Тарифы Услуги Сим-карты

Тактовая частота определяется. Тактовая частота процессора

Работа любого цифрового компьютера зависит от тактовой частоты, которую определяет кварцевый резонатор. Он представляет собой оловянный контейнер в который помещен кристалл кварца. Под воздействием электрического напряжения в кристалле возникают колебания электрического тока. Вот эта самая частота колебания и называется тактовой частотой. Все изменения логических сигналов в любой микросхеме компьютера происходят через определенные интервалы, которые называются тактами. Отсюда сделаем вывод, что наименьшей единицей измерения времени для большинства логических устройств компьютера есть такт или еще по другому – период тактовой частоты. Проще говоря – на каждую операцию требуется минимум один такт (хотя некоторые современные устройства успевают выполнить несколько операций за один такт). Тактовая частота, применительно к персональным компьютерам, измеряется в МГц, где Герц – это одно колебание в секунду, соответственно 1 МГц – миллион колебаний в секунду. Теоретически, если системная шина Вашего компьютера работает на частоте в 100 МГц, то значит она может выполнять до 100 000 000 операций в секунду. К слову сказать, совсем не обязательно, что бы каждый компонент системы обязательно что-либо выполнял с каждым тактом. Существуют так называемые пустые такты (циклы ожидания), когда устройство находится в процессе ожидания ответа от какого либо другого устройства. Так, например, организована работа оперативной памяти и процессора (СPU), тактовая частота которого значительно выше тактовой частоты ОЗУ.

Разрядность

Шина состоит из нескольких каналов для передачи электрических сигналов. Если говорят, что шина тридцатидвухразрядная, то это означает, что она способна передавать электрические сигналы по тридцати двум каналам одновременно. Здесь есть одна фишка. Дело в том, что шина любой заявленной разрядности (8, 16, 32, 64) имеет, на самом деле, большее количество каналов. То есть, если взять ту же тридцатидвухразрядную шину, то для передачи собственно данных выделено 32 канала, а дополнительные каналы предназначены для передачи специфической информации.

Скорость передачи данных

Название этого параметра говорит само за себя. Он высчитывается по формуле:

тактовая частота * разрядность = скорость передачи данных

Сделаем расчет скорости передачи данных для 64 разрядной системной шины, работающей на тактовой частоте в 100 МГц.

100 * 64 = 6400 Мбит/сек6400 / 8 = 800 Мбайт/сек

Но полученное число не является реальным. В жизни на шины влияет куча всевозможных факторов: неэффективная проводимость материалов, помехи, недостатки конструкции и сборки а также многое другое. По некоторым данным, разность между теоретической скоростью передачи данных и практической может составлять до 25%.

За работой каждой шины следят специально для этого предназначенные контроллеры. Они входят в состав набора системной логики (чипсет ).

Шина isa

Системная шина ISA (Industry Standard Architecture) применяется начиная с процессора i80286. Гнездо для плат расширения включает основной 64-контактный и дополнительный 36-контактный разъемы. Шина 16-разрядная, имеет 24 адресные линии, обеспечивает прямое обращение к 16 Мбайт оперативной памяти. Количество аппаратных прерываний - 16, каналов DMA - 7. Допускается возможность синхронизации работы шины и процессора разными тактовыми частотами. Тактовая частота - 8 МГц. Максимальная скорость передачи данных - 16 Мбайт/с.

PCI. (Peripheral Component Interconnect bus – шина соединения периферийных компонентов)

В июне 1992 года на сцене появился новый стандарт – PCI, родителем которого была фирма Intel, а точнее организованная ею группа Special Interest Group. К началу 1993 года появился модернизированный вариант PCI. По сути дела эта шина не является локальной. Напомню, что локальной шиной называется та шина, которая подключена к системной шине напрямую. PCI же для подключения к оной использует Host Bridge (главный мост), а так же еще и Peer-to-Peer Bridge (одноранговый мост) который предназначен для соединения двух шин PCI. Кроме всего прочего, PCI является сама по себе мостом между ISA и шиной процессора.

Тактовая частота PCI может быть равна или 33 МГц или 66 МГц. Разрядность – 32 или 64. Скорость передачи данных – 132 Мбайт/сек или 264 Мбайт/сек.

Стандартом PCI предусмотрены три типа плат в зависимости от питания:

1. 5 Вольт – для стационарных компьютеров

2. 3,3 Вольт – для портативных компьютеров

3. Универсальные платы могущие работать в обоих типах компьютеров.

