Тарифы Услуги Сим-карты

Глобальные сети с коммутацией пакетов. Х.25 - незнакомый знакомец

Уважаемые хабровчане, я хочу рассказать вам о сетях пакетной коммутации, построенных на основе протокола передачи данных ITU-T X.25. Мне посчастливилось заниматься сопровождением и развитием одной корпоративной сети X.25 на протяжении нескольких лет.

Протокол X.25

Протокол X.25 был разработан на смену протоколу ISDN, который для передачи данных обладает существенными недостатками (отсутсвие статистического мультиплексирования). Первая редакция стандарта была утверждена в 1976 году. В основу протокла легли следующие основные идеи:
- Контроль передачи между двумя узлами сети
- Контроль передачи между конечными абонентами
- Маршрутизация в момент установления соединения
- Коммутация пакетов по установленному маршруту

Во многих источниках говорится, что X.25 - протокол канального уровня. Это не так. X.25 создавался до разработки семиуровневой модели OSI. В канальный уровень его «записывают» только из-за широко применяемой инкапсуляции протокола IP в X.25. На самом деле протокол имеет все признаки сетевого уровня (маршрутизация между сетями) и обеспечивает контроль передачи между конечными абонентами, т.е. выходит транспортный уровень.

Основным преимуществом протокола является высокая эффективность в сетях, построенных на каналах связи с высоким уровнем ошибок. Основными недостатками - ограниченная производительность, не приспособленность к передаче real time данных.

Сеть X.25

Все абоненты сети X.25 делятся на синхронных и асинхронных. Синхронные имеют встроенные интерфейсы X.25, а асинхронные для передачи данных используют устройства под названием PAD (Packet Assembler-Disassembler). PAD принимает асинхронные потоки со своих портов и передает их в коммутируемом соединении через интерфейс X.25.

Основу сети составляют пакетные коммутаторы. Они соединяются между собой синхронными каналами связи (преимущественно X.21 через синхронные модемы по каналам ТЧ или радиоканалам). Синхронные абоненты сети подключаются непосредственно к пакетным коммутаторам. Также к коммутаторам подключаются PADы.

В сети используется адресация по стандарту X.121. Она чем-то напоминает IP адресацию, но без точек и с десятичной маской. Маска в явном виде никогда не указывается, просто длина адреса может варьироваться от 10 до 15 десятичных символов.

Адрес X.121 имеет вид:
DDDDNNNPPPP
где
DDDD - DNIC (Номер сети, аналог автономной системы в IP)
NNN - Node (Номер узла)
PPPP - Port (Номер порта)
SSSSS - Subadress (Субадрес)

Каждый пакетный коммутатор имеет свою таблицу маршрутизации. Таблица указывает в какой порт маршрутизировать соединение, осуществляемое на указанный адрес. Адрес отправителя обычно не анализируется.

Важный момент - маршрутизация происходит в момент установления логического соединения (SVC), после установления соединения происходит только коммутация. Для этого на каждом порту создаются логические каналы (LCI). Количество доступных LCI на интерфейсе ограничивает доступное количество логических соединений через него.

Если на маршруте установленного соединения произойдет сбой, то после таймаута и переповторов абоненты переустановят соединение.

Сеть, с которой мне пришлось иметь дело, вначале использовалась для работы асинхронных терминалов, которые по zmodem осуществляли передачу файлов на файловый коммутатор («вертушка»). Позже появились синхронные терминалы, обменивающиеся информацией с сервером и маршрутизаторы IP. Все работало очень медленно и очень надежно. Скорость на магистральных каналах ТЧ была не выше 19200, а в глубинке было и по 2400 «за счастье», что не мешало передавать данные.

Позже стали появляться каналы FR, которые использовались для X.25 over FR. Когда появились качественные каналы IP, постепенно начали внедрять XOT (X.25 over IP).

Важный момент - обе технологии предполагают туннелирование X.25 через неродные для него протоколы. Иногда удобно «затерминировать» протокол X.25 на интерфейсе, на который он приходит через туннель. Протокл этого не предусматривает, терминирование протокола возможно только на интерфейсах с чистым X.25 (over LAP-B), а туннелирование можно применять только внутри сети для коммутации между узлами.

Case Communications

Сеть, с которой я работал, была построена на оборудовании английской компании Case Communications . Эта компания часто меняла собственников и названия, в одно время называлась Cray Communications. Начинали они с пакетных коммутаторов, также у них были и Ethernet продкуты, маршрутизаторы. Подразделение, которое производило маршрутизаторы было выкуплено Intel, в результате чего появились достаточно известные модели Intel Express Router 9100 и иже с ним. В настоящее время компания занимается разработкой и производством linux маршрутизатров.

Линейка пакетных коммутаторов Case состояла из узлов (Packet Switch Exchange - PSE), коммутаторов X.25/Frame-Relay Assembler-Disassembler - XFRAD) и PAD. Особенность PSE была в том, что между ними можно было делать транковые соединения, которые не адресовались как обычные порты, но использовались для связи между узлами сети. С сетью поставлялась система управления на платформе Sun с графическим интерфейсом под Х11.

Самой продвинутой моделью был модульный PSE8525. Это 13 юнитовое шасси для стойки 19" на 16 модулей интерфейсов и модуль управления, в шасси устанавливалось до 5 блоков питания. Архитектура этой штуковины заслуживает особого внимания.

Основой являлась вертикальная плата backplane. Активных элементов на ней обнаружено не было (!) - просто набор шин. Backplane делила шасси на две части - спереди платы с контроллерами и процессорами, сзади - платы с интерфейсами, всего 17 слотов. В первые 16 слотов можно было установить платы портов X.25 или платы PAD. В последнем слоте - плата manager.

Все остальные платы состояли из двух частей - платы контроллеров и платы процессора. Процессорные платы (UPM) были для всех плат одинаковые, контроллер портов X.25 (SP-XIM) и менеджер были разными.

Система загружалась поэтапно. После включения питания с дискеты А загружался менеджер. После загрузки он считывал конфигурацию с дискеты В и по одной загружал платы интерфейсов. PADы загружались сами по себе, как только появлялось питание. После загрузки всех плат, они могли работать независимо, каждую из них можно было перезагружать отдельно. Менеджер в системе был нужен только при изменении конфигурации или перезагрузке.

