Тарифы Услуги Сим-карты

Выпрямитель частоты. Маломощные однофазные выпрямители

Выпрямитель тока

преобразователь электрического тока переменного направления в ток постоянного направления. Большинство мощных источников электрической энергии вырабатывают ток переменного направления (см. Переменный ток). Однако многие электрические устройства на городском и железнодорожном транспорте, в химической и радиотехнической промышленности, в цветной металлургии и др. работают на токе постоянного направления (см. Постоянный ток) различного напряжения. В простейшем случае переменный ток выпрямляется вентилем электрическим (См. Вентиль электрический), пропускающим ток (например, синусоидальный) только или преимущественно в одном направлении. По видам применяемых вентилей В. т. подразделяют на электроконтактные, кенотронные, газотронные, тиратронные, ртутные, полупроводниковые и тиристорные.

Различают схемы В. т. однополупериодные, двухполупериодные с нулевым выводом и мостовые. На рис. 1 , а приведена однополупериодная схема выпрямителя однофазного тока. Основные элементы В. т.: трансформатор Тр, вентиль В и сглаживающий фильтр С . Напряжение U 1 , обычно синусоидальное, от источника переменного тока через трансформатор Тр подаётся на вентиль В. Ток J в нагрузке R н течёт только при положительной полярности подводимого напряжения, т. е. при открытом состоянии В . Конденсатор С заряжается положительными полуволнами пульсирующего тока, а в паузах, соответствующих по времени отрицательным полуволнам, разряжается на нагрузку. Таким образом, пульсирующий ток сглаживается, усредняется.

Однополупериодные однофазные схемы В. т. применяют главным образом в маломощных устройствах с ёмкостным или индуктивным сглаживающим фильтром. Основное преимущество - простота и малое число вентилей; недостатки - большие пульсации выпрямленного напряжения и высокое обратное напряжение на вентилях (при ёмкостном фильтре).

В двухполупериодной схеме В. т. (рис. 1 , б) применяют трансформатор со средней точкой во вторичной обмотке. Благодаря такому соединению обмотки с вентилями выпрямленный ток формируется из обеих полуволн тока. Частота пульсаций выпрямленного тока при этом возрастает в два раза по сравнению с однополупериодным В. т. (так, если U 1 - напряжение промышленной частоты 50 гц , то частота пульсации тока на нагрузке будет 100 гц ), что облегчает сглаживание. Мостовая схема В. т. (рис. 1 , в) также двухполупериодная, но вторичная обмотка трансформатора выполнена без средней точки и имеет в два раза меньшее количество витков по сравнению со вторичной обмоткой трансформатора на рис. 1 , б. Дополнительное сглаживание выпрямленного тока в этих схемах обеспечивается индуктивно-ёмкостными либо резистивно-ёмкостными фильтрами (см. Электрический фильтр). Указанные схемы В. т. применяют обычно в системах питания устройств, у которых потребляемая мощность не превышает нескольких квт (радиоприёмники, телевизоры, некоторые устройства автоматики и телемеханики и др.), и лишь в отдельных случаях для питания мощных (до тысячи квт ) устройств (например, двигателей электровозов). Существуют В. т., в которых наряду с выпрямлением тока осуществляется умножение выпрямленного напряжения. Схемы с умножением обычно применяют в высоковольтных установках, предназначенных для испытания электрической изоляции, а также в рентгеновских установках, электронных осциллографах и т.п.

В трёхфазных цепях (См. Трёхфазная цепь) для питания мощных промышленных установок, во избежание несимметричности нагрузки на сеть электроснабжения, применяют схемы трёхфазных В. т. Первичная обмотка трансформатора в таких В. т. соединяется в звезду или треугольник. В зависимости от числа вторичных обмоток трансформатора различают 3-, 6-, 12-, 18-фазные и т.д. однополупериодные и мостовые выпрямители трёхфазного тока. На рис. 2, а приведена трёхфазная однополупериодная схема. Первичная обмотка трансформатора соединена треугольником, а вторичная - звездой. Фазные токи i 1 , i 2 , i 3 выпрямляются и суммируются, образуя выпрямленный выходной ток J . В мостовой трёхфазной схеме (рис. 2 , б) обе обмотки трансформатора соединены звездой. Основные преимущества её такие же, как и у однофазных схем В. т.

Лит.: Каганов И. Л., Электронные и ионные преобразователи, ч. 1-3, М. - Л., 1950-56.

М. М. Гельман.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Выпрямитель тока" в других словарях:

    ВЫПРЯМИТЕЛЬ ТОКА - устройство для преобразования переменного электрического тока в постоянный; действие всех выпрямителей основано на том, что внутри них создаются условия, при которых электрические заряды определённого знака могут проходить только в одном… … Большая политехническая энциклопедия

    У этого термина существуют и другие значения, см. Выпрямитель (значения) … Википедия

    Прибор для преобразования тока переменного в ток постоянного направления (выпрямленный ток). Это преобразование достигается двояким способом: 1) задерживают импульсы одного направления; в этом случае от В. получается ток прерывистый, состоящий из … Технический железнодорожный словарь

    Выпрямитель: Выпрямитель устройство для преобразования входного переменного напряжения и тока в выходное постоянное напряжение и ток. Выпрямитель НДС в экономике, методика сбора налогов. Выпрямитель (в парикмахерском деле) устройство … Википедия

    Устройство, преобразующее переменный ток в постоянный. В современных ИБП выпрямитель также выполняет функцию коррекции входного коэффициента мощности источник бесперебойного питания. EN rectifier… …

    Современная энциклопедия

    выпрямитель - выпрямитель Преобразователь электрической энергии, который преобразует систему переменных токов в ток одного направления [ОСТ 45.55 99] выпрямитель Устройство, преобразующее переменный ток в постоянный с использованием… … Справочник технического переводчика

    Выпрямитель - электрический, преобразователь переменного электрического тока в постоянный, выполненный обычно на основе электрического вентиля. Применяется в устройствах автоматики и телемеханики, измерительной техники и радиотехники (однофазный выпрямитель),… … Иллюстрированный энциклопедический словарь

    Преобразователь переменного электрического тока в постоянный. Обычно выпрямление тока осуществляется электрическим вентилем, по типу которого различают выпрямители электрические: вакуумные, газоразрядные, полупроводниковые, электроконтактные.… … Большой Энциклопедический словарь

    выпрямитель с неизменным напряжением, питающийся от сети переменного тока - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN ac line fixed voltage rectifier … Справочник технического переводчика

Производство и распределение электрической энергии в основном осуществляется на переменном токе, вследствие простоты трансформации напряжения. Однако значительная часть производимой электрической энергии (30-35%) используется на постоянном токе, в том числе и для передачи на расстояния.

