Тарифы Услуги Сим-карты

Топологии сетей. Рыбалка кастинговой сетью

Топология «кольцо» - это топология, в которой каждый компьютер соединён линиями связи только с двумя другими: от одного он только получает информацию, а другому только передаёт. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приёмник. Это позволяет отказаться от применения внешних терминаторов.
Каждый компьютер ретранслирует (возобновляет) сигнал, то есть выступает в роли повторителя, потому затухание сигнала во всём кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Чётко выделенного центра в этом случае нет, все компьютеры могут быть одинаковыми. Однако достаточно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует обмен. Понятно, что наличие такого управляющего абонента снижает надёжность сети, потому что выход его из строя сразу же парализует весь обмен.
Подключение новых абонентов в «кольцо» обычно совсем безболезненно, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае топологии «шина», максимальное количество абонентов в кольце может быть достаточно большое (1000 и больше). В качестве носителя в сети используется витая пара или оптоволокно. Сообщения циркулируют по кругу.
Рабочая станция может передавать информацию другой рабочей станции, только после того, как получит право на передачу (маркер), поэтому коллизии исключены. Информация передается по кольцу от одной рабочей станции к другой, поэтому при выходе из строя одного компьютера, если не принимать специальных мер выйдет из строя вся сеть.
Кольцевая топология обычно является самой стойкой к перегрузкам, она обеспечивает уверенную работу с самыми большими потоками переданной по сети информации, потому что в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды).

Тема 1.4: Основы локальных сетей

Тема 1.5: Базовые технологии локальных сетей

Тема 1.6: Основные программные и аппаратные компоненты ЛВС

Локальные сети

1.4. Основы локальных сетей

1.4.3. Сетевые топологии

Все компьютеры в локальной сети соединены линиями связи. Геометрическое расположение линий связи относительно узлов сети и физическое подключение узлов к сети называется физической топологией. В зависимости от топологии различают сети: шинной, кольцевой, звездной, иерархической и произвольной структуры.

Различают физическую и логическую топологию. Логическая и физическая топологии сети независимы друг от друга. Физическая топология - это геометрия построения сети, а логическая топология определяет направления потоков данных между узлами сети и способы передачи данных.

В настоящее время в локальных сетях используются следующие физические топологии:

  • физическая "шина" (bus);
  • физическая “звезда” (star);
  • физическое “кольцо” (ring);
  • физическая "звезда" и логическое "кольцо" (Token Ring).

Шинная топология

Сети с шинной топологией используют линейный моноканал (коаксиальный кабель) передачи данных, на концах которого устанавливаются оконечные сопротивления (терминаторы). Каждый компьютер подключается к коаксиальному кабелю с помощью Т-разъема (Т - коннектор). Данные от передающего узла сети передаются по шине в обе стороны, отражаясь от оконечных терминаторов. Терминаторы предотвращают отражение сигналов, т.е. используются для гашения сигналов, которые достигают концов канала передачи данных.

Таким образом, информация поступает на все узлы, но принимается только тем узлом, которому она предназначается. В топологии логическая шина среда передачи данных используются совместно и одновременно всеми ПК сети, а сигналы от ПК распространяются одновременно во все направления по среде передачи. Так как передача сигналов в топологии физическая шина является широковещательной, т.е. сигналы распространяются одновременно во все направления, то логическая топология данной локальной сети является логической шиной.


Рис. 1.

Данная топология применяется в локальных сетях с архитектурой Ethernet (классы 10Base-5 и 10Base-2 для толстого и тонкого коаксиального кабеля соответственно).

Преимущества сетей шинной топологии:

  • отказ одного из узлов не влияет на работу сети в целом;
  • сеть легко настраивать и конфигурировать;
  • сеть устойчива к неисправностям отдельных узлов.

Недостатки сетей шинной топологии:

  • разрыв кабеля может повлиять на работу всей сети;
  • ограниченная длина кабеля и количество рабочих станций;
  • трудно определить дефекты соединений.