Все платы можно было вынимать и переустанавливать «на ходу». Известны случаи, когда шасси работало без менеджера более месяца. Сравните это с вытаскиванием супервизора из Cisco7600! ;)

Заключение

Протокол X.25 отлично сыграл свою роль в телекоммуникациях и связи. В то время, когда он был создан, он решил проблему эффективного использования низкоскоростных каналов связи с высоким уровнем ошибок при передаче. Разработчики оборудования X.25 делали ставку не на скорость, а на надежность и живучесть решения, поэтому в банковской сфере этот протокол жив и сейчас.

Развитие систем связи привело к тому, что протокол X.25 перестал удовлетворять требованиям современных приложений к скорости передачи данных, а наличие высокоскоростных каналов связи с низким уровнем ошибок позволяет решать современные задачи с помощью протоколов семейства TCP/IP.

Основы, заложенные в архитектуру протокола и сетей X.25 иллюстрируют рациональный подход к решению поставленной задачи, и являются отличным учебным материалом. Возможно, некоторые из идей, заложенных в X.25, еще вернутся но на более высоких уровнях. В частности, технология MPLS TE (Traffic Engineering) в чем-то сходна с X.25 в отношении построения логических каналов.

Я рекомендую всем, кто собирается стать специалистом в области сетей и коммуникаций, изучить основы работы протокола X.25, не смотря на то, что его знание не является обязательным для работы во многих предприятиях связи. При его изучении, рекомендую делать акцент не на том, как реализована та или иная функция, а на том, с какой целью, она была включена в протокол.

Глобальные сети характеризуются двумя типами технологий соединений:

  • сеть "точка - точка" (point-to-point);
  • сеть "облако" (cloud).

В сети с технологий "точка - точка" каждым двум узлам выделяется отдельная линия, а для объединения N узлов требуется N(N - 1)/2 линий связи. В этом случае получаем высокую пропускную способность и большие расходы на линии связи и интерфейсное оборудование.

Более экономичной технологией сетей WAN являются сети типа "облако". В этом случае для подключения одного узла требуется только одна линия.

По принципу коммутации технология "облако" разделяется на:

  • коммутацию каналов (в телефонных линиях связи);
  • коммутацию сообщений (в E-mail);
  • коммутацию пакетов (в сетях IP, X.25), кадров (в сетях Frame Relay), ячеек (в сетях ATM).

В сетях с коммутацией каналов обеспечивается прямое физическое соединение между двумя узлами только в течение сеанса связи. Достоинством сетей коммутации каналов является возможность передачи аудиоинформации и видеоинформации без задержек.

Кроме того, преимуществом этой технологии является простота ее реализации (образование непрерывного составного физического канала), а недостатком - низкий коэффициент использования каналов, высокая стоимость передачи данных, повышенное время ожидания других пользователей (в узлах коммутации образуются очереди).

В сетях с пакетной коммутацией (PSN - Packet-Switched Network) осуществляется обмен небольшими пакетами фиксированной структуры, поэтому в узлах коммутации не создаются очереди. К достоинствам сетей с коммутацией каналов относятся: эффективность использования сети, надежность, быстрое соединение.

Основным недостатком сетей с пакетной коммутацией является временные задержки пакетов в узлах сети (промежуточном коммуникационном оборудовании), что затрудняет передачу аудиоинформации и видеоинформации, которые чувствительные к задержкам. Технология коммутации кадров (ретрансляция кадров), а особенно коммутация ячеек устраняют эти недостатки сетей с коммутацией пакетов и обеспечивают качественную передачу данных, аудио - и видеоинформации.

Сети с коммутацией каналов представляют для сетей с коммутацией пакетов услуги физического уровня. Аналоговые и цифровые линии применяются в качестве магистралей сетей с коммутацией пакетов, сообщений и кадров.

К глобальным сетям с коммутацией пакетов относятся: сети IP; X.25; Frame Relay; ATM.

Коммутация пакетов в сетях PSN осуществляется двумя способами:

  1. Первый способ ориентирован на предварительное образование виртуальных каналов. Существуют два типа виртуальных каналов: коммутируемые и постоянные. Виртуальным каналом называется логическое соединение, осуществляемое по различным существующим физическим каналам, которое обеспечивает надежный двухсторонний обмен данными между двумя узлами. Коммутируемый виртуальный канал обмена данными требует установления (устанавливается динамически), поддержания и завершения сеанса связи каждый раз при обмене данными между узлами. Постоянный виртуальный канал устанавливается вручную и не требует сеанса связи, узлы могут обмениваться данными в любой момент, так как постоянное виртуальное соединение всегда активно.
  2. Второй способ основан на технологии дейтаграмм, т.е. на самостоятельном продвижении пакетов в пакетных сетях без установления логических каналов. В сетях с передачей дейтаграмм маршрутизация пакетов осуществляется на пакетной основе. Пакеты снабжены адресом назначения, и они независимо друг от друга движутся в узлы назначения. Таким образом, множество пакетов, которые принадлежат одному сообщению, могут перемещаться к узлу назначения различными маршрутами.

Маршрутизация в глобальных сетях TCP/IP осуществляется на основе IP-протокола, т.е. основана на самостоятельном продвижении пакетов. Принцип маршрутизации в глобальных сетях: X.25, Frame Relay, ATM основан на предварительном образовании виртуального канала и передаче в пункт назначения пакетов, кадров или ячеек по этому каналу, т.е. по одному маршруту.

2.2.1. Сети X.25

Сети Х.25 являются первой сетью с коммутацией пакетов и на сегодняшний день самыми распространенными сетями с коммутацией пакетов, используемыми для построения корпоративных сетей. Сетевой протокол X.25 предназначен для передачи данных между компьютерами по телефонным сетям. Сети Х.25 разработаны для линий низкого качества с высоким уровнем помех (для аналоговых телефонных линий) и обеспечивают передачу данных со скоростью до 64 Кбит/с. Х.25 хорошо работает на линиях связи низкого качества благодаря применению протоколов подтверждения установления соединений и коррекции ошибок на канальном и сетевом уровнях.

Стандарт Х.25 определяет интерфейс "пользователь - сеть" в сетях передачи данных общего пользования или “интерфейс между оконечным оборудованием данных и аппаратурой передачи данных для терминалов, работающих в пакетном режиме в сетях передачи данных общего пользования”. Другими словами Х.25 определяет двухточечный интерфейс (выделенную линию) между пакетным терминальным оборудованием DTE и оконечным оборудованием передачи данных DCE.