Выпрямитель – это электротехническое устройство, предназначенное для преобразования переменного напряжения в постоянное.
Основными элементами полупроводниковых выпрямителей являются трансформатор и вентили, с помощью которых обеспечивается одностороннее протекание тока в цепи нагрузки, в результате чего переменное напряжение преобразуется в пульсирующее. Для сглаживания пульсаций выпрямленного напряжения к выходным зажимам выпрямителя подключают электрический сглаживающий фильтр. Для регулирования или стабилизации выпрямленного напряжения и тока потребителя к выходным зажимам фильтра подключают регулятор или стабилизатор (стабилизатор может быть включён и на стороне переменного тока выпрямителя).

Режимы работы и параметры отдельных элементов выпрямителя, фильтра, регулятора и стабилизатора согласуются с заданными условиями работы потребителя постоянного тока, поэтому основная задача теории выпрямительных устройств сводится к определению расчётных соотношений, позволяющих по заданному режиму работы потребителя определить электрические параметры элементов стабилизатора, регулятора, фильтра, а также вентилей и трансформатора выпрямителя и затем произвести выбор этих элементов по каталогу или, если это необходимо, рассчитать их.

Структурная схема и классификация выпрямителей.

Выпрямитель можно представить в виде обобщенной структурной схемы (рис. 1) и структурной схемы с протекающими в нем напряжениями и токами (рис. 1.1), в которую входят:

  • силовой трансформатор (СТ),
  • вентильный блок (ВБ),
  • фильтрующее устройство (ФУ),
  • цепь нагрузки (Н), в которую может входить стабилизатор напряжения (СН) .

Рис. 1. Обобщенная структурная схема выпрямителя.

Рис. 1.1. Структурная схема выпрямителя с протекающими в нем напряжениями и токами.

Силовой трансформатор служит для согласования входного и выходного напряжений выпрямителя. Возможны различные соединения обмоток трансформатора соответственно с различными схемами выпрямления. Напряжение вторичной обмотки трансформатора U 2 определяет значение выпрямленного напряжения U н (или U d ).

Трансформатор позволяет одновременно гальванически развязать питающую сеть U 1 , I 1 с частотой f 1 , и цепь нагрузки с U н , I н (или U d , I d ). В последнее время в связи с появившейся возможностью разрабатывать и изготавливать высоковольтные инверторы, работающие на высокой частоте и при непосредственном выпрямлении напряжения сети, используются беcтрансформаторные схемы выпрямления, в которых вентильный блок присоединяется непосредственно к первичной питающей сети.

Вентильный блок выпрямляет переменный ток, подключая вторичное напряжение соответствующей фазы трансформатора к цепи постоянного тока. В вентильном блоке используются, как правило, полупроводниковые диоды или сборки на их основе. На выходе вентильного блока получают знакопостоянное напряжение с высоким уровнем пульсаций, определяемым только числом фаз питающей сети и выбранной схемой выпрямления.

Фильтрующее устройство обеспечивает требуемый уровень пульсаций выпрямленного тока в цепи нагрузки. В качестве ФУ используются последовательно включаемые резистор или сглаживающий дроссель и параллельно включаемые конденсаторы. Иногда ФУ строится по более сложным схемам. В выпрямителях малой мощности установка резистора или дросселя не обязательна.

При использовании многофазных (чаще всего трехфазных) схем выпрямления уровень пульсаций естественно снижается, и облегчаются условия работы ФУ.

Стабилизатор напряжения служит для уменьшения внешних воздействий, таких как: изменение напряжения питающей сети, изменение температуры, частоты и т.д.

Полупроводниковые выпрямители можно классифицировать по следующим признакам :

1) по выходной мощности (маломощные - до 600 Вт, средней мощности - до 100 кВт, и большой мощности - более 100 кВт);

2) по числу фаз источника (однофазные, многофазные);

3) по пульсности (р ) выпрямителя, определяемой числом полупериодов протекания тока во вторичной обмотке трансформатора за полный период напряжения U 1 ;

4) по числу знакопостоянных импульсов в кривой выпрямленного напряжения U 2 за период питающего напряжения:

- однополупериодные ;

- двухполупериодные ;

- m -полупериодные .

Выпрямители могут быть построены на управляемых вентилях (тиристорах, транзисторах) – управляемые выпрямители и на неуправляемых вентилях (диодах) – неуправляемые выпрямители.

Для работы и расчета выпрямителя принципиальное значение имеет характер нагрузки включенной на выходе выпрямителя. Различают следующие режимы работы выпрямителя:

а) на активную нагрузку;

б) на активно-индуктивную нагрузку;

в) на активно-емкостную нагрузку;

Разные формы потребляемых из сети токов и их продолжительность при различном характере нагрузки выпрямителя приводит к тому, что методы расчетов выпрямителей существенно различаются.

Расчет выпрямителя сводится к выбору схемы выпрямления, типа диодов, определению электромагнитных нагрузок на обмотках трансформатора, диодах и элементах сглаживающего фильтра, а также энергетических показателей.

