Тарифы Услуги Сим-карты

Что такое TFT. Какой тип экрана выбрать: IPS или TFT? Дисплей IPS или TFT лучше

Современные устройства оснащаются экранами различной конфигурации. Основными на данный момент являются дисплеи на базе но для них могут использоваться разные технологии, в частности речь идет о TFT и IPS, которые различаются по целому ряду параметров, хоть и являются потомками одного изобретения.

Сейчас существует огромное количество терминов, которые обозначают определенные технологии, скрывающиеся под аббревиатурами. К примеру, многие могли слышать или читать об IPS или TFT, однако мало кто понимает, в чем на самом деле разница между ними. Связано это с недостатком информации в каталогах электроники. Именно поэтому стоит разобраться с этими понятиями, а также решить, TFT или IPS - что лучше?

Терминология

Для определения того, что будет лучше или хуже в каждом отдельном случае, требуется узнать, за какие функции и задачи отвечает каждый IPS по факту представляет собой TFT, точнее ее разновидность, при изготовлении которой использовалась определенная технология - TN-TFT. Следует рассмотреть более подробно эти технологии.

Различия

TFT (TN) представляет собой один из способов производства матриц то есть экранов на тонкопленочных транзисторах, в которых элементы располагаются по спирали между парой пластин. При отсутствии подачи напряжения они будут повернуты друг к другу под прямым углом в горизонтальной плоскости. Максимальное напряжение вынуждает кристаллы поворачиваться так, чтобы проходящий сквозь них свет приводил к образованию черных пикселей, а при отсутствии напряжения - белых.

Если рассматривать IPS или TFT, то отличие первой от второй состоит в том, что матрица изготовлена на базе, описанной ранее, однако кристаллы в ней расположены не спирально, а параллельно единой плоскости экрана и друг другу. В отличие от TFT, кристаллы в данном случае не поворачиваются в условиях отсутствия напряжения.

Как мы это видим?

Если смотреть на IPS или то визуально отличие между ними состоит в контрастности, которая обеспечивается почти идеальной передачей черного цвета. На первом экране изображение будет выглядеть более четким. А вот качество цветопередачи в случае использования матрицы TN-TFT нельзя назвать хорошим. В данном случае у каждого пикселя имеется собственный оттенок, отличный от других. Из-за этого цвета сильно искажаются. Однако есть у такой матрицы и достоинство: она характеризуется самой высокой скоростью отклика среди всех существующих на данный момент. Для экрана IPS требуется определенное время, за которое все параллельные кристаллы совершат полный разворот. Однако человеческий глаз практически не улавливает разницу во времени отклика.

Важные особенности

Если говорить о том, что лучше в эксплуатации: IPS или TFT, то стоит отметить, что первые являются более энергоемкими. Это связано с тем, что для поворота кристаллов требуется немалое количество энергии. Именно поэтому, если перед производителем стоит задача сделать свое устройство энергоэффективным, в нем обычно применяется TN-TFT матрица.

Если выбирать экран TFT или IPS, то стоит отметить более широкие углы обзора второго, а именно 178 градусов в обеих плоскостях, это очень удобно для пользователя. Другие оказались неспособными обеспечить подобное. И еще одним существенным различием между двумя этими технологиями является стоимость изделий на их основе. TFT-матрицы на данный момент представляют собой наиболее дешевое решение, которое используется в большинстве бюджетных моделей, а IPS относится к более высокому уровню, но и он не является топовым.

Дисплей IPS или TFT выбрать?

Первая технология позволяет получать максимально качественное, четкое изображение, но требует больше времени для поворота используемых кристаллов. Это влияет на время отклика и прочие параметры, в частности скорость разрядки аккумулятора. Уровень цветопередачи TN-матриц гораздо ниже, однако их время отклика минимально. Кристаллы тут расположены по спирали.

На самом деле можно легко отметить невероятную пропасть в качестве экранов, работающих на базе двух этих технологий. Касается это и стоимости. Технология TN остается на рынке исключительно из-за цены, однако она не способна обеспечить сочную и яркую картинку.