На рисунке представлена структурная схема сети X.25, где изображены основные элементы:

  1. DTE (data terminal equipment) – аппаратура передачи данных (кассовые аппараты, банкоматов, терминалы бронирования билетов, ПК, т.е. конечное оборудование пользователей).
  2. DCE (data circuit-terminating equipment) – оконечное оборудование канала передачи данных (телекоммуникационное оборудование, обеспечивающее доступ к сети).
  3. PSE (packet switching exchange) – коммутаторы пакетов.


Рис. 1.

Интерфейс Х.25 обеспечивает:

  • доступ удаленному пользователю к главному компьютеру;
  • доступ удаленному ПК к локальной сети;
  • связь удаленной сети с другой удаленной сетью.

Интерфейс Х.25 содержит три нижних уровня модели OSI: физический, канальный и сетевой.

Особенностью этой сети является использование коммутируемых виртуальных каналов для осуществления передачи данных между компонентами сети. Установление коммутируемого виртуального канала выполняется служебными протоколами, выполняющими роль протокола сигнализации.

Физический уровень

На физическом уровне Х.25 используются аналоговые выделенные линии, которые обеспечивают двухточечное соединение. Могут использоваться аналоговые телефонные линии, а также цифровые выделенные линии. На сетевом уровне нет контроля достоверности и управления потоком. На физическом уровне Х.25 реализуется один из протоколов X.21 или X.21bis.

Канальный уровень

На канальном уровне сеть Х.25 обеспечивает гарантированную доставку, целостность данных и контроль потока. На канальном уровне поток данных структурируется на кадры. Контроль ошибок производится во всех узлах сети. При обнаружении ошибки выполняется повторная передача данных. Канальный уровень реализуется протоколом LAP-B, который работает только с двухточечными каналами связи, поэтому адресация не требуется.

Сетевой уровень

Сетевой уровень Х.25 реализуется протоколом PLP (Packet-Layer Protocol - протокол уровня пакета). На сетевом уровне кадры объединяются в один поток, а общий поток разбивается на пакеты. Протокол PLP управляет обменом пакетов через виртуальные цепи. Сеанс связи устанавливается между двумя устройствами DTE по запросу от одного из них. Максимальная длина поля адреса устройства DTE в пакете Х.25 составляет 16 байт. После установления коммутируемой виртуальной цепи эти устройства могут вести полнодуплексный обмен информации. Сеанс может быть завершен по инициативе любого DTE, после чего для последующего обмена снова потребуется установление соединения.

Протокол PLP определяет следующие режимы:

  1. Установление соединения используется для организации коммутируемой виртуальной цепи между DTE. Соединение устанавливается следующим образом. DTE вызывающей стороны посылает запрос своему локальному устройству DCE, которое включает в запрос адрес вызывающей стороны и неиспользованный адрес логического канала для использования его соединением. DCE определяет PSE, который может быть использован для данной передачи. Пакет, передаваемый по цепочке PSE, достигает конечного удаленного DCE, где определяется DTE узла назначения, к которому пакет и доставляется. Вызывающий DTE дает ответ своему DCE, а тот передает ответ удаленному DCE для удаленного DTE. Таким образом, создается коммутируемый виртуальный канал.
  2. Режим передачи данных, который используется при обмене данными через виртуальные цепи. В этом режиме выполняется контроль ошибок и управление потоком.
  3. Режим ожидания используется, когда коммутируемая виртуальная цепь установлена, но обмен данными не происходит.
  4. Сброс соединения используется для завершения сеанса, осуществляется разрыв конкретного виртуального соединения.

Достоинства сети Х.25:

  • высокая надежность, сеть с гарантированной доставкой информации;
  • могут быть использованы как аналоговые, так и цифровые каналы передачи данных (выделенные и коммутируемые линии связи).

Недостатки сети: значительные задержки передачи пакетов, поэтому ее невозможно использовать для передачи голоса и видеоинформации.

Сети имеют глобальный характер и реализованы на коммутации пакетов между последними узлами. Сети х.25 работают на трех нижних уровнях модели OSI. Структура сети показана на рис.1, где видно:

  • DCE — телекоммуникационное оборудование (модемы), реализующие доступ к сети
  • DTE — аппаратура транспортировки данных
  • PSE — коммутаторы пакетов, реализующие облако глобальной сети

Для терминалов, которые не поддерживают X.25 полностью, есть простые устройства PAD — сборщики разборщики пакетов. Они содержат один или более асинхронных портов, к которые присоединяются обычные терминалы и один синхронный порт х.25. Весь трафик их асинхронных портов собирается в буфер памяти PAD и по заполнению пакета он отправляется в сеть. Разборка реализована таким же образом.

Физический уровень определяет использование любого родственного последовательного синхронного интерфейса: и G.703. Для реализации таких интерфейсов нужно что бы цепи, DTR,RTS,DSR,CTS были в положении включено , иначе работать не будут. На физическом уровне нету контроля управления и достоверности потоком — эти задачи реализуются сетевым и канальным уровнем.

Канальный уровень реализует гарантированную доставку, контроль потока и целостность данных, при этом задержка всего лишь сотни миллисекунд. Протокол LAP-B реализует канальный уровень. Связь реализуется между парой устройств DTE по запросу инициатора. После установки соединения пара может вести полнодуплексный обмен данными. Логическое соединение, которое поддерживает надежных двухсторонний обмен между парой устройств называют виртуальной цепью . Физическая виртуальная цепь может проходить через несколько PSE. Виртуальные цепи могут быть постоянные и коммутируемые. Коммутируемые виртуальные цепи SVC — используются для нерегулярного обмена информацией и нуждаются в поддержании, установки и завершении сеанса каждый раз при нужды в сеансе. Постоянные виртуальные цепи PVC — не нуждаются в установки сеанса, и DTE может обмениваться данными в любой момент.

Сетевой уровень Х.25 реализуется с помощью протокола PLP. Этот протокол управляет обменом кадрами через виртуальные цепи. Пакеты PLP ложатся в поле данных кадра LAPB. Протокол PLP может работать и через LLC2, ISDN (LAPD) и он определяет 5 режимов:

  • Call setup — установка соединения, реализуется для организации коммутируемой виртуальной цепи между DTEб реализуя адресацию х.121. Режим относится к каждой виртуальное цепи, которое подключено через физическое соединение
  • Data-transfer mode — Режим транспортировки информации реализуется при обмене информацией через виртуальные сети. Этот режим выполняет сегментацию, заполнение недостающих бит, управление потоком и контроль ошибок. Используется и PVC и SVC
  • Idle mode — режим паузы, нужен тогда, когда виртуальная коммутируемая цепь уже установлена, но обмен информацией не происходит. Для PVC не нужен
  • Call-clearing mode — сброс соединения, нужен для разрыва сеанса
  • Restarting mode — режим рестарта, нужен для синхронизации транспортировки между локальным DCE и DTE.