Выбор схемы выпрямителя зависит от ряда факторов, которые должны учитываться в зависимости от требований, предъявляемых к выпрямительному устрой­ству. К ним относятся:

Величины выпрямленного напряжения и мощности;

Частота и величина пульсации выпрямленного напряжения;

Число диодов и величина обратного напряжения на них;

Коэффициент полезного действия (к.п.д.);

Коэффициент мощности и другие энергетические показатели.

При расчете выпрямителя большое значение имеет также коэффи­циент использования трансформатора по мощности , который определяется как:

,

где U d , I d - средние значения выпрямленного напряжения и тока, U 1 , I 1 - действующие значения первичного напряжения и тока, U 2 , I 2 - действующие значения вторичного напряжения и тока.

При увеличении коэффициента использования трансформатора габариты выпрямителя в целом уменьшаются, а коэффициент полезного действия возрастает.

Основные схемы выпрямления.

Однофазные выпрямители.

Схемы выпрямителей однофазного питания применяются в основном для питания бытовых потребителей (бытовых устройств) и используют однофазные трансформаторы, в которых ток течет по двум проводам - фаза и ноль. Первичная и вторичная обмотка трансформаторов таких выпрямителей является однофазной.

Однофазная, однополупериодная схема.

Однофазную, однополупериодную схему (рис. 1.2, а) обычно применяют для выпрямления токов до нескольких десятков миллиампер и в тех случаях, когда не требуется высокой степени сглаживания выпрямленного напряжения. Эта схема характеризу­ется низким коэффициентом использования трансформатора по мощности и большими пульсациями выпрямленного напряжения.

Диаграммы напряжений и токов, поясняющие работу однополупериодного выпрямителя на активную нагрузку с учетом потерь в трансформаторе и вентиле, представлены на рис. 1.2,б.

Рис. 1.2. Однофазная, однополупериодная схема выпрямления (а) и диаграммы напряжений и токов в ней при работе на активную нагрузку (б).

Под действием ЭДС вторичной обмотки e 2 ток в цепи нагрузки i d может проходить только в течение тех полупериодов, когда анод диода имеет положительный потенциал относительно катода. Диод пропускает ток i vd в первый полупериод, во второй полупериод, когда потенциал анода становится отрицательным, ток в цепи равен нулю. Выпрямленное напряжение u d в любой момент времени меньше ЭДС вторичной обмотки e 2 , так как часть напряжения теряется на активных сопротивлениях трансформатора и открытого вентиля (учитывается сопротивлением r ). Максимальное обратное напряжение на вентиле U обрmax , как видно из рис. 1.2,б, достигает амплитудного значения ЭДС вторичной обмотки E 2m .

Диаграмма первичного тока трансформатора подобна диаграмме вторичного тока, если пренебречь током намагничивания и исключить из него постоянную составляющую I d , которая в первичную обмотку не трансформируется . В сердечнике трансформатора за счет постоянной составляющей тока вторичной обмотки создается добавочный постоянный магнитный поток, насыщающий сердечник. Это явление называют – вынужденное подмагничивание сердечника трансформатора постоянной составляющей тока, которое является главным недостатком этой схемы. В результате насыщения намагничивающий ток трансформатора возрастает в несколько раз по сравнению с током в нормальном режиме намагничивания сердечника. Возрастание намагничивающего тока обусловливает увеличение сечения провода первичной обмотки, следствием чего являются завышенные размеры трансформатора и габариты выпрямителя в целом.

Двухполупериодная схема со средней точкой (схема Миткевича).

Однофазный двухполупериодный выпрямитель со средним (нулевым) выводом вторичной обмотки трансформатора (рис. 1.3, а) применяют в низковольтных устройствах. Он позволяет уменьшить вдвое число диодов и тем самым понизить потери, но имеет более низкий коэффициент использования трансформатора и, следовательно, большие габариты по сравне­нию с однофазным мостовым выпрямителем, который рассмотрен ниже. Обратное напряжение на диодах выше в этой схеме, чем в мостовой.

Необходимым элементом данного выпрямителя является трансформатор с двумя вторичными обмотками. Выпрямитель со средней точкой является по существу двухфазным, так как вторичная обмотка трансформатора со средней точкой создает две ЭДС, равные по величине, но противоположные по направлению. Таким образом, схема соединения обмоток такова, что одинаковые по величине напряжения на выводах вторичных обмоток относительно средней точки сдвинуты по фазе на 180º.

Диаграммы напряжений и токов, поясняющие работу двухполупериодного выпрямителя со средним выводом на активную нагрузку с учетом потерь в трансформаторе и вентилях, представлены на рис.1.3,б.

Рис. 1.3. Двухполупериодная схема выпрямления со средней точкой (а) и диаграммы напряжений и токов в ней при работе на активную нагрузку (б).

Вторичные обмотки трансформатора подключены к анодам вентилей VD 1 и VD 2 . Напряжения на вторичных обмотках трансформатора w 21 и w 22 находятся в противофазе. Поэтому диоды схемы VD 1 и VD 2 проводят ток поочередно, каждый в соответствующий полупериод питающего напряжения. В течение первого полупериода положительный потенциал имеет анод диода VD 1 и ток i vd1 проходит через него, нагрузку и вторичную полуобмотку w 21 трансформатора. В течение второго полупериода положительный потенциал имеет анод диода VD 2 , ток i vd2 проходит через него, нагрузку и вторичную полуобмотку w 22 трансформатора, причем в цепи нагрузки ток i d проходит в том же направлении, что и в первый полупериод.

Таким образом, в отличие от простейшего однополупериодного выпрямителя в выпрямителе со средней точкой выпрямленный ток проходит через нагрузку в течение обоих полупериодов переменного тока, но каждая из половин вторичной обмотки трансформатора оказывается нагруженной током только в течение полупериода . В результате встречного направления м.д.с. постоянных составляющих токов вторичных обмоток i 21 и i 22 в сердечнике трансформатора нет вынужденного подмагничивания.

Рассмотрим расчет коэффи­циента использования трансформатора по мощности для выпрямителя без потерь при активной нагрузке на примере двухполупериодной схемы со средней точкой.