Топология типа “звезда”

В сети построенной по топологии типа “звезда” каждая рабочая станция подсоединяется кабелем (витой парой) к концентратору или хабу (hub) . Концентратор обеспечивает параллельное соединение ПК и, таким образом, все компьютеры, подключенные к сети, могут общаться друг с другом.



Рис. 2.

Данные от передающей станции сети передаются через хаб по всем линиям связи всем ПК. Информация поступает на все рабочие станции, но принимается только теми станциями, которым она предназначается. Так как передача сигналов в топологии физическая звезда является широковещательной, т.е. сигналы от ПК распространяются одновременно во все направления, то логическая топология данной локальной сети является логической шиной.

Данная топология применяется в локальных сетях с архитектурой 10Base-T Ethernet.

Преимущества сетей топологии звезда:

  • легко подключить новый ПК;
  • имеется возможность централизованного управления;
  • сеть устойчива к неисправностям отдельных ПК и к разрывам соединения отдельных ПК.

Недостатки сетей топологии звезда:

  • отказ хаба влияет на работу всей сети;
  • большой расход кабеля.

Топология “кольцо”

В сети с топологией кольцо все узлы соединены каналами связи в неразрывное кольцо (необязательно окружность), по которому передаются данные. Выход одного ПК соединяется со входом другого ПК. Начав движение из одной точки, данные, в конечном счете, попадают на его начало. Данные в кольце всегда движутся в одном и том же направлении.


Рис. 3.

Принимающая рабочая станция распознает и получает только адресованное ей сообщение. В сети с топологией типа физическое кольцо используется маркерный доступ, который предоставляет станции право на использование кольца в определенном порядке. Логическая топология данной сети - логическое кольцо. Данную сеть очень легко создавать и настраивать.

К основному недостатку сетей топологии кольцо является то, что повреждение линии связи в одном месте или отказ ПК приводит к неработоспособности всей сети.

Как правило, в чистом виде топология “кольцо” не применяется из-за своей ненадёжности, поэтому на практике применяются различные модификации кольцевой топологии.

Топология Token Ring

Эта топология основана на топологии "физическое кольцо с подключением типа звезда". В данной топологии все рабочие станции подключаются к центральному концентратору (Token Ring) как в топологии физическая звезда. Центральный концентратор - это интеллектуальное устройство, которое с помощью перемычек обеспечивает последовательное соединение выхода одной станции со входом другой станции.

Другими словами с помощью концентратора каждая станция соединяется только с двумя другими станциями (предыдущей и последующей станциями). Таким образом, рабочие станции связаны петлей кабеля, по которой пакеты данных передаются от одной станции к другой и каждая станция ретранслирует эти посланные пакеты. В каждой рабочей станции имеется для этого приемо-передающее устройство, которое позволяет управлять прохождением данных в сети. Физически такая сеть построена по типу топологии “звезда”.

Концентратор создаёт первичное (основное) и резервное кольца. Если в основном кольце произойдёт обрыв, то его можно обойти, воспользовавшись резервным кольцом, так как используется четырёхжильный кабель. Отказ станции или обрыв линии связи рабочей станции не вличет за собой отказ сети как в топологии кольцо, потому что концентратор отключет неисправную станцию и замкнет кольцо передачи данных.


Рис. 4.

В архитектуре Token Ring маркер передаётся от узла к узлу по логическому кольцу, созданному центральным концентратором. Такая маркерная передача осуществляется в фиксированном направлении (направление движения маркера и пакетов данных представлено на рисунке стрелками синего цвета). Станция, обладающая маркером, может отправить данные другой станции.

Для передачи данных рабочие станции должны сначала дождаться прихода свободного маркера. В маркере содержится адрес станции, пославшей этот маркер, а также адрес той станции, которой он предназначается. После этого отправитель передает маркер следующей в сети станции для того, чтобы и та могла отправить свои данные.

Один из узлов сети (обычно для этого используется файл-сервер) создаёт маркер, который отправляется в кольцо сети. Такой узел выступает в качестве активного монитора, который следит за тем, чтобы маркер не был утерян или разрушен.

Преимущества сетей топологии Token Ring:

  • топология обеспечивает равный доступ ко всем рабочим станциям;
  • высокая надежность, так как сеть устойчива к неисправностям отдельных станций и к разрывам соединения отдельных станций.