Поле данных в пакете может иметь длину до 4096 байт (стандарт — 128). Адресация узлов DTE реализуется относительно х.121, что дает единое пространство адресов на земле. Есть 3 варианта адресации:

  • Полный международный телефонный номер: адрес начинается с префикса 9, за которым идет трехзначный код страны, а затем телефонный номер в стране (11 цифр)
  • Полный международный сетевой адрес: начинается с префикса 0, после которого идет трехзначный код страны а затем номер сети в стране и номер узла
  • Внутренний сетевой адрес: начинается с номера сети в стране, а потом идет номер узла

Сети х.25 отлично применяются для обмена данными между пользователями, подключения терминальных узлов, построение систем клиент-сервер. Протокол х.25 поддерживают разные маршрутизаторы и мосты. Протокол стандартизирован и четко вписывается в модель OSI. Недостатком такой сети является то, что присутствует значительная задержка передачи пакетов.

Сети Х.25 являются первой сетью с коммутацией пакетов и на сегодняшний день самыми распространенными сетями с коммутацией пакетов, используемыми для построения корпоративных сетей. Сетевой протокол X.25 предназначен для передачи данных между компьютерами по телефонным сетям. Сети Х.25 разработаны для линий низкого качества с высоким уровнем помех (для аналоговых телефонных линий) и обеспечивают передачу данных со скоростью до 64 Кбит/с. Х.25 хорошо работает на линиях связи низкого качества благодаря применению протоколов подтверждения установления соединений и коррекции ошибок на канальном и сетевом уровнях.

Принципы построения и компоненты сети X.25

Главной особенностью сети X.25 является использование аппарата виртуальных каналов для обеспечения информационного взаимодействия между компонентами сети. Виртуальные каналы предназначены для организации вызова и непосредственной передачи данных между абонентами сети. Информационный обмен в сети X.25 во многом похож на аналогичный процесс в сетях ISDN и состоит из трех обязательных фаз:

Установление вызова (виртуального канала)

Информационный обмен по виртуальному каналу

Разрывание вызова (виртуального канала)

Информационное взаимодействие в сети X.25 осуществляется на физическом, канальном и сетевом уровнях. На физическом уровне могут быть использованы любые универсальные или специализированные интерфейсы.На рисунке представлена структурная схема сети X.25, где изображены основные элементы:

Устройства DTE (Data Terminal Equipment)

Устройства DCE (Data Circuit-Terminating Equipment)

Устройства PSE (Packet Switching Exchange)

Устройство PAD (packet assembler/ disassembler) является специфическим устройством сети X.25. PAD предназначен для обеспечения взаимодействия неспециализированных терминалов с сетью, для преобразования потока символов, который поступает от неспециализированного терминала в пакеты X.25 и выполнения обратного преобразования.

Интерфейс Х.25 обеспечивает:

1) доступ удаленному пользователю к главному компьютеру;

2) доступ удаленному ПК к локальной сети;

3) связь удаленной сети с другой удаленной сетью.

Интерфейс Х.25

Интерфейс Х.25 содержит три нижних уровня модели OSI: физический, канальный и сетевой. Особенностью этой сети является использование коммутируемых виртуальных каналов для осуществления передачи данных между компонентами сети. Установление коммутируемого виртуального канала выполняется служебными протоколами, выполняющими роль протокола сигнализации.

Физический уровень На физическом уровне Х.25 используются аналоговые выделенные линии, которые обеспечивают двухточечное соединение. Могут использоваться аналоговые телефонные линии, а также цифровые выделенные линии. На сетевом уровне нет контроля достоверности и управления потоком. На физическом уровне Х.25 реализуется один из протоколов X.21 или X.21bis.

Канальный уровень На канальном уровне сеть Х.25 обеспечивает гарантированную доставку, целостность данных и контроль потока. На канальном уровне поток данных структурируется на кадры. Контроль ошибок производится во всех узлах сети. При обнаружении ошибки выполняется повторная передача данных. Канальный уровень реализуется протоколом LAP-B, который работает только с двухточечными каналами связи, поэтому адресация не требуется.

Протоколы канального уровня HDLC/SDLC, были разработаны для того, чтобы решать следующие задачи:

Обеспечение передачи сообщений, которые могут содержать любое количество бит и любые возможные комбинации бит - требование кодовой прозрачности.

При передаче потока бит должны выполняться процедуры, которые позволяют обнаружить ошибки на приемной стороне.

Возникновение ошибки при передаче не должно приводить к потере или дублированию компонентов сообщения, т.е. к его искажению.

Протокол канального уровня должен был обеспечивать работу как двухточечных, так и многоточечных физических цепей

Протокол должен обеспечивать подключение дуплексных и полудуплексных линий

Протокол должен обеспечивать информационный обмен при значительных вариациях времени распространения сигнала

Протоколы семейства HDLC Протоколы осуществляют передачу данных в виде кадров переменной длины. Начало и конец кадра помечается специальной последовательностью битов, которая называется флагом. Для обеспечения дисциплины управления процессом передачи данных, одна из станций, которые обеспечивают информационный обмен, может быть обозначена, как первичная, а другая (или другие) станции могут быть обозначены, как вторичные. Кадр, который посылает первичная станция, называется командой (command). Кадр, который формирует и передает вторичная станция, называется ответ (response).

Режимы организации взаимодействия на канальном уровне

Вторичная станция сегмента может работать в двух режимах: режиме нормального ответа или в режиме асинхронного ответа. Вторичния станция, которая находится в режиме нормального ответа, начинает передачу данных только в том случае, если она получила разрешающую команду от первичной станции. Вторичная станция, которая находится в режиме асинхронного ответа, может по своей инициативе начать передачу кадра или группы кадров. Станции, которые сочетают в себе функции первичных и вторичных станций и называются комбинированными.Симметричный режим взаимодействия комбинированных станций называется сбалансированным режимом.

Процедура LAPB

Процедура LAPB (Link Access Procedure Balanced) используется в сетях X.25 в качестве протокола канального уровня.