Выходное напряжение u d снимается в данной схеме между средней (нулевой) точкой трансформатора и общей точкой соединения катодов обоих вентилей. Среднее напряжение на нагрузке

т.е. между средним значением выпрямленного напряжения и действующим значением существует то же соотношение, что связывает среднее и действующее значение синусоидального тока.

Среднее значение тока через нагрузку: I d = U d / R d .

Поскольку ток i d протекает через диоды поочередно, средний ток через каждый диод составит:

I vd = I d / 2,

Обратное напряжение прикладывается к закрытому диоду, когда проводит ток другой диод. Поскольку к закрытому диоду в этой схеме максимально прикладывается двойное амплитудное напряжение вторичной стороны, то

Величина U d при расчете выпрямителя является заданной, поэтому находим действующее значение напряжения на вторичной обмотке трансформатора

Действующее значение тока вторичной обмотки трансформатора

Габаритная мощность вторичных обмоток трансформатора

Габаритная мощность первичной обмотки трансформатора

S 1 = U 1 / I 1 ; U 1 = U 2 / n ; I 1 = n I 2 ;

Коэффициент использования трансформатора по мощности в двухполупериодной схеме со средней точкой

Таким образом, габаритная мощность трансформатора в двухполупериодной схеме со средней точкой в 1,48 раза превышает мощность в нагрузке.

Мостовая схема (схема Греца).

Однофазная мостовая схема (рис. 1.4, а) характеризуется высоким коэффициентом использования трансформатора по мощности и поэтому может быть рекомендована для использования в устройствах повышенной мощности при выходных напряжениях от десятков до сотен вольт; пульсации такие же, как в предыдущей схеме. По сути, работа мостовой схемы в течение каждого полупериода ничем не отличается от схемы со средней точкой трансформатора, только здесь пропускает ток не один вентиль, а два вентиля, соединенных последовательно, и для каждого полупериода используются не отдельные половины вторичной обмотки, а одна обмотка, что повышает эффективность использования трансформатора. Достоинства – меньшее обратное напряжение на диодах в 2 раза, меньшие габариты, выше коэффициент использования трансформатора, чем в схеме со средней точкой. Недостаток – на диодах падение напряжения в 2 раза больше.

Диаграммы напряжений и токов, поясняющие работу однофазного мостового выпрямителя на активную нагрузку с учетом потерь в трансформаторе и вентилях, представлены на рис. 1.4, б. Выходное напряжение u d при чисто активной нагрузке, как и в схеме с выводом средней точки трансформатора, имеет вид однополярных полуволн напряжения u 2 (рис.1.3, б). Это получается в результате поочередного отпирания диодов VD 1 , VD 4 и VD 2 , VD 3 . Диоды VD 1 и VD 4 открыты при полуволне напряжения u 2 положительной полярности (показана на рис. 1.4, а без скобок), обеспечивая связь вторичной обмотки трансформатора с нагрузкой и создавая на ней напряжение u d той же полярности, что и напряжение u 2 . На полуволне напряжения u 2 отрицательной полярности (показана на рис. 1.4, а со скобками) открыты диоды VD 2 и VD 3 , подключающие напряжение u 2 к нагрузке с той же полярностью, что и на предыдущем интервале.

Рис. 1.4. Однофазная мостовая схема выпрямления (схема Греца) (а) и диаграммы напряжений и токов в ней при работе на активную нагрузку (б).

Ввиду идентичности кривых u d для выпрямителей без потерь (мостового и со средней точкой) действительны те же соотношения между выпрямленным напряжением U d и действующим значением напряжения U 2.

, ,

поэтому и пульсации такие же, как в предыдущей схеме.

Ток I d распределяется поровну между парами диодов и ток каждого диода определяется также, как и в предыдущей схеме.

Обратное напряжение прикладывается одновременно к двум непроводящим диодам на интервале проводимости двух других диодов и его максимальное значение определяется амплитудным значением напряжения u 2

,

т.е. оно вдвое меньше, чем в схеме со средней точкой.

Ток в нагрузке протекает в течение обоих полупериодов переменного напряжения, как и ток во вторичной обмотке трансформатора имеющий форму синусоиды. Действующее значение тока вторичной обмотки трансформатора

,

это обусловлено тем, что в отличие от схемы со средней точкой ток i 2 здесь синусоидальный, а не пульсирующий.

С учетом того, что трансформатор имеет лишь одну вторичную обмотку, для мостовой схемы габаритная мощность первичной и вторичной обмоток будет одинакова и общая габаритная мощность S габ равна габаритной мощности первичной обмотки трансформатора в рассмотренной ранее схеме со средней точкой, т.е. 1,23P d .

На принципиальных схемах диодный мост может изображаться по разному и во многих случаях его изображают упрощенно (как показано на рисунке слева). Обычно, такое изображение служит для того, чтобы упростить общий вид принципиальной схемы, либо для того, чтобы показать, что в данном случае применена диодная сборка. Диодная сборка - это 4 диода с одинаковыми параметрами, размещенных в общем корпусе. Диодная сборка является более технологичной деталью, поскольку занимает меньше места на печатной плате.

Трехфазные выпрямители.

Схема выпрямителя трехфазного питания применяется в основном для питания потребителей средней и большой мощности.
Первичная обмотка трансформаторов таких выпрямителей состоит из трех фаз и соединяется либо в звезду, либо в треугольник. Вторичная обмотка трансформатора (их может быть несколько), также трехфазная. С помощью специальных схем соединения вторичной обмотки и всего выпрямителя, можно получить выпрямленное напряжение с числом пульсаций за период, кратным трем. С возрастанием числа пульсаций в выпрямленном напряжении значительно сокращаются габаритные размеры сглаживающих элементов фильтров, либо вообще отпадает необходимость в них. Выпрямители трехфазного питания равномерно нагружают сеть трехфазного тока, и отличаются высоким коэффициентом использования трансформатора.

Трехфазная нулевая схема (звезда-звезда).