Недостатки сетей топологии Token Ring: большой расход кабеля и соответственно дорогостоящая разводка линий связи.

Такая топология сети (ее схема приведена на рис. 4.5) широко применяется для построения сетей SDH с использованием первых двух уровней систем передачи SDH (скорости передачи 155,52 и 622,08 Мбит/с) на сети доступа . Основная особенность и достоинство этой топологии – легкость обеспечения системы защиты типа «1+1» благодаря наличию в синхронных мультиплексорах DIM двух пар оптических линейных (агрегатных) портов. Они дают возможность образовать СЛТ в форме двойной кольцевой структуры со встречными цифровыми потоками (на рис. 4.5 они показаны стрелками).

Кольцевая топология обладает рядом свойств, которые позволяют сети самовосстанавливаться, т. е. обеспечивать защиту от некоторых достаточно 226

распространенных типов отказов. Поэтому остановимся на основных свойствах кольцевой топологии сети более подробно.

«Интеллектуальные» возможности DIM позволяют образовать кольцевые самовосстанавливающиеся («самозалечивающиеся») сети двух типов: однонаправленные и двунаправленные .

В сетях первого типа используются два оптических волокна. Каждый передаваемый цифровой поток направляется по кольцевой сети в обоих (противоположных) направлениях, а в пункте приема, как и в случае защиты по схеме «1+1» в топологии сети «точка – точка» (см. рис. 4.2), осуществляется выбор одного из двух принятых сигналов (лучшего по качеству, например, по наименьшему коэффициенту ошибок). Передача цифровых потоков по всем основным участкам СЛТ происходит в одном направлении (например, по часовой стрелке), а по всем резервным – в противоположном. Поэтому такая кольцевая сеть и называется однонаправленной с переключением СЛТ или с закрепленным резервом. Схема прохождения сигналов по основному и резервному участкам СЛТ рассматриваемой кольцевой сети показана на рис. 4.5 .

Двунаправленная кольцевая сеть может быть образована с помощью двух (топология

«сдвоенное кольцо») или четырех (два «сдвоенных кольца») оптических волокон. В двунаправленной кольцевой сети с двумя волокнами передаваемые ЦЛС не дублируются. При работе такой сети цифровые потоки пунктов доступа передаются по кольцу кратчайшим путем во встречных направлениях (отсюда и название «двунаправленное кольцо»). При возникновении отказа на любом участке СЛТ посредством DIM, включенных на концах отказавшего участка, выполняется переключение всего цифрового потока, поступавшего на этот участок, в обратном направлении. Такую конфигурацию сети называют также кольцом с переключением участков или кольцом, защищенным с помощью совместно используемого резерва.

Пример двунаправленной кольцевой сети с двумя ОВ приведен на рис. 4.6 . На нем показаны схемы прохождения сигналов для одного из вариантов соединения пунктов доступа в рабочем (доаварийном) режиме (рис. 4.6, а) и в аварийном режиме при отказе одного из участков СЛТ кольцевой сети, который перечеркнут крестом (рис. 4.6, б). Поврежденный участок СЛТ исключается из схемы кольца, но связь между всеми пунктами доступа на сети сохраняется.

Сравнивая однонаправленную и двунаправленную кольцевые сети с двумя волокнами между собой, следует заметить, что при отказе одного участка можно сохранить полную работоспособность любой из этих сетей. Однако в большинстве случаев двунаправленное кольцо сети оказывается более экономичным, поскольку требует меньшей пропускной способности. Это объясняется тем, что для сигналов, передаваемых на различных пересекающихся участках кольцевой сети, используют одни и те же оптические волокна (как в основном, так и в аварийном режиме работы). В то же время однонаправленное кольцо сети проще в реализации.

Однонаправленные кольцевые сети больше подходят в случае «центростремительного» трафика, в частности, для сетей доступа к ближайшему узлу. Двунаправленные кольца сети предпочтительнее при равномерном трафике, например, для построения цифровых соединительных линий между мощными электронными АТС, или цифровыми коммутационными станциями (ЦКС).