Большим плюсом шины PCI является удовлетворение спецификации Plug and Play –. Кроме этого, в шине PCI любая передача сигналов происходит пакетным образом где каждый пакет разбит на фазы. Начинается пакет с фазы адреса, за которой, как правило, следует один или несколько фаз данных. Количество фаз данных в пакете может быть неопределенно, но ограничено таймером, который определяет максимальное время, в течение которого устройство может использоваться шиной. Такой вот таймер имеет каждое подключенное устройство, а его значение может быть задано при конфигурировании. Для организации работы по передачи данных используется арбитр. Дело в том, что на шине могут находиться два типа устройств – мастер (инициатор, хозяин, ведущий) шины и подчиненный. Мастер берет на себя контроль за шиной и инициирует передачу данных к адресату, т. е. подчиненному устройству. Мастером или подчиненным может быть любое подключенное к шине устройство и иерархия эта постоянно меняется в зависимости от того, какое устройство запросило у арбитра шины разрешения на передачу данных и кому. За бесконфликтную работу шины PCI отвечает чипсет, а точнее North Bridge. Но на PCI жизнь не остановила своего течения. Постоянное усовершенствование видеокарт привело к тому, что физических параметров шины PCI стало не хватать, что и привело к появлению AGP.

Каждый пользователь компьютерной техники не редко задавался этим вопросом, особенно решив приобрести, новое оборудование. Но для того чтобы ответить на вопрос — тактовая частота процессора на что же она влияет, необходимо в первую очередь понять, что собой она представляет?

ВЛИЯНИЕ ТАКТОВОЙ частоты процессора на производительность?

Этот показатель говорит о количестве производимых процессором вычислений в одну секунду. Ну и естественно, что чем выше частота, тем больше операций в единицу времени может произвести процессор. У современных устройств этот показатель находится в пределах от 1 до 4 ГГц. Определяется он путем умножения базовой или внешней частоты на определенный коэффициент. Увеличить частоту процессора можно путем его «разгона». Мировые лидеры по производству этих устройств некоторые свои изделия ориентируют на возможный их разгон.

При выборе такого устройства важным показателем производительности является не только его частота. На это влияет также ядреность процессора.
В настоящее время практически не осталось таких устройств, которые имеют только одно ядро. Многоядерные процессоры полностью вытеснили с рынка своих одноядерных предшественников.

О ядерности и тактовой частоте

Начнем с того, что утверждение, что процессор имеет частоту равную общей суме этого показателя каждого из ядер не верное. Но почему многоядерный процессор лучше и эффективнее? Потому, что каждое из ядер производит свою часть общей работы, если это позволяет, обрабатывая процессором программа. Таким образом, ядреность значительно увеличивает производительность системы, в том случае если обрабатываемую информацию можно разделить на части. Но если это сделать невозможно, работает только одно ядро процессора. При этом общая его производительность равна тактовой частоте этого ядра.

В общем, если вам предстоит работа с графикой, статическим изображением, видео, музыкой многоядерный процессор как раз то, что необходимо. Но если вы игроман, то в этом случае лучше брать не сильно многоядерный процессор, потому что программисты могут и не предусматривать разделение программных процессов на части. Поэтому, для игр более мощный процессор подойдет лучше.

Об архитектуре процессора

Кроме этого, производительность системы зависит и от архитектуры процессора. Естественно, что чем короче путь сигнала от точки отправки до точки назначения, тем быстрее производится обработка информации. По этой причине процессоры от компании Intel работают лучше, чем от фирмы AMD, при одинаковой тактовой частоте.
Итоги

Таким образом, тактовая частота процессора — это его сила или мощь. Она влияет на производительность системы. Но при этом необходимо не забывать что этот параметр, кроме мощности, зависит от количества ядер и от архитектуры этого устройства. Выбирать процессор необходимо с учетом того, с чем ему в будущем нужно будет работать? Для игр лучше брать процессор помощнее, для всего остального подойдет многоядерный процессор с не очень большой тактовой частотой.

Уже подросло целое поколение компьютерных пользователей, которые не застали знаменитую "гонку мегагерцев", развернувшуюся между двумя ведущими производителями для настольных компьютеров (кто не в курсе — Intel и AMD) на рубеже тысячелетий. Ее конец наступил примерно в 2004 году, когда стало очевидным, что частота процессора — не единственная характеристика, влияющая на его производительность. Крайне "прожорливые" и крайне высокочастотные процессоры Pentium IV на ядре Prescott вплотную подбирались к 4 GHz, и при этом с трудом конкурировали с архитектурой K8, на которой были построены новые "камни" от AMD, имевшие частоту не выше 2,6-2,8 GHz.

После этого оба производителя синхронно отошли от практики идентификации своих изделий по рабочей частоте и перешли к абстрактным модельным индексам. Такое решение обосновывалось нежеланием вводить конечного пользователя в заблуждение насчет производительности процессора, акцентируя внимание только на одной его характеристике. Действительно, есть ведь еще и частота шины процессора, и размер кэш-памяти, и технологический процесс, по которому изготовлено ядро, и много чего еще. Но частота процессора все еще остается одним из самых наглядных и интуитивно понятных для большинства людей мерил "качества" CPU.