В схему трехфазного выпрямителя со средней (нулевой) точкой входит трансформатор с вторичными обмотками, соединенными звездой. Выводы вторичных обмоток связаны с анодами трех вентилей. Нагрузка подключается к общей точке соединения катодов вентилей и среднему выводу вторичных обмоток (рис. 1.5, а).

Диаграммы напряжений и токов, поясняющие работу идеализированного трехфазного выпрямителя со средней точкой на активную нагрузку, представлены на рис. 1.5, б. В идеализированной схеме, без учета индуктивностей рассеяния обмоток трансформатора и полагая вентили идеальными, коммутация токов , т.е. переход тока с одного вентиля на другой, проходит мгновенно и в любой момент времени ток пропускает только один вентиль, анод которого имеет наиболее высокий потенциал.

Рис. 1.5. Трехфазная нулевая схема выпрямления (звезда-звезда) (а) и диаграммы напряжений и токов в ней при работе на активную нагрузку (б).

В схеме трехфазного выпрямителя со средней точкой ток нагрузки создается под действием фазного напряжения вторичной обмотки трансформатора. За период напряжения питания через каждую вторичную обмотку однократно протекает однополярный ток, при этом интервал проводимости каждого вентиля составляет 2π/3 (120º). Открытый вентиль подключает напряжение соответствующей фазы к нагрузке. В результате в нагрузке действует однополярное пульсирующее напряжение u d , представляющее собой участки фазных напряжений вторичных обмоток и содержащее трехкратные пульсации за период.

Достоинства схемы: малое число диодов и, соответственно, малое падение напряжения на них и поэтому может быть использована для выпрямления низких напряжений при повышенных мощностях (свыше 500 Вт); высокая частота пульсаций выпрямленного напряжения – три частоты питающей сети, что, в некоторых случаях, позволяет использовать эту схему без фильтра.

Недостатки: значительное обратное напряжение на диодах, низкий коэффициент использования трансформатора за счет явления подмагничивания магнитопровода.

Трехфазная мостовая схема (схема Ларионова).

Трехфазная мостовая схема (рис. 1.6, а) обладает наилучшим коэффициентом использования трансформатора по мощности, наименьшим обратным напряжением на диодах и высокой частотой пульсации (шестипульсная) выпрямленного напряжения, что, в некоторых случаях, позволяет использовать эту схему без фильтра. Схема приме­няется в широком диапазоне выпрямленных напряжений и мощностей.

Схема трехфазного мостового выпрямителя содержит выпрямительный мост из шести вентилей, в котором последовательно соединены две трехфазные группы. В нижней группе вентили соединены катодами (катодная группа), а в верхней – анодами (анодная группа). Нагрузка подключается между точками соединения катодов и анодов вентилей. Схема допускает соединение как первичных, так и вторичных обмоток трансформатора звездой или треугольником.

Диаграммы напряжений и токов, поясняющие работу идеализированного трехфазного мостового выпрямителя на активную нагрузку, представлены на рис. 1.6 (б, в).

Рис. 1.6. Трехфазная мостовая схема выпрямления (схема Ларионова) (а) и диаграммы напряжений и токов в ней при работе на активную нагрузку (б, в).

Каждая из двух групп выпрямителя повторяет работу трехфазного выпрямителя со средней точкой, поэтому при таком же значении напряжения вторичной обмотки трансформатора U 2 , как и в трехфазном выпрямителе со средней точкой, среднее выпрямленное напряжение U d данного выпрямителя будет в два раза больше или наоборот, при том же значении U d величина U 2 будет в два раза меньше.

В схеме трехфазного выпрямителя со средней точкой ток нагрузки создается под действием фазного напряжения вторичной обмотки трансформатора, а в мостовой схеме – под действием линейного напряжения. Ток нагрузки здесь протекает через два вентиля: один – с наиболее высоким потенциалом анода относительно нулевой точки трансформатора из катодной группы, другой – с наиболее низким потенциалом катода из анодной группы. Иными словами, в проводящем состоянии будут находиться те два накрест лежащих вентиля выпрямительного моста, между которыми действует в проводящем направлении наибольшее линейное напряжение.

За период напряжения питания происходит шесть переключений вентилей и схема работает в шесть тактов, в связи с чем ее часто называют шестипульсной . Таким образом, выпрямленное напряжение имеет шестикратные пульсации, хотя угол проводимости каждого вентиля такой же, как в трехфазной схеме со средней точкой, т.е. 2π/3 (120º). При этом интервал совместной работы двух вентилей равен π/3 (60º).

Кривая тока вторичной обмотки трансформатора определяется токами двух вентилей, подключенных к данной фазе. Один из вентилей входит в анодную группу, а другой – в катодную. Вторичный ток является переменным с паузой между импульсами длительностью π/3 (60º), когда оба вентиля данной фазы закрыты. Постоянная составляющая во вторичном токе отсутствует, в связи с чем поток вынужденного подмагничивания магнитопровода трансформатора в мостовой схеме не создается.

Более подробно можно прочесть здесь:

Выпрямление электрических колебаний , это процесс, в результате которого переменное входное колебание преобразуется в выходное колебание только одного знака (рисунок 1.5). Процесс выпрямления используется в устройствах электропитания (блоках питания) и демодуляторах.

Выпрямление всегда осуществляется при использовании нелинейных элементов, обладающих свойством однонаправленного пропускания электрического тока. Благодаря таким свойствам на выходе выпрямляющего элемента получают ток одного знака.

Для выпрямления применяют полупроводниковые и вакуумные (кенотроны) диоды, газоразрядные диоды (газотроны), тиратроны , кремниевые и селеновые элементы, тиристоры и другие элементы с нелинейными свойствами в зависимости от применения, значений выпрямленных напряжений и токов, отбираемых нагрузкой. В маломощных электронных устройствах для выпрямления чаще всего применяют полупроводниковые диоды.