Протокол LAPB использует в качестве флага комбинацию из 8 бит, которая состоит из 6-ти единиц и двух нулей, которые обрамляют эту последовательность спереди и сзади (01111110). Процесс приема кадра завершается при получении следующего флага. В том случае, если к моменту получения завершающего флага приемник получил менее 32 бит, принятый кадр считается ошибочным и уничтожается. Для предотвращения появления флаговой комбинации в теле кадра используется специальная процедура.

Структура кадра LAPB

Рекомендация X.25 определяет два основных типа процедуры LAPB - основной тип (modulo 8, basic) и расширенный тип (modulo 128, extended). Эти режимы отличаются разрядностью счетчиков, которые используются для управления потоком кадров. Кадр протокола LAPB содержит 4 поля: ADRESS, CONROL, Data, FCS. Поле DATA в кадре LAPB может отсутствовать.

Поле ADRESS занимает в кадре один байт. В этом поле располагается бит признака C/R (Command /Response) В поле ADDRESS кадра управляющей команды размещается физический адрес принимающей станции. В поле ADRESS кадра ответа на команду размещается физический адрес передающей станции.

Поле CONTROL

Содержимое этого поля поля определяет тип кадра.

Информационные кадры (Information Frames, I-кадры). В битах поля CONTROL размещаются 3-х разрядный номер передаваемого кадра и 3-х разрядный номер кадра, который ожидается для приема для обеспечения управления потоком.

Управляющие кадры (Supervisory Frames, S-кадры). В поле CONTROL размещается 3-х разрядный номер информационного кадра, который ожидается для приема и два бита, которые определяют тип передаваемого управляющего кадра.

Наиболее часто в процессе информационного взаимодействия используются управляющие кадры типа RR. Кадры данного типа передает получатель данных для того, чтобы обозначить готовность к приему очередного кадра, в том случае, когда он сам не имеет информации для передачи. Кадры RNR используются устройствами DCE и DTE для того, чтобы сообщить абоненту о возникновении аварийной ситуации, в которой дальнейший прием информационных кадров невозможен. Кадры REJ используются устройствами DCE и DTE для того, чтобы сигнализировать абоненту о разрешении аварийной ситуации, в которой был невозможен прием информационных кадров. Кадр REJ передается после кадра RNR и подтверждает факт перехода линии в нормальный режим работы.

Ненумерованные кадры (Unnumbered Frames, U - кадры). Предназначены для организации и разрывания логического соединения, согласования параметров линии и формирования сигналов о возникновении неустранимых ошибок в процессе передачи данных I-кадрами.

Кадр FRMR передается вторичной станцией для того, чтобы указать на возникновение аварийной ситуации, которая не может быть разрешена путем повторной передачи аварийного кадра.

Сетевой уровень Сетевой уровень Х.25 реализуется протоколом PLP (Packet-Layer Protocol - протокол уровня пакета). На сетевом уровне кадры объединяются в один поток, а общий поток разбивается на пакеты. Протокол PLP управляет обменом пакетов через виртуальные цепи. Сеанс связи устанавливается между двумя устройствами DTE по запросу от одного из них. После установления коммутируемой виртуальной цепи эти устройства могут вести полнодуплексный обмен информации. Сеанс может быть завершен по инициативе любого DTE, после чего для последующего обмена снова потребуется установление соединения.

Протокол PLP определяет следующие режимы: Установление соединения используется для организации коммутируемой виртуальной цепи между DTE. Соединение устанавливается следующим образом. DTE вызывающей стороны посылает запрос своему локальному устройству DCE, которое включает в запрос адрес вызывающей стороны и неиспользованный адрес логического канала для использования его соединением. DCE определяет PSE, который может быть использован для данной передачи. Пакет, передаваемый по цепочке PSE, достигает конечного удаленного DCE, где определяется DTE узла назначения, к которому пакет и доставляется. Вызывающий DTE дает ответ своему DCE, а тот передает ответ удаленному DCE для удаленного DTE. Таким образом, создается коммутируемый виртуальный канал. Режим передачи данных, который используется при обмене данными через виртуальные цепи. В этом режиме выполняется контроль ошибок и управление потоком. Режим ожидания используется, когда коммутируемая виртуальная цепь установлена, но обмен данными не происходит. Сброс соединения используется для завершения сеанса, осуществляется разрыв конкретного виртуального соединения.

Виртуальные каналы X.25

Процесс сетевого уровня получает в свое распоряжение часть полосы пропускания физического канала в виде виртуального канала. Полная полоса пропускания канала делится в равных пропорциях между виртуальными каналами, которые активны в текущий момент. В сети X.25 существует два типа виртуальных каналов: коммутируемые (SVC) и постоянные (PVC).

Формат пакета X.25

Пакет X.25 состоит как минимум из трех байтов, которые определяют заголовок пакета. Первый байт содержит 4 бит идентификатора общего формата и 4 бита номера группы логического канала. Второй байт содержит номер логического канала, а третий - идентификатор типа пакета. Пакеты в сети бывают двух типов - управляющие пакеты и пакеты данных. Тип пакета определяется значением младшего бита идентификатора типа пакета.

Идентификатор общего формата

Поле идентификатора общего формата содержит признак, который устанавливает тип процедуры управления потоком пакетов (modulo 8 или modulo 128).

Номер логического канала

Номер логического канала задается содержимым двух полей - номер группы логического канала от 0 до 15 и номер канала в группе от 0 до 255. Таким образом, максимальное число логических каналов может достигать значения 4095. Номер логического канала определяет виртуальный порт, с которым ассоциируется конкретный пользовательский процесс.

Идентификатор типа пакета Cетевые адреса получателя и отправителя пакета размещаются в поле "данные", и предназначены для управления вызовами.

Формат сетевого адреса X.25

Сетевой адрес состоит из двух частей Data Network ID Code (DNIC) Network Terminal Number

Поле DNIC содержит 4 десятичных цифры и определяет код страны и номер провайдера. Содержимое поля Network Terminal Number содержит 10 или 11 десятичных цифр, которые определяет провайдер и предназначено для определения конкретного пользователя.

Управление потоком кадров

Для управления потоком пакетов на сетевом уровне X.25 используются такие же процедуры и механизмы, какие используются для управления потоком кадров на канальном уровне сети X.25.

Для того, чтобы обеспечить возможность подключения к сети X.25 терминалов различного типа, используются специальные алгоритмы и параметры, которые управляют процессом сборки и разборки пакетов.