Двунаправленная кольцевая сеть с четырьмя волокнами обеспечивает более высокий уровень отказоустойчивости, чем кольцо сети с двумя оптическими волокнами, однако затраты на построение четырехволоконной кольцевой сети существенно больше. В сетевых структурах с двумя сдвоенными кольцами при отказе на каком-либо участке СЛТ первоначально делается попытка перейти на другую пару оптических волокон в пределах того же (отказавшего) участка. Но если это не удается, то осуществляется реконфигурация кольцевой сети, аналогичная той, что показана на рис. 4.6, б.

Несмотря на высокую стоимость четырехволоконной кольцевой сети, в последнее время она находит все большее применение на высокоскоростных сетях SDH, так как она обеспечивает очень высокую надежность.

Выше рассматривался только случай, когда в аварийном состоянии оказался участок СЛТ кольцевой сети, т. е. оптическое волокно линейного кабеля. Однако в такой сети отказать в работе может и мультиплексор. В этой ситуации резервирование как таковое не используется, а работоспособность сети в целом (на уровне линейных блоков) восстанавливается путем исключения из схемы функционирования поврежденного мультиплексора. Современные системы управления DIM обеспечивают обходной путь, который позволяет пропускать цифровой поток в обход отказавшего мультиплексора в данном пункте кольцевой сети .

В кольцевой сети каждый компьютер связан со следующим, а последний - с первым (см. рис.). Кольцевая топология применяется в сетях, требующих резервирования определенной части полосы пропускания для критичных по времени средств (например, для передачи видео и аудио), в высокопроизводительных сетях, а также при большом числе обращающихся к сети клиентов (что требует ее высокой пропускной способности).

Принцип работы сетей с кольцевой топологией

В сети с кольцевой топологией каждый компьютер соединяется со следующим компьютером, ретранслирующим ту информацию, которую он получает от первой машины. Благодаря такой ретрансляции сеть является активной, и в ней не возникают проблемы потери сигнала, как в сетях с шинной топологией. Кроме того, поскольку "конца" в кольцевой сети нет, никаких оконечных нагрузок не нужно.

Некоторые сети с кольцевой топологией используют метод эстафетной передачи. Специальное короткое сообщение-маркер циркулирует по кольцу, пока компьютер не пожелает передать информацию другому узлу. Он модифицирует маркер, добавляет электронный адрес и данные, а затем отправляет его по кольцу. Каждый из компьютеров последовательно получает данный маркер с добавленной информацией и передает его соседней машине, пока электронный адрес не совпадет с адресом компьютера-получателя, или маркер не вернется к отправителю. Получивший сообщение компьютер возвращает отправителю ответ, подтверждающий, что послание принято. Тогда отправитель создает еще один маркер и отправляет его в сеть, что позволяет другой станции перехватить маркер и начать передачу. Маркер циркулирует по кольцу, пока какая-либо из станций не будет готова к передаче и не захватит его.

Все эти события происходят очень часто: маркер может пройти кольцо с диаметром в 200 м примерно 10000 раз в секунду. В некоторых еще более быстрых сетях циркулирует сразу несколько маркеров. В других сетевых средах применяются два кольца с циркуляцией маркеров в противоположных направлениях. Такая структура способствует восстановлению сети в случае возникновения отказов.

Преимущества сети с кольцевой топологией

Сеть с кольцевой топологией обладает следующими преимуществами:

· Поскольку всем компьютерам предоставляется равный доступ к маркеру, никто из них не сможет монополизировать сеть.

· Справедливое совместное использование сети обеспечивает постепенное снижение ее производительности в случае увеличения числа пользователей и перегрузки (лучше, если сеть будет продолжать функционировать, хотя и медленно, чем сразу откажет при превышении пропускной способности).

Недостатки сети с кольцевой топологией

Сети с кольцевой топологией свойственны следующие недостатки:

· Отказ одного компьютера в сети может повлиять на работоспособность всей сети.

· Кольцевую сеть трудно диагностировать.

· Добавление или удаление компьютера вынуждает разрывать сеть.