Процессора, действительно, влияет на его производительность, характеризуя количество выполняемых операций в секунду. Но дело в том, что процессоры, построенные на различных ядрах, тратят на выполнение одной операции разное количество тактов, и от поколения к поколению этот параметр может отличаться в разы. Именно благодаря этому нынешний процессор с номинальной частотой 2,0 GHz оставит далеко позади флагмана семилетней давности с тактовой частотой 3,8 GHz. Кроме того, на быстродействие процессора, как уже указывалось выше, влияет и размер кэш-памяти (чем он больше, тем реже процессор будет вынужден обращаться к сравнительно медленной оперативной памяти), и частота шины процессора (чем она выше, тем быстрее будет обмен данными между "камнем" и ОЗУ), и множество других, не столь заметных, но от того не менее важных, характеристик.

В последнее время в обиход начинает входить и такое понятие, как максимальная частота процессора.

Постепенно и Intel, и AMD внедряют в своих продуктах такую функцию, как авторазгон. Технологию, по сути одну и ту же, один производитель называет другой — Turbo Core, но от этого ее суть не меняется: частота процессора может динамически изменяться, причем автоматически, без вмешательства пользователя. Необходимость применения такой технологии вызвана тем, что многоядерность современных процессоров стала уже, по сути, нормой, а вот многопоточность современных приложений, к сожалению, пока нет. Операционная система, видя, что одно из загружено значительно сильнее остальных, самостоятельно увеличивает частоту этого ядра, при этом стараясь оставить процессор в пределах его "родного" теплопакета (т.е. система старается подстраховаться от перегрева оборудования). Причем, в зависимости от модели процессора и от конкретных условий, такой прирост частоты может составлять величину от 100 до 600-700 MHz, а это уже, согласитесь, существенная прибавка к производительности. Такую технологию поддерживает большинство последних процессоров обоих производителей. У Intel это, в частности, все CPU модельного ряда Core i5 и Core i7, у AMD — все процессоры на разъеме AM3+, процессоры на разъеме FM1 (кроме процессоров с отключенным графическим ядром), а также некоторые "камни" к платформе AM3 (шестиядерные Tuban и четырехядерные Zosma). Причем для основанных на разъеме такой авторазгон тем более актуален, если учесть, что из-за некоторых архитектурных особенностей полноценный "разгон" путем повышения частоты шины процессора практически невозможен. Впрочем, это тема уже совсем другой статьи…

Принципиальная схема процессора

Управляющий блок - управляет работой всех блоков процессора.

Арифметико-логический блок - выполняет арифметические и логические вычисления.

Регистры - блок хранения данных и промежуточных результатов вычислений - внутренняя оперативная память процессора.

Блок декодировки - преобразует данные в двоичную систему.

Блок предварительной выборки - получает команду от устройства (клавиатура и т.д.) и запрашивает инструкции в системной памяти.

Кэш-память (или просто кэш) 1-го уровня - хранит часто использующиеся инструкции и данные.

Кэш-память 2-го уровня - хранит часто использующиеся данные.

Блок шины - служит для ввода и вывода информации.

Эта схема соответствует процессорам архитектуры P6. По этой архитектуре создавались процессоры с Pentium Pro до Pentium III. Процессоры Pentium 4 изготавливаются по новой архитектуре Intel® NetBurst. В процессорах Pentium 4 кэш 1-го уровня поделен на две части - кэш данных и кэш команд.

Характеристики процессора

Основными характеристиками процессора являются его тактовая частота, разрядность и размеры кэша 1-го и 2-го уровня.

Частота - это количество колебаний в секунду. Тактовая частота - это количество тактов в секунду. В применении к процессору:

Тактовая частота - это количество операций, которое процессор может выполнить в секунду.

Т.е. чем больше операций в секунду может выполнять процессор, тем быстрее он работает. Например, процессор с тактовой частотой 40 МГц выполняет 40 миллионов операций в секунду, с частотой 300 Мг - 300 миллионов операций в секунду, с частотой 1 ГГц - 1 миллиард операций в секунду.

К 2003 году тактовая частота процессоров достигла 3 ГГц.

Существует два типа тактовой частоты - внутренняя и внешняя.

Внутренняя тактовая частота - это тактовая частота, с которой происходит работа внутри процессора.

Внешняя тактовая частота или частота системной шины - это тактовая частота, с которой происходит обмен данными между процессором и оперативной памятью компьютера.

