Тарифы Услуги Сим-карты

Как вывести значение указателя в си. Что значит в си: что такое указатель. Передача аргументов функции по значению

Даже если большинство программистов понимают, в чем разница между объектами и указателями на них, иногда бывает не совсем понятно, в пользу какого из способов обращения к объекту стоит делать выбор. Ниже мы постарались ответить на этот вопрос.

Вопрос

Я заметил, что нередко программисты, чей код я видел, используют указатели на объекты чаще, чем сами эти объекты, т.е., например, используют следующую конструкцию:

Object *myObject = new Object;

Object myObject;

Аналогично с методами. Почему вместо этого:

MyObject.testFunc();

мы должны писать вот это:

MyObject->testFunc();

Я так понимаю, что это дает выигрыш в скорости, т.к. мы обращаемся напрямую к памяти. Верно? P.S. Я перешел с Java.

Ответ

Заметим, кстати, что в Java указатели не используются в явном виде, т.е. программист не может в коде обратиться к объекту через указатель на него. Однако на деле в Java все типы, кроме базовых, являются ссылочными: обращение к ним происходит по ссылке, хотя явно передать параметр по ссылке нельзя. И еще, на заметку, new в C++ и в Java или C# - абсолютно разные вещи.

Для того, чтобы дать небольшое представление, что же такое указатели в C++, приведем два аналогичных фрагмента кода:

Object object1 = new Object(); // Новый объект Object object2 = new Object(); // Еще один новый объект object1 = object2;// Обе переменные ссылаются на объект, на который раньше ссылалась object2 // При изменении объекта, на который ссылается object1, изменится и // object2, потому что это один и тот же объект

Ближайший эквивалент на C++:

Object * object1 = new Object(); // Память выделена под новый объект // На эту память ссылается object1 Object * object2 = new Object(); // Аналогично со вторым объектом delete object1; // В C++ нет системы сборки мусора, поэтому если этого не cделать, // к этой памяти программа уже не сможет получить доступ, // как минимум, до перезапуска программы // Это называется утечкой памяти object1 = object2; // Как и в Java, object1 указывает туда же, куда и object2

Однако вот это – совершенно другая вещь (C++):

Object object1; // Новый объект Object object2; // Еще один object1 = object2;// Полное копирование объекта object2 в object1, // а не переопределение указателя – очень дорогая операция

Но получим ли мы выигрыш в скорости, обращаясь напрямую к памяти?

Строго говоря, этот вопрос объединяет в себе два различных вопроса. Первый: когда стоит использовать динамическое распределение памяти? Второй: когда стоит использовать указатели? Естественно, здесь мы не обойдемся без общих слов о том, что всегда необходимо выбирать наиболее подходящий инструмент для работы. Почти всегда существует реализация лучше, чем с использованием ручного динамического распределения (dynamic allocation) и / или сырых указателей.

Динамическое распределение

В формулировке вопроса представлены два способа создания объекта. И основное различие заключается в сроке их жизни (storage duration) в памяти программы. Используя Object myObject; , вы полагаетесь на автоматическое определение срока жизни, и объект будет уничтожен сразу после выхода из его области видимости. А вот Object *myObject = new Object; сохраняет жизнь объекту до того момента, пока вы вручную не удалите его из памяти командой delete . Используйте последний вариант только тогда, когда это действительно необходимо. А потому всегда делайте выбор в пользу автоматического определения срока хранения объекта, если это возможно .

Обычно принудительное установления срока жизни применяется в следующих ситуациях:

  • Вам необходимо, чтобы объект существовал и после выхода из области его видимости - именно этот объект, именно в этой области памяти, а не его копия. Если для вас это не принципиально (в большинстве случаев это так), положитесь на автоматическое определение срока жизни. Однако вот пример ситуации, когда вам может понадобиться обратить к объекту вне его области видимости, однако это можно сделать, не сохраняя его в явном виде: записав объект в вектор, вы можете “разорвать связь” с самим объектом - на самом деле он (а не его копия) будет доступен при вызове из вектора.
  • Вам необходимо использовать много памяти , которая может переполнить стек. Здорово, если с такой проблемой не приходится сталкиваться (а с ней сталкиваются очень редко), потому что это “вне компетенции” C++, но к сожалению, иногда приходится решать и эту задачу.
  • Вы, например, точно не знаете размер массива, который придется использовать . Как известно, в C++ массивы при определении имеют фиксированный размер. Это может вызвать проблемы, например, при считывании пользовательского ввода. Указатель же определяет только тот участок в памяти, куда будет записано начало массива, грубо говоря, не ограничивая его размер.

Если использование динамического распределения необходимо, то вам стоит инкапсулировать его с помощью умного указателя ( можете прочитать в нашей статье) или другого типа, поддерживающего идиому “Получение ресурса есть инициализация” (стандартные контейнеры ее поддерживают - это идиома, в соответствии с которой ресурс: блок памяти, файл, сетевое соединение и т.п. - при получении инициализируется в конструкторе, а затем аккуратно уничтожается деструктором). Умными являются, например, указатели std::unique_ptr и std::shared_ptr .

Указатели

Однако есть случаи, когда использование указателей оправдано не только с точки зрения динамического распределения памяти, но почти всегда есть альтернативный путь, без использования указателей, который вам и следует выбрать. Как и ранее, скажем: всегда делайте выбор в пользу альтернативы, если нет особенной необходимости в использовании указателей .