Витая пара

Вита́я па́ра - вид кабеля связи, представляет собой одну или несколько пар изолированных проводников, скрученных между собой (с небольшим числом витков на единицу длины), покрытых пластиковой оболочкой.

Свивание проводников производится с целью повышения степени связи между собой проводников одной пары (электромагнитные помехи одинаково влияют на оба провода пары) и последующего уменьшения электромагнитных помех от внешних источников, а также взаимных наводок при передаче дифференциальных сигналов. Для снижения связи отдельных пар кабеля (периодического сближения проводников различных пар) в кабелях UTP категории 5 и выше провода пары свиваются с различным шагом. Витая пара - один из компонентов современных структурированных кабельных систем. Используется в телекоммуникациях и в компьютерных сетях в качестве физической среды передачи сигнала во многих технологиях, таких как Ethernet, Arcnet и Token ring. В настоящее время, благодаря своей дешевизне и лёгкости в монтаже, является самым распространённым решением для построения проводных (кабельных) локальных сетей.

Кабель подключается к сетевым устройствам при помощи разъёма 8P8C (который ошибочно называют RJ45).

Билет 8:

Архитектура «Клиент-сервер»

Ответ: Клиент-сервер (англ. Client-server) - вычислительная или сетевая архитектура, в которой задания или сетевая нагрузка распределены между поставщиками услуг (сервисов), называемыми серверами, и заказчиками услуг, называемыми клиентами. Нередко клиенты и серверы взаимодействуют через компьютерную сеть и могут быть как различными физическими устройствами, так и программным обеспечением.

Преимущества

Отсутствие дублирования кода программы-сервера программами-клиентами.

Так как все вычисления выполняются на сервере, то требования к компьютерам, на которых установлен клиент, снижаются.

Все данные хранятся на сервере, который, как правило, защищён гораздо лучше большинства клиентов. На сервере проще обеспечить контроль полномочий, чтобы разрешать доступ к данным только клиентам с соответствующими правами доступа.

Позволяет объединить различные клиенты. Использовать ресурсы одного сервера часто могут клиенты с разными аппаратными платформами, операционными системами и т. п.

Позволяет разгрузить сети за счёт того, что между сервером и клиентом передаются небольшие порции данных.

Недостатки

Неработоспособность сервера может сделать неработоспособной всю вычислительную сеть. Неработоспособным сервером следует считать сервер, производительности которого не хватает на обслуживание всех клиентов, а также сервер, находящийся на ремонте, профилактике и т. п.

Поддержка работы данной системы требует отдельного специалиста - системного администратора.

Высокая стоимость оборудования.з

Многоуровневая архитектура клиент-сервер

Многоуровневая архитектура клиент-сервер - разновидность архитектуры клиент-сервер, в которой функция обработки данных вынесена на один или несколько отдельных серверов. Это позволяет разделить функции хранения, обработки и представления данных для более эффективного использования возможностей серверов и клиентов.

Частные случаи многоуровневой архитектуры:

Трёхуровневая архитектура

Беспроводные вычислительные сети: преимущества и недостатки

Ответ: ????????

Базовые технологии локальных сетей

Ответ: Архитектуры или технологии локальных сетей можно разделить на два поколения. К первому поколению относятся архитектуры, обеспечивающие низкую и среднюю скорость передачи информации: Ethernet 10 Мбит/с), Token Ring (16 Мбит/с) и ARC net (2,5 Мбит/с). Для передачи данных эти технологии используют кабели с медной жилой. Ко второму поколению технологий относятся современные высокоскоростные архитектуры: FDDI (100 Мбит/с), АТМ (155 Мбит/с) и модернизированные версии архитектур первого поколения (Ethernet): Fast Ethernet (100 Мбит/с) и Gigabit Ethernet (1000 Мбит/с). Усовершенствованные варианты архитектур первого поколения рассчитаны как на применение кабелей с медными жилами, так и на волоконно-оптические линии передачи данных.

Новые технологии (FDDI и ATM) ориентированы на применение волоконно-оптических линий передачи данных и могут использоваться для одновременной передачи информации различных типов (видеоизображения, голоса и данных).