До 1992 года в процессорах внутренняя и внешняя частоты совпадали, а в 1992 году компания Intel представила процессор 80486DX2, в котором внутренняя и внешняя частоты были различны - внутренняя частота была в 2 раза больше внешней. Было выпущено два типа таких процессоров с частотами 25/50 МГц и 33/66 МГц, затем Intel выпустила процессор 80486DX4 с утроенной внутренней частотой (33/100 МГц).

С этого времени остальные компании-производители также стали выпускать процессоры с удвоенной внутренней частотой, а компания IBM стала выпускать процессоры с утроенной внутренней частотой (25/75 МГц, 33/100 МГц и 40/120 МГц).

В современных процессорах, например, при тактовой частоте процессора 3 ГГц, частота системной шины 800 МГц.

Разрядность процессора определяется разрядностью его регистров.

Компьютер может оперировать одновременно ограниченным набором единиц информации. Этот набор зависит от разрядности внутренних регистров. Разряд - это хранилище единицы информации. За один рабочий такт компьютер может обработать количество информации, которое может поместиться в регистрах. Если регистры могут хранить 8 единиц информации, то они 8-разрядне, и процессор 8-разрядный, если регистры 16-разрядные, то и процессор 16-разрядный и т.д. Чем большая разрядность процессора, тем большее количество информации он может обработать за один такт, а значит, тем быстрее работает процессор.

Процессор Pentium 4 является 32-разрядным.

Объем кэш-памяти 1-го и 2-го уровня также влияет на производительность процессора.

В процессоре Pentium III кэш-память 1-го уровня составляет 16 Кб, кэш-память 2-го уровня 256 Кб.

В процессорах Pentium 4 кэш-память 1-го уровня для данных имеет объем 8 Кб, кэш-память 1-го уровня для команд рассчитан на 12000 инструкций в порядке их исполнения, а объем кэш-памяти 2-го уровня составляет 512 Кб.

То тактовая частота является наиболее известным параметром. Поэтому необходимо конкретно разобраться с этим понятием. Также, в рамках данной статьи, мы обсудим понимание тактовой частоты многоядерных процессоров , ведь там есть интересные нюансы, которые знают и учитывают далеко не все.

Достаточно продолжительное время разработчики делали ставки именно на повышение тактовой частоты, но со временем, "мода" поменялась и большинство разработок уходят на создание более совершенной архитектуры, увеличения кэш-памяти и развития многоядерности , но и про частоту никто не забывает.

Что же такое тактовая частота процессора?

Для начала нужно разобраться с определением «тактовая частота». Тактовая частота показывает нам, сколько процессор может произвести вычислений в единицу времени. Соответственно, чем больше частота, тем больше операций в единицу времени может выполнить процессор. Тактовая частота современных процессоров, в основном, составляет 1,0-4ГГц. Она определяется умножением внешней или базовой частоты, на определённый коэффициент. Например, процессор Intel Core i7 920 использует частоту шины 133 МГц и множитель 20, в результате чего тактовая частота равна 2660 МГц.

Частоту процессора можно увеличить в домашних условиях, с помощью разгона процессора. Существуют специальные модели процессоров от AMD и Intel , которые ориентированы на разгон самим производителем, к примеру Black Edition у AMD и линейки К-серии у Intel.

Хочу отметить, что при покупке процессора, частота не должна быть для вас решающим фактором выбора, ведь от нее зависит лишь часть производительности процессора.

Понимание тактовой частоты (многоядерные процессоры)

Сейчас, почти во всех сегментах рынка уже не осталось одноядерных процессоров. Ну оно и логично, ведь IT-индустрия не стоит на месте, а постоянно движется вперёд семимильными шагами. Поэтому нужно чётко уяснить, каким образом рассчитывается частота у процессоров, которые имеют два ядра и более.

Посещая множество компьютерных форумов, я заметил, что существует распространенное заблуждение насчёт понимания (высчитывания) частот многоядерных процессоров. Сразу же приведу пример этого неправильного рассуждения: «Имеется 4-х ядерный процессор с тактовой частотой 3 ГГц, поэтому его суммарная тактовая частота будет равна: 4 х 3ГГц=12 ГГц, ведь так?»- Нет, не так.

Я попробую объяснить, почему суммарную частоту процессора нельзя понимать как: « количество ядер х указанную частоту».

Приведу пример: «По дороге идёт пешеход, у него скорость 4 км/ч. Это аналогично одноядерному процессору на N ГГц. А вот если по дороге идут 4 пешехода со скоростью 4 км/ч, то это аналогично 4-ядерному процессору на N ГГц. В случае с пешеходами мы не считаем, что их скорость будет равна 4х4 =16 км/ч, мы просто говорим: "4 пешехода идут со скоростью 4 км/ч" . По этой же причине мы не производим никаких математических действий и с частотами ядер процессора, а просто помним, что 4-ядерный процессор на N ГГц обладает четырьмя ядрами, каждое из которых работает на частоте N ГГц» .