Название “выпрямитель” используется, прежде всего, для схем, преобразующих переменный ток в постоянный. Выпрямителем называется также и сам элемент с однонаправленными свойствами, используемые в процессе выпрямления.

Однополупериодным выпрямителем называется такой выпрямитель, на выходе которого после процесса выпрямления остаются колебания одного знака. Схема однополупериодного выпрямителя, возбуждаемого синусоидальным сигналом, представлена на рисунке 1.6.

Диод, включенный таким образом, что приводит ток только при положительных полупериодах входного колебания, т.е. когда напряжение на его аноде больше потенциала катода. Среднее значение колебания, полученного в результате выпрямления синусоидального напряжения с действующим значением и максимальным значением , равно

.

Например, при выпрямлении напряжения с действующим значением , после выпрямления получаем напряжение .

В отрицательный полупериод диод не проводит ток, и все подведенное к выпрямителю напряжение действует на диоде как обратное напряжение выпрямителя. При изменение направления включения диода он будет проводить в отрицательные полупериоды и не проводить в положительные.

Рассматриваемая схема выпрямителя называется последовательной. Название связано с тем, что нагрузка включается последовательно с нелинейным элементом (вентилем).

Двухполупериодным выпрямителем называют такой выпрямитель, в котором после процесса выпрямления остаются участки входного колебания, имеющие один знак. К ним после изменения знака добавляются участки, имеющие противоположный знак.

Принципиальная схема двухполупериодного выпрямителя, управляемого синусоидальным сигналом от трансформатора, показана на рисунке 1.7.

В периоды времени, когда на аноде диода Д1 действует положительное напряжение, на аноде диода Д2 присутствует отрицательное и наоборот. Это происходит потому, что средняя точка вторичной обмотки трансформатора заземлена, и, следовательно, она имеет нулевой потенциал. При положительной полуволне напряжения на вторичной обмотке диод Д1 пропускает ток, а диод Д2 не пропускает.


При отрицательной полуволне положительное напряжение действует на диоде Д2, который при этом проводит, а диод Д1, смещенный в обратном направлении, не проводит. Среднее значение напряжения, полученого на выходе двухполупериодного выпрямителя в 2 раза больше напряжения, полученного на выходе однополупериодного выпрямителя.

Технические параметры выпрямителя:

- Коэффициент пульсаций выпрямителя называется отношение максимального значения переменной составляющей напряжения на выходе выпрямителя к значению его постоянной составляющей на этом выходе. В большинстве применений желательно, чтобы коэффициент пульсаций был как можно меньше. Уменьшение пульсаций достигается путем применения соответствующих фильтров.

- Коэффициент использования трансформатора в выпрямительной схеме , определяется как отношение двух мощностей: выходной мощности постоянного тока и номинальной мощности вторичной обмотки трансформатора.

- Коэффициент полезного действия , это параметр, характеризующий эффективность схемы выпрямителя при преобразовании переменного напряжения в постоянное. КПД выпрямителя выражается отношением мощности постоянного тока, выделяемой в нагрузке, к входной мощности переменного тока. Коэффициент полезного действия определяется для резистивной нагрузки.

-

Частотная пульсация выпрямителя , это основная частота переменной составляющей, существующей на выходе выпрямителя. В случае однополупериодного выпрямителя частота пульсаций равна частоте входного колебания. Фильтрация пульсаций тем проще, чем выше частота пульсации.

Ещё в начале ХХ века имел место очень принципиальный спор между корифеями электротехники. Какой ток выгоднее передавать потребителю на большие расстояния: постоянный или переменный? Научный спор выиграли сторонники передачи переменного тока по проводам высоковольтных линий от подстанции к потребителю. Эта система принята во всём мире и успешно эксплуатируется до сих пор.

Но большинство электронной техники и не только бытовой, но и промышленной питается постоянными напряжениями и это привело к созданию целой отрасли электрики – преобразование (выпрямление) переменного тока. После того как электронная лампа была забыта, главным элементом любого выпрямителя стал полупроводниковый диод .

Схемотехника выпрямителей весьма обширна, но самым простым является однополупериодный выпрямитель .

Однополупериодный выпрямитель.

Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Вот схема.

Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Форма его показана на рисунке.

Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети - 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.

Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 - 5000 мкф имеют довольно большие размеры. Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц). На таких частотах величина ёмкости фильтра может быть очень небольшой, а простота схемы уже не столь сильно влияет на качество выпрямленного напряжения.

Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора.

К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.

Двухполупериодные выпрямители.

Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме. К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы. А это уже не совсем экономично с точки зрения расходования медного провода.

Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Наглядно увидеть, как работает двухполупериодная схема можно по рисунку.

Как видим, на выходе выпрямителя уже в два раза меньше "провалов" напряжения - тех самых пульсаций.

Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК . Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов - общий (как правило катод). По виду сдвоенный диод очень похож на транзистор .

Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема . Взгляните.

Можно без преувеличения сказать, что это самая распространённая схема. На практике вы с ней ещё не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения.

О данной схеме уже рассказывалось на странице про диодный мост . Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage drop - V F ). Для обычных выпрямительных диодов оно может быть 1 - 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x V F , т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2). Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды Шоттки, у которых прямое падение напряжения невелико (около 0,5 вольта). Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.

Большой интерес вызывает выпрямитель с удвоением напряжения .

Выпрямитель с удвоением напряжения.

Принцип удвоителя напряжения Латура-Делона-Гренашера основан на поочерёдном заряде-разряде конденсаторов С1 и С2 разными по полярности полуволнами входного напряжения. В результате между катодом одного диода и анодом второго диода возникает напряжение в два раза превышающее входное. Схема в студию:)

Стоит отметить, что данная схема применяется в блоках питания нечасто. Но её можно смело использовать, если необходимо вдвое увеличить напряжение, которое снимается со вторичной обмотки трансформатора. Это будет более логичным и правильным решением, чем перематывать вторичную обмотку трансформатора с целью увеличить выходное напряжение вторичной обмотки в 2 раза (ведь при этом придётся наматывать вторичную обмотку с вдвое большим числом витков). Так что, если не удалось найти подходящий трансформатор - смело применяем данную схему.