IPS - это весьма удачное продолжение в развитии TFT-дисплеев. Высокий уровень контрастности и довольно большие углы обзора - это дополнительные преимущества данной технологии. К примеру, у мониторов на базе TN иногда черный цвет сам изменяет свой оттенок. Однако высокое потребление энергии устройствами, работающими на базе IPS, вынуждает многих производителей прибегать к использованию альтернативных технологий либо понижать этот показатель. Чаще всего матрицы данного типа встречаются у проводных мониторов, которые не работают от аккумулятора, что позволяет не быть устройству настолько энергозависимым. Однако постоянно ведутся разработки в этой области.

Изображение формируется с помощью отдельных элементов, как правило, через систему развёртки. Простые приборы (электронные часы , телефоны, плееры , термометры и пр.) могут иметь монохромный или 2-5 цветный дисплей . Многоцветное изображение формируется с помощью 2008) в большинстве настольных мониторов на основе TN- (и некоторых *VA) матриц, а также во всех дисплеях ноутбуков используются матрицы с 18-битным цветом (6 бит на канал), 24-битность эмулируется мерцанием с дизерингом .

Устройство ЖК-монитора

Субпиксел цветного ЖК-дисплея

Каждый пиксел ЖК-дисплея состоит из слоя молекул между двумя прозрачными электродами , и двух поляризационных фильтров , плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.

Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны , поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается, и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света - ячейку можно считать прозрачной. Если же к электродам приложено напряжение - молекулы стремятся выстроиться в направлении поля , что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение , можно управлять степенью прозрачности. Если постоянное напряжение приложено в течении долгого времени - жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток , или изменение полярности поля при каждой адресации ячейки (непрозрачность структуры не зависит от полярности поля). Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам. Проходящий через ячейки свет может быть естественным - отражённым от подложки(в ЖК-дисплеях без подсветки). Но чаще применяют , кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения. Таким образом полноценный ЖК-монитор состоит из электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса. Именно совокупность этих составляющих определяет свойства монитора в целом, хотя некоторые характеристики важнее других.

Технические характеристики ЖК-монитора

Важнейшие характеристики ЖК-мониторов:

  • Разрешение : Горизонтальный и вертикальный размеры, выраженные в пикселах . В отличие от ЭЛТ-мониторов, ЖК имеют одно, «родное», физическое разрешение, остальные достигаются интерполяцией .

Фрагмент матрицы ЖК монитора (0,78х0,78 мм), увеличеный в 46 раз.

  • Размер точки: расстояние между центрами соседних пикселов. Непосредственно связан с физическим разрешением.
  • Соотношение сторон экрана (формат): Отношение ширины к высоте, например: 5:4, 4:3, 5:3, 8:5, 16:9, 16:10.
  • Видимая диагональ: размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.
  • Контрастность : отношение яркостей самой светлой и самой тёмной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведенная для них цифра контрастности (так называемая динамическая) не относится к статическому изображению.
  • Яркость : количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.
  • Время отклика : минимальное время, необходимое пикселу для изменения своей яркости. Методы измерения неоднозначны.
  • Угол обзора: угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению.
  • Тип матрицы: технология, по которой изготовлен ЖК-дисплей.
  • Входы: (напр, DVI , HDMI и пр.).

Технологии

Часы с ЖКИ-дисплеем

Жидкокристаллические мониторы были разработаны в 1963 году в исследовательском центре Давида Сарнова (David Sarnoff) компании RCA, Принстон, штат Нью-Джерси.

Основные технологии при изготовлении ЖК дисплеев: TN+film, IPS и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода . Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, примененный в конкретных разработках.

Время отклика ЖК мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display - кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс. Компании Sony, Sharp и Philips совместно разработали технологию PALC (англ. Plasma Addressed Liquid Crystal - плазменное управление жидкими кристаллами), которая соединила в себе преимущества LCD (яркость и сочность цветов, контрастность) и плазменных панелей (большие углы видимости по горизонту, H, и вертикали, V, высокую скорость обновления). В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения.

TN+film (Twisted Nematic + film)

Часть «film» в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно - от 90° до 150°). В настоящее время приставку «film» часто опускают, называя такие матрицы просто TN. К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности - нет.

TN + film - самая простая технология.

Матрица TN + film работает следующим образом: если к субпикселам не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

К достоинствам технологии можно отнести самое маленькое время отклика среди современных матриц, а также невысокую себестоимость.