Случаями, когда использование указателей можно рассматривать как возможный вариант, можно назвать следующие:

  • Ссылочная семантика . Иногда может быть необходимо обратиться к объекту (вне зависимости от того, как под него распределена память), поскольку вы хотите обратиться в функции именно в этому объекту, а не его копии - т.е. когда вам требуется реализовать передачу по ссылке. Однако в большинстве случаев, здесь достаточно использовать именно ссылку, а не указатель, потому что именно для этого ссылки и созданы. Заметьте, что это несколько разные вещи с тем, что описано в пункте 1 выше. Но если вы можете обратиться к копии объекта, то и ссылку использовать нет необходимости (но заметьте, копирование объекта - дорогая операция).
  • Полиморфизм . Вызов функций в рамках полиморфизма (динамический класс объекта) возможен с помощью ссылки или указателя. И снова, использование ссылок более предпочтительно.
  • Необязательный объект . В этом случае можно использовать nullptr , чтобы указать, что объект опущен. Если это аргумент функции, то лучше сделайте реализацию с аргументами по умолчанию или перегрузкой. С другой стороны, можно использовать тип, который инкапсулирует такое поведение, например, boost::optional (измененный в C++14 std::optional).
  • Повышение скорости компиляции . Вам может быть необходимо разделить единицы компиляции (compilation units) . Одним из эффективных применений указателей является предварительная декларация (т.к. для использования объекта вам необходимо предварительно его определить). Это позволит вам разнести единицы компиляции, что может положительно сказаться на ускорении времени компиляции, внушительно уменьшив время, затрачиваемое на этот процесс.
  • Взаимодействие с библиотекой C или C-подобной . Здесь вам придется использовать сырые указатели, освобождение памяти из-под которых вы производите в самый последний момент. Получить сырой указатель можно из умного указателя, например, операцией get . Если библиотека использует память, которая впоследствии должна быть освобождена вручную, вы можете оформить деструктор в умном указателе.

Указатель – переменная, значением которой является адрес ячейки памяти. То есть указатель ссылается на блок данных из области памяти, причём на самое его начало. Указатель может ссылаться на переменную или функцию. Для этого нужно знать адрес переменной или функции. Так вот, чтобы узнать адрес конкретной переменной в С++ существует унарная операция взятия адреса & . Такая операция извлекает адрес объявленных переменных, для того, чтобы его присвоить указателю.

Указатели используются для передачи по ссылке данных, что намного ускоряет процесс обработки этих данных (в том случае, если объём данных большой), так как их не надо копировать, как при передаче по значению, то есть, используя имя переменной. В основном указатели используются для организации динамического распределения памяти, например при объявлении массива, не надо будет его ограничивать в размере. Ведь программист заранее не может знать, какого размера нужен массив тому или иному пользователю, в таком случае используется динамическое выделение памяти под массив. Любой указатель необходимо объявить перед использованием, как и любую переменную.

//объявление указателя /*тип данных*/ * /*имя указателя*/;

Принцип объявления указателей такой же, как и принцип объявления переменных. Отличие заключается только в том, что перед именем ставится символ звёздочки * . Визуально указатели отличаются от переменных только одним символом. При объявлении указателей компилятор выделяет несколько байт памяти, в зависимости от типа данных отводимых для хранения некоторой информации в памяти. Чтобы получить значение, записанное в некоторой области, на которое ссылается указатель нужно воспользоваться операцией разыменования указателя * . Необходимо поставить звёздочку перед именем и получим доступ к значению указателя. Разработаем программу, которая будет использовать указатели.

// pointer1.cpp: определяет точку входа для консольного приложения. #include "stdafx.h" #include << "&var = " << &var << endl;// адрес переменной var содержащийся в памяти, извлечённый операцией взятия адреса cout << "ptrvar = " << ptrvar << endl;// адрес переменной var, является значением указателя ptrvar cout << "var = " << var << endl; // значение в переменной var cout << "*ptrvar = " << *ptrvar << endl; // вывод значения содержащегося в переменной var через указатель, операцией разименования указателя system("pause"); return 0; }

// код Code::Blocks

// код Dev-C++

// pointer1.cpp: определяет точку входа для консольного приложения. #include using namespace std; int main(int argc, char* argv) { int var = 123; // инициализация переменной var числом 123 int *ptrvar = &var; // указатель на переменную var (присвоили адрес переменной указателю) cout << "&var = " << &var << endl;// адрес переменной var содержащийся в памяти, извлечённый операцией взятия адреса cout << "ptrvar = " << ptrvar << endl;// адрес переменной var, является значением указателя ptrvar cout << "var = " << var << endl; // значение в переменной var cout << "*ptrvar = " << *ptrvar << endl; // вывод значения содержащегося в переменной var через указатель, операцией разименования указателя return 0; }

В строке 10 объявлен и инициализирован адресом переменной var указатель ptrvar . Можно было сначала просто объявить указатель, а потом его инициализировать, тогда были бы две строки:

Int *ptrvar; // объявление указателя ptrvar = &var; // инициализация указателя

В программировании принято добавлять к имени указателя приставку ptr , таким образом, получится осмысленное имя указателя, и уже с обычной переменной такой указатель не спутаешь. Результат работы программы (см. Рисунок 1).

&var = 0x22ff08 ptrvar = 0x22ff08 var = 123 *ptrvar = 123 Для продолжения нажмите любую клавишу. . .

Рисунок 1 — Указатели в С++

Итак, программа показала, что строки 11 и 12 выводят идентичный адрес, то есть адрес переменной var , который содержится в указателе ptrvar . Тогда как операция разыменования указателя *ptrvar обеспечивает доступ к значению, на которое ссылается указатель.

Указатели можно сравнивать не только на равенство или неравенство, ведь адреса могут быть меньше или больше относительно друг друга. Разработаем программу, которая будет сравнивать адреса указателей.

"stdafx.h" #include << "var1 = " << var1 << endl; cout << "var2 = " << var2 << endl; cout << "ptrvar1 = " << ptrvar1 << endl; cout << "ptrvar2 = " << ptrvar2 << endl; if (ptrvar1 > << "ptrvar1 > ptrvar2" << endl; if (*ptrvar1 > << "*ptrvar1 > *ptrvar2" << endl; system("pause"); return 0; }

// код Code::Blocks

// код Dev-C++

// pointer.cpp: определяет точку входа для консольного приложения. #include using namespace std; int main(int argc, char* argv) { int var1 = 123; // инициализация переменной var1 числом 123 int var2 = 99; // инициализация переменной var2 числом 99 int *ptrvar1 = &var1; // указатель на переменную var1 int *ptrvar2 = &var2; // указатель на переменную var2 cout << "var1 = " << var1 << endl; cout << "var2 = " << var2 << endl; cout << "ptrvar1 = " << ptrvar1 << endl; cout << "ptrvar2 = " << ptrvar2 << endl; if (ptrvar1 > ptrvar2) // сравниваем значения указателей, то есть адреса переменных cout << "ptrvar1 > ptrvar2" << endl; if (*ptrvar1 > *ptrvar2) // сравниваем значения переменных, на которые ссылаются указатели cout << "*ptrvar1 > *ptrvar2" << endl; return 0; }

Результат работы программы показан на рисунке 2.