Развитием схемы стало создание умножителя на полупроводниковых диодах.

Умножитель напряжения.

Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.

На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U ). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.

Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение , как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.

Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.

Трёхфазные выпрямители.

Устройства, которые используются для получения постоянного тока из переменного трёхфазного тока, называются трёхфазными выпрямителями. Трёхфазные выпрямители в бытовой технике, конечно, не используются. Единственный прибор, который может использоваться в быту это сварочный аппарат. В качестве трёхфазных выпрямителей используются наработки двух известных электротехников Миткевича и Ларионова. Самая простая схема Миткевича называется «три четверти моста параллельно», что означает три силовых диода включенных параллельно через вторичные обмотки трёхфазного трансформатора. Схема.

Коэффициент пульсаций на нагрузке очень мал, что позволяет использовать конденсаторы фильтра небольшой ёмкости и малых габаритов.

Более сложной является схема Ларионова, которая называется «три полумоста параллельно», что это такое хорошо видно из рисунка.

В схеме используется уже шесть диодов и немного другая схема включения. Вообще схем трёхфазных выпрямителей достаточно много и наиболее совершенной, хотя редко употребляемой является схема «шесть мостов параллельно», а это уже 24 диода! Зато эта схема может выдавать высокое напряжение при большой мощности.

Трёхфазные мощные выпрямители используются в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза. Так же промышленные системы очистки газовых смесей, буровое и сварочное оборудование используют трёхфазные выпрямители.

Теперь вы знаете, какие бывают выпрямители переменного тока и сможете легко обнаружить их на принципиальной схеме или печатной плате любого прибора. А для тех, кто хочет знать больше, рекомендуем ознакомиться с

Выпрямитель электрического тока это устройство, преобразующее переменный ток в постоянный. Он обычно реализуется на полупроводниковых диодах. Простейший выпрямитель тока содержит трансформатор, выпрямительный диод и нагрузку. Его приведена на рисунке 1.


Рисунок 1. Схема простейшего выпрямителя переменного тока

Приведенная на рисунке 1 схема построена по однотактной схеме выпрямления однофазного источника переменного напряжения. В этой схеме трансформатор позволяет преобразовать переменное напряжение до необходимого на выходе значения. Полупроводниковый диод пропускает ток только в одном направлении, и именно этот ток подается в нагрузку.

Как уже обсуждалось в статье " ", в однотактных схемах постоянный ток нагрузки протекает через трансформатор, поэтому его сердечник подмагничивается. Понять процессы, происходящие в однотактном выпрямителе, помогут временные диаграммы, приведенные на рисунке 2.


Рисунок 2. Временные диаграммы токов и напряжений однополупериодного выпрямителя переменного тока

Как уже определялось при обсуждении , ток в первичной обмотке трансформатора равен сумме тока его холостого хода (i xx) и переменной составляющей тока нагрузки, пересчитанной в первичную цепь (i 2 ’). Форма тока в первичной обмотке (i 1) трансформатора, входящего в состав однополупериодного выпрямителя, сильно отличается от синусоидальной. По этой причине подобная схема применяется достаточно редко.

В общем случае, при работе от многофазной сети переменного тока, у трансформатора есть m 1 первичных обмоток, подключенных к различным фазам сети, и р фаз во вторичной цепи, которое называют пульсностью. Обычно m 1 ≠ p . Пульсность схемы определяется произведением

p = k · q (1) где k – число вторичных обмоток трансформатора q – число импульсов тока за период в одной обмотке.

С точки зрения выражения (1) однопериодный выпрямитель тока, принципиальная схема которого приведена на рисунке 1, обладает пульсностью p = 1 · 1 = 1

В качестве примера выпрямителя тока с количеством фаз напряжения на выходе больше, чем на входе, можно привести двухфазный однотактный выпрямитель тока. Его принципиальная схема приведена на рисунке 3.


Рисунок 3. Принципиальная схема двухфазного однотактного выпрямителя тока

В данном случае используются две вторичных обмотки, включенных противофазно (обмотка с отводом посередине). В течение одного периода сети через каждую из них протекает один импульс тока i 2 ’ и i 2 ". Благодаря диодам эти токи протекают через нагрузку в одном направлении, а через вторичные обмотки из-за противофазного включения — в разных направлениях. В результате форма тока в первичной обмотке не искажается и в сердечнике трансформатора не происходит подмагничивание постоянным током.

При этом с точки зрения выражения (1) в данной схеме пульсность p= k · q = 2 · 1 = 2 . Уменьшение времени, когда на нагрузке отсутствует входное напряжение, позволяет значительно уменьшить габариты сглаживающего фильтра. Временные диаграммы токов и напряжений двухфазного однотактного выпрямителя тока приведены на рисунке 4.


Рисунок 4. Временные диаграммы токов и напряжений двухфазного однотактного выпрямителя тока

При расчете очень важно знать частоту первой гармоники пульсаций. В схеме двухфазного однотактного выпрямителя она вдвое выше частоты сети (Т П = Т/2) и может быть определена через пульсность

f П = p · f с (2)

В качестве еще одного примера схемы выпрямления переменного тока рассмотрим двухтактный выпрямитель. Его еще называют однофазным диодным мостом. Принципиальная схема двухтактного выпрямителя переменного напряжения приведена на рисунке 5.


Рисунок 5. Принципиальная схема двухтактного выпрямителя переменного тока

Временные диаграммы токов и напряжений этого устройства совпадают с временными диаграммами двухфазного однотактного выпрямителя тока, приведенными на рисунке 4. В выпрямителе переменного тока на диодном мосте присутствует только одна вторичная обмотка, поэтому k = 1 . В то же самое время количество импульсов тока за период равно 2, поэтому пульсность в данной схеме равна p= k · q = 1 · 2 = 2 . По этой формуле полное название устройства, приведенного на рисунке 5, это двухтактный однофазный выпрямитель тока.