IPS (In-Plane Switching)

Технология In-Plane Switching была разработана компаниями Hitachi и NEC и предназначалась для избавления от недостатков TN + film. Однако, хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.

На настоящий момент матрицы, изготовленные по технологии IPS единственные из ЖК-мониторов, всегда передающие полную глубину цвета RGB - 24 бита, по 8 бит на канал. TN-матрицы почти всегда имеют 6-бит, как и часть MVA.

Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение черного цвета близко к идеалу. При выходе из строя транзистора «битый» пиксель для панели IPS будет не белым, как для матрицы TN, а черным.

При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.

IPS в настоящее время вытеснено технологией S-IPS (Super-IPS, Hitachi год), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика . Но, несмотря на то, что цветность S-IPS панелей приблизилась к обычным мониторам CRT , контрастность все равно остаётся слабым местом. S-IPS активно используется в панелях размером от 20", LG.Philips , NEC остаются единственными производителями панелей по данной технологии.

AS-IPS - технология Advanced Super IPS (Расширенная Супер-IPS), также была разработана корпорацией Hitachi в году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации LG.Philips.

A-TW-IPS - Advanced True White IPS (Расширенная IPS с настоящим белым), разработано LG.Philips для корпорации году. Усиленная мощность электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК , на матрицах производства Hitachi Displays.

*VA (Vertical Alignment)

MVA - Multi-domain Vertical Alignment. Эта технология разработана компанией Fujitsu как компромисс между TN и IPS технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160°(на современных моделях мониторов до 176-178 градусов), при этом благодаря использованию технологий ускорения (RTC) эти матрицы не сильно отстают от TN+Film по времени отклика, но значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.

MVA стала наследницей технологии VA, представленной в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.

Достоинствами технологии MVA являются глубокий черный цвет и отсутствие, как винтовой структуры кристаллов, так и двойного магнитного поля.

Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения, большее время отклика.

Аналогами MVA являются технологии:

  • PVA (Patterned Vertical Alignment ) от Samsung.
  • Super PVA от Samsung.
  • Super MVA от CMO.

Матрицы MVA/PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским качествам.

Преимущества и недостатки

Искажение изображения на ЖК-мониторе при большом угле обзора

Макрофотография типичной жк-матрицы. В центре можно увидеть два дефектных субпикселя (зелёный и синий).

В настоящее время ЖК-мониторы являются основным, бурно развивающимся направлением в технологии мониторов. К их преимуществам можно отнести: малый размер и вес в сравнении с ЭЛТ . У ЖК-мониторов, в отличие от ЭЛТ , нет видимого мерцания, дефектов фокусировки и сведения лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью. Энергопотребление ЖК-мониторов в 2-4 раза меньше, чем у ЭЛТ и плазменных экранов сравнимых размеров. Энергопотребление ЖК мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки (англ. backlight - задний свет) ЖК-матрицы. Во многих современных (2007) мониторах для настройки пользователем яркости свечения экрана используется широтно-импульсная модуляция ламп подсветки частотой от 150 до 400 и более Герц . Светодиодная подсветка в основном используется в небольших дисплеях, хотя в последние годы она все шире применяется в ноутбуках и даже в настольных мониторах. Несмотря на технические трудности её реализации, она имеет и очевидные преимущества перед флуоресцентными лампами, например более широкий спектр излучения, а значит, и цветовой охват.

С другой стороны, ЖК-мониторы имеют и некоторые недостатки, часто принципиально трудноустранимые, например:

  • В отличие от ЭЛТ, могут отображать чёткое изображение лишь в одном («штатном») разрешении. Остальные достигаются интерполяцией с потерей чёткости. Причем слишком низкие разрешения (например 320x200) вообще не могут быть отображены на многих мониторах.
  • Цветовой охват и точность цветопередачи ниже, чем у плазменных панелей и ЭЛТ соответственно. На многих мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах).
  • Многие из ЖК-мониторов имеют сравнительно малый контраст и глубину чёрного цвета. Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения.
  • Из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки).
  • Фактическая скорость смены изображения также остаётся ниже, чем у ЭЛТ и плазменных дисплеев . Технология overdrive решает проблему скорости лишь частично.
  • Зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии.
  • Массово производимые ЖК-мониторы более уязвимы, чем ЭЛТ. Особенно чувствительна матрица, незащищённая стеклом. При сильном нажатии возможна необратимая деградация. Также существует проблема дефектных пикселей .
  • Вопреки расхожему мнению пикселы ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения.

Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED -дисплеи. С другой стороны, эта технология встретила сложности в массовом производстве, особенно для матриц с большой диагональю.

См. также

  • Видимая область экрана
  • Антибликовое покрытие
  • en:Backlight

Ссылки

  • Информация о флюоресцентных лампах, используемых для подсветки ЖК-матрицы
  • Жидкокристаллические дисплеи (технологии TN + film, IPS, MVA, PVA)

Литература

  • Артамонов О. Параметры современных ЖК-мониторов
  • Мухин И. А. Как выбрать ЖК-монитор? . «Компьютер-бизнес-маркет», № 4 (292), январь 2005, стр. 284-291.
  • Мухин И. А. Развитие жидкокристаллических мониторов . «BROADCASTING Телевидение и радиовещение»: 1 часть - № 2(46) март 2005, с.55-56; 2 часть - № 4(48) июнь-июль 2005, с.71-73.
  • Мухин И. А. Современные плоскопанельные отображающие устройства ."BROADCASTING Телевидение и радиовещение": № 1(37), январь-февраль 2004, с.43-47.
  • Мухин И. А., Украинский О. В. Способы улучшения качества телевизионного изображения, воспроизводимого жидкокристаллическими панелями . Материалы доклада на научно-технической конференции «Современное телевидение», Москва, март 2006.

Ответы:

Юрий Александрович Пейсахович:
Доктор, по-моему, изверг. Наилучшее качество изображения обеспечивают все-таки ЭЛТ мониторы, но не все и только при правильной их настройке. А с жидкокристаллическими будет, во-первых, морока с разрешением экрана, поскольку они нормально показывают только при разрешении 1152х1024 точки, в остальных режимах качество ощутимо падает, потом существенно меньший угол обзора, заключающийся в том, что при изменении положения перед экраном изменяется его цветность, и еще то, что у них квадратные пикселы, в отличие от круглых на ЭЛТ, что приводит к быстрой утомляемости глаз, вынужденных постоянно заниматься аппроксимированием ломаных кривых, из которых состоят все линии. Кроме того, жидкокристаллические мониторы, в отличие от ЭЛТ мониторов, обладают недостаточной градацией контрастности, что приводит к потере элементов изображения (например, кнопки в окнах не имеют отдельных видимых элементов). Поэтому все те, кто профессионально занимаются графикой, не связываются с жидкокристаллическими мониторами. Доводы врачей о том, что ЭЛТ мониторы излучают, в отличие от ЖК, были услышаны еще в середине 90-х годов, и сейчас стандарты ТСО 03 и 05 вообще не допускают сколь-нибудь заметного фронтального излучения. Конечно, даже среди одного производителя мониторов встречаются совершенно разные по качеству. Например, LG - от совершенно непригодного LG775FT до очень приличного LG F720P. Поэтому, на мой взгляд, пока альтернативы нет хорошему ЭЛТ монитору, с установленным комфортным для глаз разрешением и максимально возможной частотой обновления.

TU-154:
TFT и LCD-монитор - это одно и то же. Но нет смысла переходить на них только по этой причине - современные CRT-мониторы влияют на зрение не больше, чем TFT, а по качеству и характеристикам изображения заметно опережают TFT (пока). Хотя если монитор у вас 10-летней давности, то смысл, конечно, есть...

Shurovik:
Грубо говоря, TFT и LCD - одно и то же. Но LCD - тип монитора (Liquid Crystal Display -жидкокристаллический дисплей), а TFT - тип матрицы, формирующей изображение (Thin Film Transistor - тонкопленочный транзистор). Мониторы с типом матрицы TFT называют "мониторами с активной матрицей". Её особенность - изображение не теряет красок при большом угле обзора. Но "плоский монитор" не обязательно LCD. Уже есть обычные (CRT, Cathode Ray Tube - ЭЛТ, электронно-лучевая трубка) мониторы с плоским экраном.