Данная рекомендация определяет наименования и назначения основных параметров, с помощью которых осуществляется настройка PAD. Параметры X.3 обозначаются символами P1 - P32.Параметр P1 определяет, возможен ли выход из режима передачи в режим команд по инициативе оператора терминала.

Для управления потоком используются специальные кодовые комбинации XON и XOFF. В том случае, если терминал по каким-либо причинам временно не способен принимать символы от PAD, он передает символ XOFF (^S). PAD должен прекратить передачу данных этому терминалу до получения от него разрешающего символа XON(^Q). Значения этих символов могут быть переопределены с помощью параметров Р28 и Р29.

Эта рекомендация определяет процедуры, в соответствии с которыми, пользователь может прочитать или изменить текущие значения параметров X.3 PAD. Для изменения установленных параметров X.3 PAD пользователь должен использовать команду SET. Для того, чтобы прочитать текущие значения параметров X.3 PAD пользователь должен использовать команду PAR.

Достоинства и недостатки.

Достоинства сети Х.25:

высокая надежность, сеть с гарантированной доставкой информации;

могут быть использованы как аналоговые, так и цифровые каналы передачи данных (выделенные и коммутируемые линии связи).

Недостатки сети:

значительные задержки передачи пакетов, поэтому ее невозможно использовать для передачи голоса и видеоинформации.

Литература.

Новиков Ю.В., Кондратенко С.В. Основы локальных сетей, 2005

Назначение и структура сетей Х.25

Сети Х.25 являются на сегодняшний день самыми распространенными сетями с коммутацией пакетов, используемыми для построения корпоративных сетей. Основная причина такой ситуации состоит в том, что долгое время сети Х.25 были единственными доступными сетями с коммутацией пакетов коммерческого типа, в которых давались гарантии коэффициента готовности сети. Сеть Internet также имеет долгую историю существования, но как коммерческая сеть она начала эксплуатироваться совсем недавно, поэтому для корпоративных пользователей выбора не было. Кроме того, сети Х.25 хорошо работают на ненадежных линиях благодаря протоколам с установлением соединения и коррекцией ошибок на двух уровнях - канальном и сетевом.

Стандарт Х.25 «Интерфейс между оконечным оборудованием данных и аппаратурой передачи данных для терминалов, работающих в пакетном режиме в сетях передачи данных общего пользования» был разработан комитетом CCITT в 1974 году и пересматривался несколько раз. Стандарт наилучшим образом подходит для передачи трафика низкой интенсивности, характерного для терминалов, и в меньшей степени соответствует более высоким требованиям трафика локальных сетей. Как видно из названия, стандарт не описывает внутреннее устройство сети Х.25, а только определяет пользовательский интерфейс с сетью. Взаимодействие двух сетей Х.25 определяет стандарт Х.75.

Технология сетей Х.25 имеет несколько существенных признаков, отличающих ее от других технологий.

    Наличие в структуре сети специального устройства - PAD (Packet Assembler Disassembler) , предназначенного для выполнения операции сборки нескольких низкоскоростных потоков байт от алфавитно-цифровых терминалов в пакеты, передаваемые по сети и направляемые компьютерам для обработки. Эти устройства имеют также русскоязычное название «Сборщик-разборщик пакетов», СРП .

    Наличие трехуровневого стека протоколов с использованием на канальном и сетевом уровнях протоколов с установлением соединения, управляющих потоками данных и исправляющих ошибки.

    Ориентация на однородные стеки транспортных протоколов во всех узлах сети - сетевой уровень рассчитан на работу только с одним протоколом канального уровня и не может подобно протоколу IP объединять разнородные сети. Сеть Х.25 состоит из коммутаторов (Switches, S), называемых также центрами коммутации пакетов (ЦКП) , расположенных в различных географических точках и соединенных высокоскоростными выделенными каналами. Выделенные каналы могут быть как цифровыми, так и аналоговыми.

Асинхронные старт-стопные терминалы подключаются к сети через устройства PAD. Они могут быть встроенными или удаленными. Встроенный PAD обычно расположен в стойке коммутатора. Терминалы получают доступ ко встроенному устройству PAD по телефонной сети с помощью модемов с асинхронным интерфейсом. Встроенный PAD также подключается к телефонной сети с помощью нескольких модемов с асинхронным интерфейсом. Удаленный PAD представляет собой небольшое автономное устройство, подключенное к коммутатору через выделенный канал связи Х.25. К удаленному устройству PAD терминалы подключаются по асинхронному интерфейсу, обычно для этой цели используется интерфейс RS-232C. Один PAD обычно обеспечивает доступ для 8, 16 или 24 асинхронных терминалов.

К основным функциям PAD, определенных стандартом Х.З, относятся:

    сборка символов, полученных от асинхронных терминалов, в пакеты;

    разборка полей данных в пакетах и вывод данных на асинхронные терминалы;

    управление процедурами установления соединения и разъединения по сети Х.25 с нужным компьютером;

    передача символов, включающих старт-стопные сигналы и биты проверки на четность, по требованию асинхронного терминала;

    продвижение пакетов при наличии соответствующих условий, таких как заполнение пакета, истечение времени ожидания и др.

Терминалы не имеют конечных адресов сети Х.25. Адрес присваивается порту PAD, который подключен к коммутатору пакетов Х.25 с помощью выделенного канала.

Несмотря на то что задача подключения «неинтеллектуальных» терминалов к удаленным компьютерам возникает сейчас достаточно редко, функции PAD все еще остаются востребованными. Устройства PAD часто используются для подключения к сетям Х.25 кассовых терминалов и банкоматов, имеющих асинхронный интерфейс RS-232.

Стандарт Х.28 определяет параметры терминала, а также протокол взаимодействия терминала с устройством PAD. При работе на терминале пользователь сначала проводит некоторый текстовый диалог с устройством PAD, используя стандартный набор символьных команд. PAD может работать с терминалом в двух режимах: управляющем и передачи данных. В управляющем режиме пользователь с помощью команд может указать адрес компьютера, с которым нужно установить соединение по сети Х.25, а также установить некоторые параметры работы PAD, например выбрать специальный символ для обозначения команды немедленной отправки пакета, установить режим эхо - ответов символов, набираемых на клавиатуре, от устройства PAD (при этом дисплей не будет отображать символы, набираемые на клавиатуре до тех пор, пока они не вернутся от PAD - это обычный локальный режим работы терминала с компьютером). При наборе комбинации клавиш Ctrl+P PAD переходит в режим передачи данных и воспринимает все последующие символы как данные, которые нужно передать в пакете Х.25 узлу назначения.