Сетевая технология – это минимальный набор стандартных протоколов и реализующих их программно-аппаратных средств, достаточный для построения вычислительной сети. Сетевые технологии называют базовыми технологиями. В настоящее время насчитывается огромное количество сетей, имеющих различные уровни стандартизации, но широкое распространение получили такие известные технологии, как Ethernet, Token-Ring, Arcnet, FDDI.

Билет 9:

Технология ArcNet

Ответ: ARCNET поддерживает три среды передачи данных (витую пару, коаксиал и оптоволокно) и две топологии (шина и звезда). Передающие среды и топологии могут быть интегрированы в гибридной сети.

Для реализации звездообразной топологии в большинстве сетей ARCNET используется коаксиальный кабель RG - 62/U. В центре сети располагается концентратор (hub), который может быть либо пассивным (non-repeating), либо активным (repeating). Пассивный концентратор обеспечивает протяженность одного луча звезды до 100 футов (около 30 метров). Активный концентратор позволяет увеличить протяженность луча звезды до 2000 футов (около 600 метров). Активные концентраторы могут подключаться к другим концентраторам (активным или пассивным). Такого рода объединения могут быть выполнены с учетом единственного ограничения: время распространения сигнала между любыми двумя станциями не должно превышать 31 микросекунды.

Сети ARCNET с шинной топологией строятся с использованием коаксиального кабеля или неэкранированной витой пары (UTP). При использовании витой пары станции подключаются друг к другу шлейфом (daisy-chain). Подсеть ARCNET с топологией шина может быть подключена к концентратору в качестве одного из лучей звездообразной сети. Существует целый ряд преобразователей (конверторов), выполняющих преобразования коаксиал-оптоволокно, коаксиал-витая пара и позволяющих строить разнородную передающую среду.

Концентраторы, платы

Ответ: Практически во всех современных технологиях локальных сетей определено устройство, которое имеет несколько равноправных названий - концентратор (concentrator), хаб (hub), повторитель (repeator). В зависимости от области применения этого устройства в значительной степени изменяется состав его функций и конструктивное исполнение. Неизменной остается только основная функция - это повторение кадра либо на всех портах (как определено в стандарте Ethernet), либо только на некоторых портах, в соответствии с алгоритмом, определенным соответствующим стандартом. Концентратор обычно имеет несколько портов, к которым с помощью отдельных физических сегментов кабеля подключаются конечные узлы сети - компьютеры. Концентратор объединяет отдельные физические сегменты сети в единую разделяемую среду, доступ к которой осуществляется в соответствии с одним из рассмотренных протоколов локальных сетей - Ethernet, Token Ring и т. п. Так как логика доступа к разделяемой среде существенно зависит от технологии, то для каждого типа технологии выпускаются свои концентраторы - Ethernet; Token Ring; FDDI и lOOVG-AnyLAN. Для конкретного протокола иногда используется свое, узкоспециализированное название этого устройства, более точно отражающее его функции или же использующееся в силу традиций, например, для концентраторов Token Ring характерно название MSAU. Каждый концентратор выполняет некоторую основную функцию, определенную в соответствующем протоколе той технологии, которую он поддерживает. Хотя эта функция достаточно детально определена в стандарте технологии, при ее реализации концентраторы разных производителей могут отличаться такими деталями, как количество портов, поддержка нескольких типов кабелей и т. п. Кроме основной функции концентратор может выполнять некоторое количество дополнительных функций, которые либо в стандарте вообще не определены, либо являются факультативными.

Плата ??????

Схема удаленного доступа

Ответ: Интегрированная система удаленного доступа объединяет в себе виртуальную и реальную части. Виртуальная часть программного комплекса включает в себя Web-server и Model-server. Пользовательский интерфейс удаленного управления представляет собой Windows-приложение, которое пользователь может загрузить с сайта лаборатории по ссылке, полученной после согласования условий проведения сеанса удаленного управления с администрацией создаваемой на базе системы удаленного управления Интернет-лаборатории.

В согласованное время удаленный пользователь подключается через сеть Интернет к программному обеспечению Web-сервера лаборатории, осуществляющего авторизацию пользователя и последовательную трансляцию Model-серверу команд управления в составе сформированной пользователем миссии.