Var1 = 123 var2 = 99 ptrvar1 = 0x22ff04 ptrvar2 = 0x22ff00 ptrvar1 > ptrvar2 *ptrvar1 > *ptrvar2 Для продолжения нажмите любую клавишу. . .

Рисунок 2 — Указатели в С++

В первом случае, мы сравнивали адреса переменных, и, причём адрес второй переменной, всегда меньше адреса первой переменной. При каждом запуске программы адреса выделяются разные. Во втором случае мы сравнивали значения этих переменных используя операцию разыменования указателя.

Из арифметических операций, чаще всего используются операции сложения, вычитания, инкремент и декремент, так как с помощью этих операций, например в массивах, вычисляется адрес следующего элемента.

Указатели на указатели

Указатели могут ссылаться на другие указатели. При этом в ячейках памяти, на которые будут ссылаться первые указатели, будут содержаться не значения, а адреса вторых указателей. Число символов * при объявлении указателя показывает порядок указателя. Чтобы получить доступ к значению, на которое ссылается указатель его необходимо разыменовывать соответствующее количество раз. Разработаем программу, которая будет выполнять некоторые операции с указателями порядка выше первого.

using namespace std; int _tmain(int argc, _TCHAR* argv) { int var = 123; // инициализация переменной var числом 123 int *ptrvar = &var; // указатель на переменную var int **ptr_ptrvar = &ptrvar; // указатель на указатель на переменную var int ***ptr_ptr_ptrvar = &ptr_ptrvar; cout << " var\t\t= " << var << endl; cout << " *ptrvar\t= " << *ptrvar << endl; cout << " **ptr_ptrvar = " << **ptr_ptrvar << endl; // два раза разименовываем указатель, так как он второго порядка cout << " ***ptr_ptrvar = " << ***ptr_ptr_ptrvar << endl; // указатель третьего порядка cout << "\n ***ptr_ptr_ptrvar -> **ptr_ptrvar -> *ptrvar -> var -> "<< var << endl; cout << "\t " << &ptr_ptr_ptrvar<< " -> " << " " << &ptr_ptrvar << " ->" << &ptrvar << " -> " << &var << " -> " << var << endl; system("pause"); return 0; }

// код Code::Blocks

// код Dev-C++

// pointer.cpp: определяет точку входа для консольного приложения. #include using namespace std; int main() { int var = 123; // инициализация переменной var числом 123 int *ptrvar = &var; // указатель на переменную var int **ptr_ptrvar = &ptrvar; // указатель на указатель на переменную var int ***ptr_ptr_ptrvar = &ptr_ptrvar; cout << " var\t\t= " << var << endl; cout << " *ptrvar\t= " << *ptrvar << endl; cout << " **ptr_ptrvar = " << **ptr_ptrvar << endl; // два раза разименовываем указатель, так как он второго порядка cout << " ***ptr_ptrvar = " << ***ptr_ptr_ptrvar << endl; // указатель третьего порядка cout << "\n ***ptr_ptr_ptrvar -> **ptr_ptrvar -> *ptrvar -> var -> "<< var << endl; cout << "\t " << &ptr_ptr_ptrvar<< " -> " << " " << &ptr_ptrvar << " ->" << &ptrvar << " -> " << &var << " -> " << var << endl; return 0; }

На рисунке 3 показан результат работы программы.

Var = 123 *ptrvar = 123 **ptr_ptrvar = 123 ***ptr_ptrvar = 123 ***ptr_ptr_ptrvar -> **ptr_ptrvar -> *ptrvar -> var -> 123 0x22ff00 -> 0x22ff04 ->0x22ff08 -> 0x22ff0c -> 123 Для продолжения нажмите любую клавишу. . .

Рисунок 3 — Указатели в С++

Данная программа доказывает тот факт, что для получения значения количество разыменований указателя должно совпадать с его порядком. Логика n-кратного разыменования заключается в том, что программа последовательно перебирает адреса всех указателей вплоть до переменной, в которой содержится значение. В программе показана реализация указателя третьего порядка. И если, используя такой указатель (третьего порядка) необходимо получить значение, на которое он ссылается, делается 4 шага:

  1. по значению указателя третьего порядка получить адрес указателя второго порядка;
  2. по значению указателя второго порядка получить адрес указателя первого порядка;
  3. по значению указателя первого порядка получить адрес переменной;
  4. по адресу переменной получить доступ к её значению.

Данные четыре действия показаны на рисунке 3 (две предпоследние строки). Верхняя строка показывает имена указателей, а нижняя строка их адреса.

На рисунке 4 показана схема разыменовывания указателя третьего порядка из верхней программы. Суть в том, что указатели связаны друг с другом через свои адреса. Причём, например, для указателя ptr_ptrvar данное число 0015FDB4 является адресом, а для указателя ptr_ptr_ptrvar это же число является значением.

Рисунок 4 — Указатели в С++

Именно таким образом выполняется связка указателей. Вообще говоря, указатели порядка выше первого используются редко, но данный материал поможет понять механизм работы указателей.

Указатели на функции

Указатели могут ссылаться на функции. Имя функции, как и имя массива само по себе является указателем, то есть содержит адрес входа.

// объявление указателя на функцию /*тип данных*/ (* /*имя указателя*/)(/*список аргументов функции*/);

Тип данных определяем такой, который будет возвращать функция, на которую будет ссылаться указатель. Символ указателя и его имя берутся в круглые скобочки, чтобы показать, что это указатель, а не функция, возвращающая указатель на определённый тип данных. После имени указателя идут круглые скобки, в этих скобках перечисляются все аргументы через запятую как в объявлении прототипа функции. Аргументы наследуются от той функции, на которую будет ссылаться указатель. Разработаем программу, которая использует указатель на функцию. Программа должна находить НОД – наибольший общий делитель. НОД – это наибольшее целое число, на которое без остатка делятся два числа, введенных пользователем. Входные числа также должны быть целыми.