В сущности, протоколы Х.З и Х.28 определяют протокол эмуляции терминала, подобный протоколу telnet стека TCP/IP. Пользователь с помощью устройства PAD устанавливает соединение с нужным компьютером, а затем может вести уже диалог с операционный системой этого компьютера (в режиме передачи данных устройством PAD), запуская нужные программы и просматривая результаты их работы на своем экране, как и при локальном подключении терминала к компьютеру.

Компьютеры и локальные сети обычно подключаются к сети Х.25 непосредственно через адаптер Х.25 или маршрутизатор, поддерживающий на своих интерфейсах протоколы Х.25. Для управления устройствами PAD в сети существует протокол Х.29, с помощью которого узел сети может управлять и конфигурировать PAD удаленно, по сети. При необходимости передачи данных компьютеры, подключенные к сети Х.25 непосредственно, услугами PAD не пользуются, а самостоятельно устанавливают виртуальные каналы в сети и передают по ним данные в пакетах Х.25.

Адресация в сетях Х.25

Если сеть Х.25 не связана с внешним миром, то она может использовать адрес любой длины (в пределах формата поля адреса) и давать адресам произвольные значения. Максимальная длина поля адреса в пакете Х.25 составляет 16 байт.

Рекомендация Х.121 CCITT определяет международную систему нумерации адресов для сетей передачи данных общего пользования. Если сеть Х.25 хочет обмениваться данными с другими сетями Х.25, то в ней нужно придерживаться адресации стандарта Х.121.

Адреса Х.121 (называемые также International Data Numbers, IDN) имеют разную длину, которая может доходить до 14 десятичных знаков. Первые четыре цифры IDN называют кодом идентификации сети (Data Network Identification Code, DNIC) . DNIC поделен на две части; первая часть (3 цифры) определяет страну, в которой находится сеть, а вторая - номер сети Х.25 в данной стране. Таким образом, внутри каждой страны можно организовать только 10 сетей Х.25. Если же требуется перенумеровать больше, чем 10 сетей для одной страны, проблема решается тем, что одной стране дается несколько кодов. Например, Россия имела до 1995 года один код - 250, а в 1995 году ей был выделен еще один код - 251. Остальные цифры называются номером национального терминала (National Terminal Numbe, NTN) . Эти цифры позволяют идентифицировать определенный DTE в сети Х.25.

Международные сети Х.25 могут также использовать международный стандарт нумерации абонентов ISO 7498, описанный выше.

По стандарту ISO 7498 для нумерации сетей Х.25 к адресу в формате Х.121 добавляется только один байт префикса, несущий код 36 (использование в адресе только кодов десятичных цифр) или 37 (использование произвольных двоичных комбинаций). Этот код позволяет универсальным коммутаторам, например коммутаторам сети ISDN, поддерживающим также и коммутацию пакетов Х.25, автоматически распознавать тип адреса и правильно выполнять маршрутизацию запроса на установление соединения.

Стек протоколов сети Х.25

Стандарты сетей Х.25 описывают 3 уровня протоколов.

    На физическом уровне определены синхронные интерфейсы Х.21 и Х.21 bis к оборудованию передачи данных - либо DSU/CSU, если выделенный канал является цифровым, либо к синхронному модему, если канал выделенный.

    На канальном уровне используется подмножество протокола HDLC, обеспечивающее возможность автоматической передачи в случае возникновения ошибок в линии. Предусмотрен выбор из двух процедур доступа к каналу: LAP или LAP-B.

    На сетевом уровне определен протокол Х.25/3 обмена пакетами между оконечным оборудованием и сетью передачи данных.

Транспортный уровень может быть реализован в конечных узлах, но он стандартом не определяется.

Протокол физического уровня канала связи не оговорен, и это дает возможность использовать каналы разных стандартов.

На канальном уровне обычно используется протокол LAP-B. Этот протокол обеспечивает сбалансированный режим работы, то есть оба узла, участвующих в соединении, равноправны. По протоколу LAP-B устанавливается соединение между пользовательским оборудованием DTE (компьютером, IP- или IPX-маршрутизатором) и коммутатором сети. Хотя стандарт это и не оговаривает, но по протоколу LAP-B возможно также установление соединения на канальном уровне внутри сети между непосредственно связанными коммутаторами. Протокол LAP-B почти во всех отношениях идентичен протоколу LLC2, описанному в главе 3, кроме адресации. Кадр LAP-B содержит одно однобайтовое адресное поле (а не два - DSAP и SSAP), в котором указывается не адрес службы верхнего уровня, а направление передачи кадра - 0х01 для направления команд от DTE к DCE (в сеть) или ответов от DCE к DTE (из сети) и 0х03 для направления ответов от DTE к DCE или команд от DCE к DTE. Поддерживается как нормальный режим (с максимальным окном в 8 кадров и однобайтовым полем управления), так и расширенный режим (с максимальным окном в 128 кадров и двухбайтовым полем управления).

Сетевой уровень Х.25/3 (в стандарте он назван не сетевым, а пакетным уровнем) реализуется с использованием 14 различных типов пакетов, по назначению аналогичных типам кадров протокола LAP-B. Так как надежную передачу данных обеспечивает протокол LAP-B, протокол Х.25/3 выполняет функции маршрутизации пакетов, установления и разрыва виртуального канала между конечными абонентами сети и управления потоком пакетов.

После установления соединения на канальном уровне конечный узел должен установить виртуальное соединение с другим конечным узлом сети. Для этого он в кадрах LAP-B посылает пакет Call Request протокола X.25.

Поля, расположенные в первых трех байтах заголовка пакета, используются во всех типах кадров протокола Х.25. Признаки Q и D и Modulo расположены в старшей части первого байта заголовка. Признак Q предназначен для распознавания на сетевом уровне типа информации в поле данных пакета. При получении пакета информация, расположенная в поле данных, а также значение бита Q передается верхним уровням пользовательского стека протоколов (непосредственно транспортному уровню этого стека). Значение Q=1 означает управляющую пользовательскую информацию, а Q=0 - данные. Признак D означает подтверждение приема пакета узлом назначения. Обычный механизм подтверждения принятия пакетов с помощью квитанций имеет для протокола Х.25 только локальный смысл - прием пакета подтверждает ближайший коммутатор сети, через который конечный узел запросил и установил виртуальное соединение. Если же узел-источник запросил подтверждение приема конечным узлом, то это подтверждение индицируется установкой бита D (delivery confirmation) в пакетах, идущих от узла назначения.