Forward:
TFT - это самая распространенная разновидность, точнее, технология LCD-мониторов.

Alexeyslav:
Доктор врет насчет того что TFT монитор лучше для зрения. Ведь зрение садит не излучение монитора а способ его использования, в частности постоянство взгляда практически на одну и ту же точку с одинакового положения. TFT мониторы могут оказаться лучше в том случае если его удасться расположить дальше от глаз, т.к. громоздкий ЭЛТ не всегда можно поставить достаточно далеко от глаз, вот и получается что сидишь к нему практически в упор и садишь зрение. Помните, оптимальное расстояние до поверхности экрана с точки зрения эргономики - на расстоянии вытянутой руки, но к сожалению это не всегда удобно(практически всегда неудобно). И еще старайтесь использовать по возможности большие шрифты чтобы читать было легко не напрягая глаза.

Pumba:
TFT и LCD при данном подходе синонимы. А вот четкость изображения и отсутствие искажений огромное достоинство ЖК-мониторов и недостижимо для ЭЛТ. Так что врач в чем-то может прав.

Sash:
Всё это ерунда, технологии TFT и LCD ещё очень слабы и не выдают тех характеристик, которые могут ЭЛТ мониторы. Плюс TFT и LCD в том, что они энергетически экономны, занимают мало места и безвредны для глаз. В остальном они уступают ЭЛТ мониторам.

Antonio:
Ребята, если вы не разбираетесь в мониторах то ненадо хотя бы об этом говорить при всех, ЛСД от ТФТ отличается углом обзора, т.е. (для одаренных) если посмотреть под углом на ЛСД монитор - изображения ВЫ НЕ УВИДИТЕ, чего с ТФТ мониторами не наблюдается, изображение вид под ЛЮБЫМ УГЛОМ.

SpectreLX:
У меня стоит LCD, могу сказать, что в полной темноте его можно подтемнить так, что не будет резать глаз и особо не потеряет в отображении картинки.

Nik:
Поставил TFT - краски отличные, расстояние до монитора увеличилось, считаю это лучше для глаз.

Саша.:
Жалко тут дат нет... Много информации со временем устаревает. LCD мониторы сейчас рулят однозначно.

Itfm:
Самое объективное объяснения дал Shurovik, и мне бы хотелось спросить: так что лучше - ТФТ или ЛСД?

Ярослав:
Я думаю, зрение портится при чтении или при наборе текста. Глаза в этот самый момент устают! Я работал за TFT и ЭЛТ дисплеями - одинаково глаза устают. Глаза устают в ТФТ из-за контрастности мониторов. Врач кажется не сильно прав!

Это вопрос из архива. Добавление ответов отключено.

Почти вытеснили с рынка более ранние ЭЛТ-мониторы. Это связано со значительными преимуществами, которые дает новый TFT-экран.

Преимущества TFT-технологий

Одно из главных преимуществ - отсутствие геометрических искажений, с которыми долго, но почти безуспешно боролись разработчики ЭЛТ-экранов. Любой TFT-экран или монитор имеет плоскую прямоугольную форму, что исключает наличие искажений как по углам, так и в центре.

Не менее значимо отсутствие мерцания, которое при частоте выше 85 Гц человеческий глаз не различает, но оно присутствует, создавая значительную нагрузку на глаза. Экран TFT не мерцает. При смене изображения происходит изменение освещенности (путем изменения направления

Технология экрана TFT позволила в значительной мере снизить уровень электромагнитного излучения. Влияние этого вида излучения на человеческий организм еще полностью не изучено, но все ученые сходятся во мнении о том, что оно явно не столь полезно.

Потому, чем ниже электромагнитное излучение, тем лучше. И TFT-экран имеет в разы меньший его уровень, чем используемые ранее технологии. Эта их особенность позволяет применять мониторы и экраны TFT в медицинских учреждениях, на производствах, где наводимые помехи могут негативно влиять на различные процессы, на работу другого оборудования.

Еще один плюс - небольшие размеры и малый вес, которыми отличается TFT-экран. Такой монитор можно повесить на стену, тогда он совсем не будет занимать места. Это особенно актуально в ограниченном пространстве или там, где таких устройств скапливается не один десяток. В копилку положительных свойств можно отнести и малое энергопотребление, и незначительное выделение тепла при работе.