// pointer_onfunc.cpp: определяет точку входа для консольного приложения. #include "stdafx.h" #include << "Enter first number: "; cin >> a; cout << "Enter second number: "; cin >> b; cout << "NOD = " << ptrnod(a, b) << endl; // обращаемся к функции через указатель system("pause"); return 0; } int nod(int number1, int number2) // рекурсивная функция нахождения наибольшего общего делителя НОД { if (number2 == 0) //базовое решение return number1; return nod(number2, number1 % number2); // рекурсивное решение НОД }

// код Code::Blocks

// код Dev-C++

// pointer_onfunc.cpp: определяет точку входа для консольного приложения. #include using namespace std; int nod(int, int); // прототип указываемой функции int main(int argc, char* argv) { int (*ptrnod)(int, int); // объявление указателя на функцию ptrnod=nod; // присваиваем адрес функции указателю ptrnod int a, b; cout << "Enter first number: "; cin >> a; cout << "Enter second number: "; cin >> b; cout << "NOD = " << ptrnod(a, b) << endl; // обращаемся к функции через указатель return 0; } int nod(int number1, int number2) // рекурсивная функция нахождения наибольшего общего делителя НОД { if (number2 == 0) //базовое решение return number1; return nod(number2, number1 % number2); // рекурсивное решение НОД }

Данная задача решена рекурсивно, чтоб уменьшить объём кода программы, по сравнению с итеративным решением этой же задачи. В строке 9 объявляется указатель, которому в строке 10 присвоили адрес функции. Как мы уже говорили до этого, адресом функции является просто её имя. То есть данный указатель теперь указывает на функцию nod() . При объявлении указателя на функцию ни в коем случае не забываем о скобочках, в которые заключаются символ указателя и его имя. При объявлении указателя в аргументах указываем то же самое, что и в прототипе указываемой функции. Результат работы программы (см. Рисунок 5).

Enter first number: 16 Enter second number: 20 NOD = 4 Для продолжения нажмите любую клавишу. . .

Рисунок 5 — Указатели в С++

Вводим первое число, затем второе и программа выдает НОД. На рисунке 5 видно, что НОД для чисел 16 и 20 равен четырём.

Указатель - это переменная, содержащая адрес некоторого объекта в оперативной памяти (ОП). Смысл применения указателей - косвенная адресация объектов в ОП, позволяющая динамически менять логику программы и управлять распределением ОП.

Основные применения:

  • работа с массивами и строками;
  • прямой доступ к ОП;
  • работа с динамическими объектами, под которые выделяется ОП.

Описание указателя имеет следующий общий вид:

Тип *имя;

то есть, указатель всегда адресует определённый тип объектов ! Например,

Int *px; // указатель на целочисленные данные char *s; //указатель на тип char (строку Си)

Опишем основные операции и действия, которые разрешены с указателями:

1. Сложение/вычитание с числом:

Px++; //переставить указатель px на sizeof(int) байт вперед s--; //перейти к предыдущему символу строки //(на sizeof(char) байт, необязательно один)

2. Указателю можно присваивать адрес объекта унарной операцией " & ":

Int *px; int x,y; px=&x; //теперь px показывает на ячейку памяти со // значением x px=&y; //а теперь – на ячейку со значением y

3. Значение переменной, на которую показывает указатель, берется унарной операцией " * " ("взять значение"):

X=*px; //косвенно выполнили присваивание x=y (*px)++; //косвенно увеличили значение y на 1

Важно ! Из-за приоритетов и ассоциативности операций C++ действие

имеет совсем другой смысл, чем предыдущее. Оно означает "взять значение y (*px) и затем перейти к следующей ячейке памяти (++)"

Расшифруем оператор

Если px по-прежнему показывал на y , он означает "записать значение y в x и затем перейти к ячейке памяти, следующей за px ". Именно такой подход в классическом Си используется для сканирования массивов и строк.

Вот пример, с точностью до адресов памяти показывающий это важное различие. Комментарием приведены значения и адреса памяти переменных x и y , а также значение, полученное по указателю px и адрес памяти, на который он показывает. Обратите внимание, что после выполнения второго варианта кода значение, полученное по указателю, стало "мусором", так как он показывал на переменную, а не на нулевой элемент массива.

#include int main() { int x=0,y=1; int *px=&y; printf ("\nx=%d on &%p, y=%d on &%p, *px=%d on &%p",x,&x,y,&y,*px,px); x=(*px)++; //после первого запуска замените на x=*px++; printf ("\nx=%d on &%p, y=%d on &%p, *px=%d on &%p",x,&x,y,&y,*px,px); /* Действие (*px)++ x=0 on &002CFC14, y=1 on &002CFC08, *px=1 on &002CFC08 x=1 on &002CFC14, y=2 on &002CFC08, *px=2 on &002CFC08 Действие *px++ x=0 on &0021F774, y=1 on &0021F768, *px=1 on &0021F768 x=1 on &0021F774, y=1 on &0021F768, *px=-858993460 on &0021F76C */ getchar(); return 0; }

Приведём пример связывания указателя со статическим массивом:

Int a={1,2,3,4,5}; int *pa=&a; for (int i=0; i<5; i++) cout

For (int i=0; i<5; i++) cout

Эти записи абсолютно эквиваленты, потому что в Си конструкция a[b] означает не что иное, как *(a+b) , где a - объект, b – смещение от начала памяти, адресующей объект. Таким образом, обращение к элементу массива a[i] может быть записано и как *(a+i) , а присваивание указателю адреса нулевого элемента массива можно бы было записать в любом из 4 видов

Int *pa=&a; int *pa=&(*(a+0)); int *pa=&(*a); int *pa=a;

Важно ! При любом способе записи это одна и та же операция, и это - не "присваивание массива указателю", это его установка на нулевой элемент массива.

4. Сравнение указателей (вместо сравнения значений, на которые они указывают) в общем случае может быть некорректно !

Int x; int *px=&x, *py=&x; if (*px==*py) ... //корректно if (px==py) ... //некорректно!