Признак Modulo говорит о том, по какому модулю - 8 или 128 - ведется нумерация пакетов. Значение 10 означает модуль 128, а 01 - модуль 8.

Поле Номер логической группы (Lodical Group Number, LGN) содержит значение номера логической группы виртуального канала. Каналы образуют логические группы по функциональному признаку, например:

    постоянный виртуальный канал;

    коммутируемый виртуальный канал только для входящих сообщений (симплексный);

    коммутируемый виртуальный канал только для исходящих сообщений (симплексный);

    коммутируемый дуплексный виртуальный канал.

Максимальное количество логических групп - 12, хотя в конкретной сети допустимо и меньшее количество.

Поле Номер логического канала (Logical Channel Number, LCN) содержит номер виртуального канала, назначаемый узлом-источником (для коммутируемых виртуальных каналов) или администратором сети (для постоянных виртуальных каналов). Максимальное количество виртуальных каналов, проходящих через один порт, равно 256.

Поле Тип (Type) указывает тип пакета. Например, для пакета Call Request отведено значение типа, равное 0х0В. Младший бит этого поля определяет, является ли пакет управляющим (бит равен 1) или пакетом данных (бит равен 0). Значение 0х0В содержит 1 в младшем бите, поэтому это управляющий пакет, а остальные биты в этом случае определяют подтип пакета. В пакете данных остальные биты поля Type используются для переноса номеров квитанций N(S) и N(R).

Следующие два поля определяют длину адресов назначения и источника (DA и SA) в пакете. Запрос на установление виртуального канала указывает оба адреса. Первый адрес нужен для маршрутизации пакета Call Request, а второй - для принятия решения узлом назначения о возможности установления виртуального соединения с данным узлом-источником. Если узел назначения решает принять запрос, то он должен отправить пакет Call Accepted - «Запрос принят», в котором также указать оба адреса, поменяв их, естественно, местами. Адреса могут иметь произвольный формат или же соответствовать требованиям стандарта Х.121 или ISO 7498.

Сами адреса назначения и источника занимают отведенное им количество байт в следующих двух полях.

Поля Длина поля услуг (Facilities length) и Услуги (Facilities) нужны для согласования дополнительных услуг, которые оказывает сеть абоненту. Например, услуга «Идентификатор пользователя сети» позволяет задать идентификатор пользователя (отличный от его сетевого адреса), на основании которого могут оплачиваться счета за пользование сетью. Пользователь с помощью услуги «Согласование параметров управления потоком» может попросить сеть использовать нестандартные значения параметров протокола - размера окна, максимального размера поля данных пакета и т. п. Протокол Х.25 допускает следующие максимальные значения длины поля данных: 16,32, 64,128, 256,512 и 1024 байт. Предпочтительной является длина 128 байт.

Пакет Call Request принимается коммутатором сети и маршрутизируется на основании таблицы маршрутизации, прокладывая при этом виртуальный канал. Начальное значение номера виртуального канала задает пользователь в этом пакете в поле LCN (аналог поля VCI, упоминавшегося при объяснении принципа установления виртуальных каналов). Протокол маршрутизации для сетей Х.25 не определен.

Для сокращения размера адресных таблиц в коммутаторах в сетях Х.25 реализуется принцип агрегирования адресов. Все терминалы, имеющие общий префикс в адресе, подключаются при этом к общему входному коммутатору подсети, соответствующей значению префикса. Например, если путь ко всем терминалам, имеющим адреса с префиксом 250 720, пролегает через общий коммутатор К1, то в таблице маршрутизации коммутаторов, через которые проходит путь к коммутатору К1, помещается единственная запись - 250 720, которая соответствует как конечному узлу 250 720 11, так и конечному узлу 250 720 26. Маски в коммутаторах не используются, а младшие разряды адреса, которые не нужны при маршрутизации, просто опускаются.

После установления виртуального канала конечные узлы обмениваются пакетами другого формата - формата пакетов данных (пакет Data). Этот формат похож на описанный формат пакета Call Request - первые три байта в нем имеют те же поля, а адресные поля и поля услуг отсутствуют. Пакет данных не имеет поля, которое бы определяло тип переносимых в пакете данных, то есть поля, аналогичного полю Protocol в IP-пакете. Для устранения этого недостатка первый байт в поле данных всегда интерпретируется как признак типа данных.

Коммутаторы (ЦКП) сетей Х.25 представляют собой гораздо более простые и дешевые устройства по сравнению с маршрутизаторами сетей TCP/IP. Это объясняется тем, что они не поддерживают процедур обмена маршрутной информацией и нахождения оптимальных маршрутов, а также не выполняют преобразований форматов кадров канальных протоколов. По принципу работы они ближе к коммутаторам локальных сетей, чем к маршрутизаторам. Однако работа, которую выполняют коммутаторы Х.25 над пришедшими кадрами, включает больше этапов, чем при продвижении кадров коммутаторами локальных сетей. Коммутатор Х.25 должен принять кадр LAP-B и ответить на него другим кадром LAP-B, в котором подтвердить получение кадра с конкретным номером. При утере или искажении кадра коммутатор должен организовать повторную передачу кадра. Если же с кадром LAP-B все в порядке, то коммутатор должен извлечь пакет Х.25, на основании номера виртуального канала определить выходной порт, а затем сформировать новый кадр LAP-B для дальнейшего продвижения пакета. Коммутаторы локальных сетей такой работой не занимаются и просто передают кадр в том виде, в котором он пришел, на выходной порт.

В результате производительность коммутаторов Х.25 оказывается обычно невысокой - несколько тысяч пакетов в секунду. Для низкоскоростных каналов доступа, которыми много лет пользовались абоненты этой сети (1200-9600 бит/с), такой производительности коммутаторов хватало для работы сети.

Гарантий пропускной способности сеть Х.25 не дает. Максимум, что может сделать сеть, - это приоритезировать трафик отдельных виртуальных каналов. Приоритет канала указывается в запросе на установление соединения в поле услуг.

Протоколы сетей Х.25 были специально разработаны для низкоскоростных линий с высоким уровнем помех. Именно такие линии составляют пока большую часть телекоммуникационной структуры нашей страны, поэтому сети Х.25 будут по-прежнему еще долго являться наиболее рациональным выбором для многих регионов.