Каждая рабочая станция сети соединена кабелем с другой рабочей станцией и одним или несколькими серверами. Слово топология означает схему физического расположения кабелей, соединяющих компьютеры в единую сеть. В целом существует три типа топологии компьютерной сети.

    Шинная . Все компьютеры сети последовательно подключаются друг к другу. Сетевое соединение начинается с сервера и заканчивается последней системой в сети.

    Звездообразная . Каждый компьютер в сети подключается к центральной точке доступа.

    Кольцевая . Каждый компьютер в сети подключается к другим по кольцевой или контурной схеме.

В одной сети может быть скомбинировано несколько топологических схем. Такие сети называются гибридными . Например, концентраторы нескольких сетей с звездообразной топологией могут быть соединены посредством шинной схемы, тем самым формируя звездообразно-шинную сеть. Точно таким же образом можно объединять и сети с кольцевой топологией.

Шинная топология

Иногда между двумя наиболее удаленными друг от друга рабочими станциями прокладывается один-единственный кабель, обходящий все остальные станции и серверы. Этот способ соединения называется шинной топологией (рис. 9). Однако такой способ соединения имеет существенный недостаток: если рабочая станция или кабель и соединения по каким-либо причинам выйдут из строя, все остальные объекты, расположенные дальше по линии, потеряют связь с сетью. Такая топология используется при создании локальной сети с помощью кабелей толстого и тонкого Ethernet. Тем не менее появление дешевых и более компактных неэкранированных кабелей типа витой пары, которые также подходят для быстрой передачи данных, делает предыдущий недостаток шинной топологии менее очевидным. При возникновении неполадок с определенным компьютером или кабельным соединением все станции, расположенные за этой системой, могут быть отключены от сети. Проблемы с тонкими Ethernet-сетями (10BASE-5) часто возникают из-за ослабления крепления устройства AUI к коаксиальному кабелю. Кроме того, Т-адаптеры и нагрузочные резисторы тонкой Ethernet-сети 10BASE-2 могут также разболтаться или же их отключит пользователь, тем самым нанеся серьезный вред функционированию всей сети или ее отдельных компонентов.

Еще один недостаток 10BASE-T проявляется при подключении новой системы в сеть между уже установленными системами. В результате может потребоваться разделение сетевого кабеля между компьютерами на более короткие сегменты, что необходимо для подключения сетевой платы и Т-адаптера нового компьютера.

Ðèñ. 9. В последовательной шинной топологии все сетевые устройства подсоединяются к одному кабелю

Кольцевая топология

В дискуссиях о сетях часто упоминается кольцевая топология, в которой каждая рабочая станция подключается к следующей, а последняя подключается к первой (похоже на шинную топологию с соединенными концами). Существует два основных типа сетей, использующих кольцевую топологию:

    FDDI , в которой используется физическая кольцевая топология;

    Token-Ring , использующая логическую кольцевую топологию.

На самом деле физически не обязательно, чтобы кабели соединялись кольцом. Фактически кольцо существует лишь внутри концентратора для Token Ring (так называемый модуль многопользовательского доступа (MultiStation Access Unit  MSAU)). Схема кольцевой топологии Token-Ring показана на рис. 10. Сигнал, посланный одним компьютером, попадает в концентратор, а из концентратора посылается следующему компьютеру, после чего снова попадает в концентратор. Таким образом, данные попадают в каждый компьютер, пока снова не доходят до посылавшего их компьютера, который извлекает их из кольца. Таким образом, хотя физическая топология проводов имеет вид звезды, данные в такой сети передаются по так называемому логическому кольцу .

Логическое кольцо удобнее физической кольцевой топологии, поскольку такая система имеет более высокую отказоустойчивость. В шинной сети повреждение кабеля приводит к остановке всей сети. В Token Ring модуль многопользовательского доступа может просто отключить компьютер, в котором происходят сбои, от логического кольца, что позволит остальной сети продолжить работу.

Ðèñ. 10. Передача данных в сети Token-Ring