Причина – адресация ОП не обязана быть однозначной, например, в DOS одному адресу памяти могли соответствовать разные пары частей адреса "сегмент" и "смещение".

Способ 1, со ссылочной переменной C++

Void swap (int &a, int &b) { int c=a; a=b; b=c; } //... int a=3,b=5; swap (a,b);

Этот способ можно назвать "передача параметров по значению, приём по ссылке".

Способ 2, с указателями Cи

Void swap (int *a, int *b) { int c=*a; *a=*b; *b=c; } //... int a=3,b=5; swap (&a,&b); int *pa=&a; swap (pa,&b);

Передача параметров по адресу, прием по значению.

Указатели и строки языка Си

Как правило, для сканирования Си-строк используются указатели.

Char *s="Hello, world";

Это установка указателя на первый байт строковой константы, а не копирование и не присваивание!

Важно !

1. Даже если размер символа равен одному байту, эта строка займёт не 12 (11 символов и пробел), а 13 байт памяти. Дополнительный байт нужен для хранения нуль-терминатора, символа с кодом 0 , записываемого как "\0" (но не "0" – это цифра 0 с кодом 48). Многие функции работы с Си-строками автоматически добавляют нуль-терминатор в конец обрабатываемой строки:

Char s; strcpy(s,"Hello, world"); //Вызвали стандартную функцию копирования строки //Ошибка! Нет места для нуль-терминатора сhar s; //А так было бы верно!

2. Длина Си-строки нигде не хранится, её можно только узнать стандартной функцией strlen(s) , где s – указатель типа char * . Для строки, записанной выше, будет возвращено значение 12, нуль-терминатор не считается. Фактически, Си-строка есть массив символов, элементов типа char .

Как выполнять другие операции со строками, заданными c помощью указателей char * ? Для этого может понадобиться сразу несколько стандартных библиотек. Как правило, в новых компиляторах C++ можно подключать и "классические" си-совместимые заголовочные файлы, и заголовки из более новых версий стандарта, которые указаны в скобках.

Файл ctype.h (cctype) содержит:

1) функции с именами is* - проверка класса символов (isalpha , isdigit , ...), все они возвращают целое число, например:

Char d; if (isdigit(d)) { //код для ситуации, когда d - цифра }

Аналогичная проверка "вручную" могла бы быть выполнена кодом вида

If (d>="0" && d<="9") {

2) функции с именами to* - преобразование регистра символов (toupper , tolower), они возвращают преобразованный символ. Могут быть бесполезны при работе с символами национальных алфавитов, а не только латиницей.

Модуль string.h (cstring) предназначен для работы со строками, заданными указателем и заканчивающимися байтом "\0" ("строками Си"). Имена большинства его функций начинаются на "str". Часть функций (memcpy , memmove , memcmp) подходит для работы с буферами (областями памяти с известным размером).

Примеры на работу со строками и указателями

1. Копирование строки

Char *s="Test string"; char s2; strcpy (s2,s); //копирование строки, s2 - буфер, а не указатель!

2. Копирование строки с указанием количества символов

Char *s="Test string"; char s2; char *t=strncpy (s2,s,strlen(s)); cout << t;

Функция strncpy копирует не более n символов (n - третий параметр), но не запишет нуль-терминатор, в результате чего в конце строки t выведется "мусор". Правильно было бы добавить после вызова strncpy следующее:

T="\0";

то есть, "ручную" установку нуль-терминатора.

3. Копирование строки в новую память

Char *s="12345"; char *s2=new char ; strcpy (s2,s);

Здесь мы безопасно скопировали строку s в новую память s2 , не забыв выделить "лишний" байт для нуль-терминатора.

4. Приведём собственную реализацию стандартной функции strcpy:

Char *strcpy_ (char *dst, char *src) { char *r=dst; while (*src!="\0") { *dst=*src; dst++; src++; } *dst="\0"; return r; }

Вызвать нашу функцию можно, например, так:

Char *src="Строка текста"; char dst; strcpy_ (&dst,&src);

Сократим текст функции strcpy_:

Char *strcpy_ (char *dst, char *src) { char *r=dst; while (*src) *dst++=*src++; *dst="\0"; return r; }

5. Сцепление строк – функция strcat

Char *s="Test string"; char *s2; char *t2=strcat (s2,strcat(s," new words"));

Так как strcat не выделяет память, поведение такого кода непредсказуемо!

А вот такое сцепление строк сработает:

Char s; strcpy (s,"Test string"); char s2; strcat (s," new words"); strcpy (s2,s); char *t2=strcat (s2,s);

То есть, всегда должна быть память, куда писать - статическая из буфера или выделенная динамически.

6. Поиск символа или подстроки в строке.

Char *sym = strchr (s,"t"); if (sym==NULL) puts ("Не найдено"); else puts (sym); //выведет "t string" //для strrchr вывод был бы "tring" char *sub = strstr (s,"ring"); puts (sub); //выведет "ring"

7. Сравнение строк – функции с шаблоном имени str*cmp - "string comparing"

Char *a="abcd",*b="abce"; int r=strcmp(a,b); //r=-1, т.к. символ "d" предшествует символу "e" //Соответственно strcmp(b,a) вернет в данном случае 1 //Если строки совпадают, результат=0

8. Есть готовые функции для разбора строк - strtok , strspn , strсspn - см. пособие, пп. 8.1-8.3

9. Преобразование типов между числом и строкой - библиотека stdlib.h (cstdlib)

Char *s="qwerty"; int i=atoi(s); //i=0, исключений не генерируется!

Из числа в строку:

1) itoa , ultoa - из целых типов

Char buf; int i=-31189; char *t=itoa(i,buf,36); //В buf получили запись i в 36-ричной с.с.

2) fcvt , gcvt , ecvt - из вещественных типов

Работа с динамической памятью

Как правило, описывается указатель нужного типа, который затем связывается с областью памяти, выделенной оператором new или си-совместимыми функциями для управления ОП.