Частота первой гармоники пульсаций в данном случае, как и для двухфазного однотактного выпрямителя вдвое выше частоты сети. Тем не менее, области применения этих типов выпрямителей тока несколько отличаются. Для низковольтных устройств лучше подходит схема, показанная на рисунке 3, так как в ней падение напряжения происходит только на одном диоде. В ряде случаев это настолько важно, что можно пренебречь возрастанием стоимости трансформатора. В преобразователях AC/DC с относительно высоким выходным напряжением лучше применять схему, приведенную на рисунке 5, так как на ее диодах действует одинарное обратное напряжение (в схеме двухфазного однотактного выпрямителя — удвоенное, так как напряжение на нагрузке и напряжение обмотки трансформатора складываются).

Однофазный выпрямитель напряжения подходит только для схем с относительно небольшим потребляемым током. При необходимости получить значительные величины постоянного тока лучше использовать трехфазный выпрямитель тока. Его основным преимуществом является меньший уровень пульсаций выходного напряжения, что значительно снижает требования к сглаживающему фильтру. В качестве примера приведем схему трехфазного однотактного выпрямителя тока. Она показана на рисунке 6.


Рисунок 6. Принципиальная схема трехфазного однотактного выпрямителя переменного тока

Трехфазный однотактный выпрямитель напряжения состоит из и трёх выпрямительных диодов VD1, VD2 и VD3. Нагрузка включается между точкой соединения катодов диодов и общей точкой вторичных обмоток трансформатора. Для пояснения принципов работы данного устройства на рисунке 7 приведены временные диаграммы токов и напряжений на вторичных обмотках трансформатора, на выходе схемы и на одном из выпрямительных диодов.


Рисунок 7. Временные диаграммы токов и напряжений трехфазного однотактного выпрямителя тока

Трехфазный однотактный выпрямитель переменного тока применяется в относительно низковольтных устройствах. На его выходе удается получить пульсацию напряжения около 13%. Это соответствует требованиям к качеству питания большинства устройств. по крайней мере при сварке постоянным током электрическая дуга не будет гаснуть, что позволит получить качественный шов сварки металла.

Если для питания устройства требуется большее напряжение по сравнению с предыдущим случаем, то можно применить трехфазную двухтактную схему выпрямления тока. Она позволяет снизить требования к сглаживающему фильтру. Принципиальная схема трехфазного двухтактного выпрямителя тока приведена на рисунке 8. Это устройство известно также под названием трехфазного выпрямительного моста или схемы Ларионова.



Рисунок 8. Принципиальная схема трехфазного выпрямительного моста

Напряжение на выходе схемы, приведенной на рисунке 8, можно представить как сумму двух трехфазных однотактных выпрямителей тока, работающих в противофазе. Его можно записать как U d = U d 1 + U d 2 . Это позволяет увеличить количество фаз на выходе схемы и тем самым увеличить основную частоту пульсаций выходного напряжения. Это позволяет уменьшить требования к сглаживающему фильтру, а в ряде случаев вообще отказаться от него.

В схеме Ларионова на входе выпрямителя присутствуют три фазы обмотки, поэтому k = 3 и ее пульсность p= k · q = 3 · 2 = 6 . Отсюда можно определить основную частоту спектра пульсаций f П = 6 · f с. Временные диаграммы токов и напряжений в различных точках схемы трехфазного выпрямительного моста приведены на рисунке 9.


Рисунок 9. Временные диаграммы токов и напряжений трехфазного выпрямительного моста

Как видно из приведенных временных диаграмм уровень пульсаций на выходе рассмотренного трехфазного выпрямителя тока значительно меньше предыдущих вариантов выпрямителей и составляет 3,5%. Однако с помощью трехфазного трансформатора можно получить на выходе количество фаз больше шести. Это позволяет дополнительно уменьшить уровень пульсаций напряжения на выходе трёхфазного выпрямителя тока. Возможна реализация девяти, двенадцати, восемнадцати и более фазных выпрямителей. Повышение количества фаз позволяет уменьшить уровень пульсаций напряжения на выходе выпрямителя. В качестве примера рассмотрим схему двенадцатипульсного выпрямителя тока. Его схема приведена на рисунке 10.



Рисунок 10. Схема двенадцатифазного выпрямителя тока

В данной схеме применяется трехфазный трансформатор с двумя вторичными обмотками для каждой фазы. При этом одна группа вторичных обмоток включается по схеме "звезда", а другая — "треугольник". В результате напряжения на выходе каждой из групп вторичных обмоток оказывается сдвинутыми на 30° Для того, чтобы напряжения были равны, количество витков в каждой из групп вторичных обмоток отличаются в 1.73 раза. Благодаря последовательному включению постоянные напряжения на выходе диодных мостов суммируются U d = U d 1 + U d 2 и на нагрузке действует напряжение с частотой пульсаций в 12 раз выше частоты сети и значительно меньшим по сравнению с предыдущими схемами уровнем пульсаций, равным 0.9%.

Дата последнего обновления файла 16.02.2018

Литература:

  1. Сажнёв А.М., Рогулина Л.Г., Абрамов С.С. “Электропитание устройств и систем связи”: Учебное пособие/ ГОУ ВПО СибГУТИ. Новосибирск, 2008г. – 112 с.
  2. Алиев И.И. Электротехнический справочник. – 4-е изд. испр. – М.: ИП Радио Софт, 2006. – 384с.
  3. Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчёт. Учебное пособие. – М., 2008. – 448 с.
  4. Электропитание устройств и систем телекоммуникаций: Учебное пособие для вузов / В.М.Бушуев, В.А. Деминский, Л.Ф. Захаров и др. – М.,2009. – 384 с.
  5. Денисов А.И., Зволинский В.М., Руденко Ю.В. Вентильные преобразователи в системах точной стабилизации. – К.: Наукова думка, 1997. – 250 с.

Вместе со статьей "Выпрямитель переменного тока" читают: