основного микропроцессора, гак и всех остальных электронных компо нентов;
  4. генератор, питающий переменным током двигатель дисков;
  5. сложную сервисную систему, которая управляет устройством позициони рования блока головок на требуемую дорожку (цилиндр) в соответствии с поступающими сигналами;
  6. усилители записи, формирующие электрические импульсы, которые по даются на магнитные головки при записи данных;
  7. усилители считывания и формирователи выходных сигналов при считы вании информации.

Микропроцессор представляет собой специализированную микросхему, внутренняя структура которой направлена на обработку массивов данных, поступающих в схему электроники, как со стороны магнитных головок, так и со стороны компьютера. Основной задачей этой микросхемы является преобразование цифровых потоков данных, поступающих из компьютера в электромагнитные импульсы, записываемые на диск, а также обратная опе рация: преобразования считываемых импульсов в поток цифровых данных. Помимо этого микропроцессор занимается постоянным наблюдением за состоянием всех функций винчестера, чтобы можно было прогнозировать возможный выход его из строя.

Буферная память необходима жесткому диску, чтобы немного согласовать разницу в скорости работы интерфейса с реальной скоростью чте ния/записи с дисков. При записи информации она сначала сохраняется в буфере, а уже затем записывается на поверхность дисков. При чтении ин формации используется немного другой режим: данные передаются сразу же на интерфейс и параллельно записываются в буферную память. При по вторном обращении к этим же данным чтение производится уже из буфера. На современных жестких дисках объем буферной памяти (иногда встречает ся название кэш-память винчестера) может достигать 2 Мбайт и более, что является оптимальным для большинства выполняемых компьютером задач.

Микросхема ПЗУ предназначена для хранения алгоритмов работы микро процессора, а также технической информации, которую можно прочитать при помощи различных тестовых утилит (модель винчестера, серийный но мер и т. д.). Некоторые дешевые модели жестких дисков хранят всю слу жебную информацию на дисках и при каждом включении загружают ее в обыкновенный модуль оперативной памяти.

Интерфейсная логика представляет целый набор электронных компонентов, задача которых сводится к организации соединения с компьютером, т. е. создании физического соединения интерфейса жесткого диска с контролле ром компьютера.

Важным компонентом электронной платы являются разъемы для подклю чения соединительного кабеля и напряжения питания (рис. 10.3). Между этими разъемами, как правило, располагается набор перемычек, при помо щи которых изменяется конфигурация жесткого диска (Master, Slave). Опи сание всех возможных вариантов вы, скорее всего, найдете на наклейке, которая имеется на верхней плоскости корпуса.

Плата интерфейсной электроники современного винчестера, как вы уже поняли, представляет собой самостоятельное устройство с собственным процессором, памятью, устройствами ввода/вывода и прочими атрибутами, присущими любому компьютеру. По сути, жесткий диск это компьютер в компьютере.

Многие винчестеры имеют на плате электроники специальный технологи ческий интерфейс с разъемом, через который при помощи стендового обо рудования можно выполнять различные сервисные операции с накопи телем - тестирование, форматирование, поиск и "фиксацию" дефектных участков.