1. Описать указатель на будущий динамический объект:

Int *a; //Надёжнее int *a=NULL;

2. Оператором new или функциями malloc , calloc выделить оперативную память:

A = new int ;

#include //stdlib.h, alloc.h в разных компиляторах //... a = (int *) malloc (sizeof(int)*10);

A = (int *) calloc (10,sizeof(int));

В последнем случае мы выделили 10 элементов по sizeof(int) байт и заполнили нулями "\0" .

Важно ! Не смешивайте эти 2 способа в одном программном модуле или проекте! Предпочтительней new , кроме тех случаев, когда нужно обеспечить заполнение памяти нулевыми байтами.

3. Проверить, удалось ли выделить память - если нет, указатель равен константе константе NULL из стандартной библиотеки (в ряде компиляторов null , nullptr , 0):

If (a==NULL) { //Обработка ошибка "Не удалось выделить память" }

4. Работа с динамическим массивом или строкой ничем не отличается от случая, когда они статические.

5. Когда выделенная ОП больше не нужна, её нужно освободить:

Delete a; //Если использовали new free (a); //Пытается освободить ОП, //если использовали malloc/calloc

Важно ! Всегда старайтесь придерживаться принципа стека при распределении ОП. То есть, объект, занявший ОП последним, первым её освобождает.

Пример. Динамическая матрица размером n*m.

Const int n=5,m=4; int **a = new (int *) [n]; for (int i=0; i

После этого можно работать с элементами матрицы a[i][j] , например, присваивать им значения. Освободить память можно было бы так:

For (int i=n-1; i>-1; i--) delete a[i]; delete a;

1. Написать собственную функцию работы со строкой, заданной указателем, сравнить со стандартной.

2. Написать собственную функцию для работы с одномерным динамическим массивом, заданным указателем.

3. Написать свои версии функций преобразования строки в число и числа в строку.

Хотелось бы с самого начала прояснить одну вещь - я не отношу себя к категории true-кодеров, сам учусь по специальности, не связанной с разработкой ПО, и это мой первый пост. Прошу судить по всей строгости. Итак, в свое время то ли по причине того, что я спал на лекциях, то ли я не особо вникал в эту тему, но у меня возникали некоторые сложности при работе с указателями в плюсах. Теперь же ни одна моя даже самая крохотная быдлокодерская программа не обходится без указателей. В данной статье я попытаюсь рассказать базовые вещи: что такое указатели, как с ними работать и где их можно применять. Повторюсь, изложенный ниже материал предназначен для новичков.


/* Ребят, в статье было найдено много ошибок. Спасибо тем людям, которые внесли свои замечания. В связи с этим - после прочтения статьи обязательно перечитайте комментарии */

1. Общие сведения

Итак, что же такое указатель? Указатель - это та же переменная, только инициализируется она не значением одного из множества типов данных в C++, а адресом, адресом некоторой переменной, которая была объявлена в коде ранее. Разберем на примере:

Void main(){ int i_val = 7; }
# Здесь ниже, конечно, я ребятки вам соврал. Переменная i_val - статическая, она явно будет размещена в стеке. В куче место выделяется под динамические объекты. Это важные вещи! Но в данном контексте, я, сделав сам себе замечание, позволю оставить себе все как есть, так что сильно не ругайтесь.

Мы объявили переменную типа int и здесь же ее проинициализировали. Что же произойдет при компиляции программы? В оперативной памяти, в куче, будет выделено свободное место такого размера, что там можно будет беспрепятственно разместить значение нашей переменной i_val . Переменная займет некоторый участок памяти, разместившись в нескольких ячейках в зависимости от своего типа; учитывая, что каждая такая ячейка имеет адрес, мы можем узнать диапазон адресов, в пределах которого разместилось значение переменной. В данном случае, при работе с указателями нам нужен лишь один адрес - адрес первой ячейки, именно он и послужит значением, которым мы проинициализируем указатель. Итак:

Void main(){ // 1 int i_val = 7; int* i_ptr = &i_val; // 2 void* v_ptr = (int *)&i_val }
Используя унарную операцию взятия адреса & , мы извлекаем адрес переменной i_val и присваиваем ее указателю. Здесь стоит обратить внимание на следующие вещи:

  1. Тип, используемый при объявлении указателя в точности должен соответствовать типу переменной, адрес которой мы присваиваем указателю.
  2. В качестве типа, который используется при объявлении указателя, можно выбрать тип void . Но в этом случае при инициализации указателя придется приводить его к типу переменной, на которую он указывает.
  3. Не следует путать оператор взятия адреса со ссылкой на некоторое значение, которое так же визуально отображается символом & .
Теперь, когда мы имеем указатель на переменную i_va l мы можем оперировать ее значением не только непосредственно с помощью самой переменной, но и с помощью указателя на нее. Посмотрим, как это работает на простом примере:

#include using namespace std; void main(){ int i_val = 7; int* i_ptr = &i_val; // выведем на экран значение переменной i_val cout << i_val << endl; // C1 cout << *i_ptr << endl; // C2 }

  1. Здесь все ясно - используем саму переменную.
  2. Во втором случае - мы обращаемся к значению переменной i_val через указатель. Но, как вы заметили, мы не просто используем имя указателя - здесь используется операция разыменования: она позволяет перейти от адреса к значению.
В предыдущем примере был организован только вывод значения переменной на экран. Можем ли мы непосредственно через указатель оперировать с значением переменной, на которую он указывает? Да, конечно, для этого они и реализованы (однако, не только для этого - но об этом чуть позже). Все, что нужно - сделать разыменование указателя:

(*i_ptr)++; // результат эквивалентен операции инкремента самой переменной: i_val++ // т.е. в данном случае в i_val сейчас хранится значение не 7, а 8.

2. Массивы

Сразу перейдем к примеру - рассмотрим статичный одномерный массив определенной длинны и инициализируем его элементы:

Void main(){ const int size = 7; // объявление int i_array; // инициализация элементов массива for (int i = 0; i != size; i++){ i_array[i] = i; } }
А теперь будем обращаться к элементам массива, используя указатели:

Int* arr_ptr = i_array; for (int i = 0; i != size; i++){ cout << *(arr_ptr + i) << endl; }
Что здесь происходит: мы инициализируем указатель arr_ptr адресом начала массива i_array . Затем, в цикле мы выводим элементы, обращаясь к каждому с помощью начального адреса и смещения. То есть:

*(arr_ptr + 0) это тот же самый нулевой элемент, смещение нулевое (i = 0),
*(arr_ptr + 1) - первый (i = 1), и так далее.