Это снова-таки значимо при больших скоплениях мониторов в одном помещении. Небольшое выделение тепла позволяет сэкономить на организации вентиляции и энергозатратах на ее работу, пониженное потребление электроэнергии позволяет экономить на счетах за электричество (TFT-экран потребляет в 3-4 раза меньше электроэнергии, чем его предшественник ЭЛТ).

Экраны, использующие TFT-технологию, более надежны, чем их ЭЛТ-аналоги, которые в работе используют высокие напряжения, что часто приводит к поломкам. Жидкокристаллические технологии используют токи малых величин, что повышает их надежность.

Недостатки TFT-технологий

TFT-транзисторы имеют и некоторые недостатки, и главный из них - высокая цена. Но экономия на электроэнергии, малое тепловое излучение и высокая надежность (как следствие - отсутствие затрат на ремонт) быстро окупают дополнительную сумму, которую приходится выкладывать при покупке.

Следующий минус - ограничения по температуре окружающей среды. Но это относится, скорее, к промышленному использованию экранов TFT: их нельзя использовать в горячих цехах и при отрицательных температурах, что, согласитесь, несущественно для домашнего применения.

К недостаткам можно отнести наличие «мертвых» пикселей, которые появляются рано или поздно. Это, конечно, неприятно, но не смертельно. Если из нескольких тысяч точек из строя выйдет несколько штук (именно такими количествами все и исчисляется), то мешать они вам или не будут вообще, или будут очень мало.

Всегда сводится в первую очередь к выбору типа матрицы монитора. И когда вы уже определились, какого типа матрица вам нужна, можно переходить к другим характеристикам монитора. В данной статье мы рассмотрим основные типы матриц мониторов, которые сейчас используются производителями.

Сейчас на рынке можно найти мониторы с такими типами матриц:

  • TN+film (Twisted Nematic + film)
  • IPS (SFT – Super Fine TFT)
  • *VA (Vertical Alignment)
  • PLS (Plane-to-Line Switching)

Рассмотрим все типы матриц мониторов по порядку.

TN+film – самая простая и дешевая в производстве технология создания матриц. Благодаря своей низкой цене пользуется наибольшей популярностью. Еще несколько лет назад почти 100 процентов всех мониторов использовали эту технологию. И только продвинутые профессионалы, которым нужны качественные мониторы, покупали устройства, построенные на основе других технологий. Сейчас ситуация немного изменилась, мониторы подешевели и TN+film матрицы теряют свою популярность.

Преимущества и недостатки матриц TN+film:

  • Низкая цена
  • Хорошая скорость отклика
  • Плохие углы обзора
  • Низкая контрастность
  • Плохая цветопередача

IPS

IPS – самый продвинутый тип матриц. Данная технология была разработана компаниями Hitachi и NEC. Разработчиками матрицы IPS удалось избавиться от недостатков TN+film, но в результате цена матриц такого типа значительно поднялась по сравнению с TN+film. Тем не менее, с каждым годом цены на снижаются и стают более доступными для обычного потребителя.

Преимущества и недостатки матриц IPS:

  • Хорошая цветопередача
  • Хорошая контрастность
  • Широкие углы обзора
  • Высока цена
  • Большое время отклика

*VA

*VA это тип матриц мониторов, которые можно считать компромиссом между TN+film и IPS. Наибольшую популярность, среди таких матриц получила MVA (Multi-domain Vertical Alignment). Данная технология была разработана компанией Fujitsu.

Аналоги данной технологии, разработанные другими производителями:

  • PVA (Patterned Vertical Alignment) от Samsung.
  • Super PVA от Sony-Samsung (S-LCD).
  • Super MVA от CMO.

Преимущества и недостатки матриц MVA:

  • Большие углы обзора
  • Хорошая цветопередача (лучше, чем TN+film, но хуже чем IPS)
  • Хорошая скорость отклика
  • Глубокий черный цвет
  • Не высокая цена
  • Исчезновение деталей в тенях (по сравнению с IPS)

PLS

PLS – тип матриц, разработанный компанией Samsung как альтернатива дорогим IPS матрицам.