Однако, здесь возникает естественный вопрос - почему присваивая указателю адрес начала массива, мы не используем операцию взятия адреса? Ответ прост - использование идентификатора массива без указания квадратных скобок эквивалентно указанию адреса его первого элемента. Тот же самый пример, только в указатель «явно» занесем адрес первого элемента массива:

Int* arr_ptr_null = &i_array; for (int i = 0; i != size; i++){ cout << *(arr_ptr_null + i) << endl; } Пройдем по элементам с конца массива:
int* arr_ptr_end = &i_array; for (int i = 0; i != size; i++){ cout << *(arr_ptr_end - i) << endl; } Замечания:

  1. Запись array[i] эквивалентна записи *(array + i ). Никто не запрещает использовать их комбинированно: (array + i ) - в этом случае смещение идет на i , и еще на единичку. Однако, в данном случае перед выражением (array + i ) ставить * не нужно. Наличие скобок это «компенсирует.
  2. Следите за вашими „перемещениями“ по элементам массива - особенно если вам захочется использовать порнографический такой метод записи, как (array + i)[j].

3. Динамическое выделение памяти

Вот та замечательная плюшка, из-за которой я использую указатели. Начнем с динамических массивов. Зачастую при решении какой-либо задачи возникает потребность в использовании массива неопределенного размера, то есть размер этот заранее неизвестен. Здесь нам на помощь приходят динамические массивы - память под них выделяется в процессе выполнения программы. Пример:

Int size = -1; // здесь происходят какие - то // действия, которые изменяют // значение переменной size int* dyn_arr = new int;
Что здесь происходит: мы объявляем указатель и инициализируем его началом массива, под который выделяется память оператором new на size элементов. Следует заметить, что в этом случае мы можем использовать те же приемы в работе с указателями, что и с статическим массивом. Что следует из этого извлечь - если вам нужна какая - то структура (как массив, например), но ее размер вам заранее неизвестен, то просто сделайте объявление этой структуры, а проинициализируете ее уж позже. Более полный пример приведу чуть позже, а пока что - рассмотрим двойные указатели.

Что такое указатель на указатель? Это та же переменная, которая хранит адрес другого указателя „более низкого порядка“. Зачем он нужен? Для инициализации двумерного динамического массива, например:

Const int size = 7; // двумерный массив размером 7x7 int** i_arr = new int*; for(int i = 0; i != size; i++){ i_arr[i] = new int; }
А тройной указатель? Трехмерный динамический массив. Неинтересно, скажите вы, так можно продолжать до бесконечности. Ну хорошо. Тогда давайте представим себе ситуацию, когда нам нужно разместить динамические объекты какого-нибудь класса MyClass в двумерном динамическом массиве. Как это выглядит (пример иллюстрирует исключительно использование указателей, приведенный в примере класс никакой смысловой нагрузки не несет):

Class MyClass{ public: int a; public: MyClass(int v){ this->a = v; }; ~MyClass(){}; }; void main(){ MyClass*** v = new MyClass**; for (int i = 0; i != 7; i++){ v[i] = new MyClass*; for (int j = 0; j != 3; j++){ v[i][j] = new MyClass(i*j); } } } Здесь два указателя нужны для формирования матрицы, в которой будут располагаться объекты, третий - собственно для размещения там динамических объектов (не MyClass a , а MyClass* a ). Это не единственный пример использования указателей такого рода, чуть ниже будут рассмотрены еще примеры.

4. Указатель как аргумент функции

Для начала создадим два динамических массива размером 4x4 и проинициализируем их элементы некоторыми значениями:

Void f1(int**, int); void main(){ const int size = 4; // объявление и выделение памяти // под другие указатели int** a = new int*; int** b = new int*; // выделение памяти под числовые значения for (int i = 0; i != size; i++){ a[i] = new int; b[i] = new int; // собственно инициализация for (int j = 0; j != size; j++){ a[i][j] = i * j + 1; b[i][j] = i * j - 1; } } } void f1(int** a, int c){ for (int i = 0; i != c; i++){ for (int j = 0; j != c; j++){ cout.width(3); cout << a[i][j]; } cout << endl; } cout << endl; }
Функция f1 выводит значения массивов на экран: первый ее аргумент указатель на двумерный массив, второй - его размерность (указывается одно значение, потому как мы условились для простоты работать с массивами, где количество строк совпадает с количеством столбцов).

Задача : заменить значения элементов массива a соответствующими элементами из массива b , учитывая, что это должно произойти в некоторой функции, которая так или иначе занимается обработкой массивов. Цель: разобраться в способе передачи указателей для их дальнейшей модификации.

  1. Вариант первый. Передаем собственно указатели a и b в качестве параметров функции:

    Void f2(int** a, int** b, int c){ for (int i = 0; i != c; i++){ for (int j = 0; j != c; j++){ a[i][j] = b[i][j]; } } } После вызова данной функции в теле main - f2(a, b, 4) содержимое массивов a и b станет одинаковым.

  2. Вариант второй. Заменить значение указателя: просто присвоить значение указателя b указателю a.

    Void main(){ const int size = 4; // объявление и выделение памяти // под другие указатели int** a = new int*; int** b = new int*; // выделение памяти под числовые значения for (int i = 0; i != size; i++){ a[i] = new int; b[i] = new int; // собственно инициализация for (int j = 0; j != size; j++){ a[i][j] = i * j + 1; b[i][j] = i * j - 1; } } // Здесь это сработает a = b; }
    Однако, нам интересен случай, когда массивы обрабатываются в некоторой функции. Что первое приходит на ум? Передать указатели в качестве параметров нашей функции и там сделать то же самое: присвоить указателю a значение указателя b . То есть реализовать следующую функцию:

    Void f3(int** a, int** b){ a = b; } Сработает ли она? Если мы внутри функции f3 вызовем функцию f1(a, 4) , то увидим, что значения массива действительно поменялись. НО: если мы посмотрим содержимое массива a в main - то обнаружим обратное - ничего не изменилось. Так в чем же причина? Все предельно просто: в функции f3 мы работали не с самим указателем a , а с его локальной копией! Все изменения, которые произошли в функции f3 - затронули только локальную копию указателя, но никак не сам указатель a . Давайте посмотрим на следующий пример:

    Void false_eqv(int, int); void main(){ int a = 3, b = 5; false_eqv(a, b); // Поменялось значение a? // Конечно же, нет } false_eqv(int a, int b){ a = b; } Итак, я думаю, вы поняли, к чему я веду. Переменной a нельзя присвоить таким образом значение переменной b - ведь мы передавали их значения напрямую, а не по ссылке. То же самое и с указателями - используя их в качестве аргументов таким образом, мы заведомо лишаем их возможности изменения значения.
    Вариант третий, или работа над ошибками по второму варианту:

    Void f4(int***, int**); void main(){ const int size = 4; int** a = new int*; int** b = new int*; for (int i = 0; i != 4; i++){ a[i] = new int; b[i] = new int; for (int j = 0; j != 4; j++){ a[i][j] = i * j + 1; b[i][j] = i * j - 1; } } int*** d = &a; f4(d, b); } void f4(int*** a, int** b){ *a = b; }
    Таким образом, в main"е мы создаем указатель d на указатель a , и именно его передаем в качестве аргумента в функцию замены. Теперь, разыменовав d внутри f4 и приравняв ему значение указателя b , мы заменили значение настоящего указателя a , а не его локальной копии, на значение указателя b .

    Кстати, а чего это мы создаем динамические объекты? Ну ладно размер массива не знали, а экземпляры классов мы зачем динамическими делали? Да потому что зачастую, созданный нами объекты свое - они генерились, порождали новые данные/объекты для дальнейшей работы, а теперь пришло им время... умереть [фу, как грубо] уйти со сцены. И как мы это сделаем? Просто:

    Delete(a); delete(b); // Вот и кончились наши двумерные массивы delete(v); // Вот и нет больше двумерного массива с динамическими объектами delete(dyn_array); // Вот и удалился одномерный массив

  3. На данной ноте я хотел бы закончить свое повествование. Если найдется хотя бы пара ребят, которым понравится стиль изложения материала, то я постараюсь продолжить… ой, да кого я обманываю, мне нужен инвайт и все на этом, дайте инвайт и вашим глазам больше не придется видеть это околесицу. Шучу, конечно. Ругайте, комментируйте.

Последнее обновление: 27.05.2017

Указатели представляют собой объекты, значением которых служат адреса других объектов (переменных, констант, указателей) или функций. Указатели - это неотъемлемый компонент для управления памятью в языке Си.

Для определения указателя надо указать тип объекта, на который указывает указатель, и символ звездочки *. Например, определим указатель на объект типа int:

Пока указатель не ссылается ни на какой объект. Теперь присвоим ему адрес переменной:

Int x = 10; // определяем переменную int *p; // определяем указатель p = &x; // указатель получает адрес переменной

Указатель хранит адрес объекта в памяти компьютера. И для получения адреса к переменной применяется операция & . Эта операция применяется только к таким объектам, которые хранятся в памяти компьютера, то есть к переменным и элементам массива.

Что важно, переменная x имеет тип int, и указатель, который указывает на ее адрес тоже имеет тип int. То есть должно быть соответствие по типу.

Какой именно адрес имеет переменная x? Для вывода значения указателя можно использовать специальный спецификатор %p :

#include int main(void) { int x = 10; int *p; p = &x; printf("%p \n", p); // 0060FEA8 return 0; }

В моем случае машинный адрес переменной x - 0060FEA8. Но в каждом отдельном случае адрес может быть иным. Фактически адрес представляет целочисленное значение, выраженное в шестнадцатеричном формате.

То есть в памяти компьютера есть адрес 0x0060FEA8, по которому располагается переменная x. Так как переменная x представляет тип int , то на большинстве архитектур она будет занимать следующие 4 байта (на конкретных архитектурах размер памяти для типа int может отличаться). Таким образом, переменная типа int последовательно займет ячейки памяти с адресами 0x0060FEA8, 0x0060FEA9, 0x0060FEAA, 0x0060FEAB.

И указатель p будет ссылаться на адрес, по которому располагается переменная x, то есть на адрес 0x0060FEA8.

Но так как указатель хранит адрес, то мы можем по этому адресу получить хранящееся там значение, то есть значение переменной x. Для этого применяется операция * или операция разыменования, то есть та операция, которая применяется при определении указателя. Результатом этой операции всегда является объект, на который указывает указатель. Применим данную операцию и получим значение переменной x:

#include int main(void) { int x = 10; int *p; p = &x; printf("Address = %p \n", p); printf("x = %d \n", *p); return 0; }

Консольный вывод:

Address = 0060FEA8 x = 10

Используя полученное значение в результате операции разыменования мы можем присвоить его другой переменной:

Int x = 10; int *p = &x; int y = *p; printf("x = %d \n", y); // 10

И также используя указатель, мы можем менять значение по адресу, который хранится в указателе:

Int x = 10; int *p = &x; *p = 45; printf("x = %d \n", x); // 45

Так как по адресу, на который указывает указатель, располагается переменная x, то соответственно ее значение изменится.

Создадим еще несколько указателей:

#include int main(void) { char c = "N"; int d = 10; short s = 2; char *pc = &c; // получаем адрес переменной с типа char int *pd = &d; // получаем адрес переменной d типа int short *ps = &s; // получаем адрес переменной s типа short printf("Variable c: address=%p \t value=%c \n", pc, *pc); printf("Variable d: address=%p \t value=%d \n", pd, *pd); printf("Variable s: address=%p \t value=%hd \n", ps, *ps); return 0; }

В моем случае я получу следующий консольный вывод:

Variable c: address=0060FEA3 value=N Variable d: address=0060FE9C value=10 Variable s: address=0060FE9A value=2

По адресам можно увидеть, что переменные часто расположены в памяти рядом, но не обязательно в том порядке, в котором они определены в тексте программы.