Тарифы Услуги Сим-карты

Кодирование методом шеннона фано. Префиксный код Шеннона-Фано

Алгоритм метода Шеннона-Фано - один из первых алгоритмов сжатия, который впервые сформулировали американские учёные Шеннон и Фано, и он имеет большое сходство с алгоритмом Хаффмана. Алгоритм основан на частоте повторения. Так, часто встречающийся символ кодируется кодом меньшей длины, а редко встречающийся - кодом большей длины.
В свою очередь, коды, полученные при кодировании, префиксные. Это и позволяет однозначно декодировать любую последовательность кодовых слов. Но все это вступление.

Для работы оба алгоритма должны иметь таблицу частот элементов алфавита.

Итак, алгоритм Хаффмана работает следующим образом:

  1. На вход приходят упорядоченные по невозрастанию частот данные .
  2. Выбираются две наименьших по частоте буквы алфавита, и создается родитель (сумма двух частот этих «листков»).
  3. Потомки удаляются и вместо них записывается родитель, «ветви» родителя нумеруются: левой ветви ставится в соответствие «1», правой «0».
  4. Шаг два повторяется до тех пор, пока не будет найден главный родитель - «корень».

Алгоритм Шеннона-Фано работает следующим образом:

  1. На вход приходят упорядоченные по невозрастанию частот данные.
  2. Находится середина, которая делит алфавит примерно на две части. Эти части (суммы частот алфавита) примерно равны. Для левой части присваивается «1», для правой «0», таким образом мы получим листья дерева
  3. Шаг 2 повторяется до тех пор, пока мы не получим единственный элемент последовательности, т.е. листок

Таким образом, видно, что алгоритм Хаффмана как бы движется от листьев к корню, а алгоритм Шеннона-Фано, используя деление, движется от корня к листям.

Ну вот, быстро осмыслив информацию, можно написать код алгоритма Шеннона-Фано на паскале. Попросили именно на нем написать. Поэтому приведу листинг вместе с комментариями.

Program ShennonFano; uses crt; const a:array of char = ("a","b","c","d","e","f"); { символы } af:array of integer = (10, 8, 6, 5, 4, 3); { частота символов } { Процедура для поиска кода каждой буквы } procedure SearchTree(branch:char; full_branch:string; start_pos:integer; end_pos:integer); var dS:real; { Среднее значение массива } i, m, S:integer; { m - номер средней буквы в последовательности, S - сумма чисел, левой ветки } c_branch:string; { текущая история поворотов по веткам } begin { проверка если это вход нулевой то очистить историю } if (a<>" ") then c_branch:= full_branch + branch else c_branch:= ""; { Критерий выхода: если позиции символов совпали, то это конец } if (start_pos = end_pos) then begin WriteLn(a, " = ", c_branch); exit; end; { Подсчет среднего значения частоты в последовательности } dS:= 0; for i:=start_pos to end_pos do dS:= dS + af[i]; dS:= dS/2; { Тут какой угодно можно цикл for, while, repeat поиск середины } S:= 0; i:= start_pos; m:= i; while ((S+af[i] to show"); ReadLn; ClrScr; { Поиск кода Фано, входные параметры начало и конец последовательности } SearchTree(" "," ", 1, 6); ReadLn; end;

Ну вот собственно и все, о чем я хотел рассказать. Всю информацию можно взять из википедии. На рисунках приведены частоты сверху.

Спасибо за внимание!

Оптимальное кодирование

Теорема кодирования Шеннона. Методы побуквенного оптимального кодирования. Критерии оптимальности кода. Блочное кодирование. Единая система кодирования текстовой информации.

Кодирование , минимизирующее избыточность кода , называется оптимальным .

Вопрос существования таких кодов составляет суть одной из основных теорем теории информации – теоремы кодирования, доказанной К. Шенноном. Приведем одну из эквивалентных формулировок данной теоремы.

Теорема кодирования . Сообщения произвольного источника информации Z с энтропией H (Z ) всегда можно закодировать последовательностями в алфавите B , состоящем из M символов , так , что средняя длина кодового слова будет сколь угодно близка к величине , но не меньше нее.

Доказательство этой теоремы в силу его сложности не рассматривается.

Теорема утверждает, что разность можно сделать как угодно малой. В этом и заключается задача методов оптимального кодирования.

Вернемся к рассмотрению алфавитного источника информации, генерирующего сообщения в символах алфавита А . Поскольку избыточность кода задается формулой

очевидно, что чем меньше , тем оптимальнее код. Для уменьшения следует кодировать часто встречающиеся символы более короткими словами и наоборот. На соблюдении этого требования основаны все методы оптимального кодирования. Кроме того, для обеспечения декодирования неравномерного кода важно соблюдать принцип префиксности : никакое кодовое слово не должно являться началом другого кодового слова.

Приведем два наиболее известных метода оптимального побуквенного кодирования. Для простоты изложения возьмем двоичный алфавит в качестве кодового.

Шаг 1. Упорядочиваем символы исходного алфавита в порядке невозрастания их вероятностей. (Записываем их в строку.)

Шаг 2. Не меняя порядка символов, делим их на две группы так, чтобы суммарные вероятности символов в группах были по возможности равны.

Шаг 3. Приписываем группе слева "0", а группе справа "1" в качестве элементов их кодов.

Шаг 4. Просматриваем группы. Если число элементов в группе более одного, идем на Шаг 2. Если в группе один элемент, построение кода для него завершено.

Рис. 4.1. Двоичное дерево, соответствующее кодированию по методу Шеннона – Фано

Рассмотрим работу описанного алгоритма на примере кодирования алфавита , символы которого встречаются с вероятностями (0,25; 0,05; 0,25; 0,1; 0,25; 0,1) соответственно. Результат кодирования изображен на рис. 4.1.

Очевидно, что процесс построения кода в общем случае содержит неоднозначность, так как мы не всегда можем поделить последовательность на два равновероятных подмножества. Либо слева, либо справа сумма вероятностей будет больше. Критерием лучшего варианта является меньшая избыточность кода. Заметим также, что правильное считывание кода – от корня дерева к символу – обеспечит его префиксность.

Алгоритм построения сжимающего кода Шеннона – Фано заключается в следующем.

1. Все символов дискретного источника располагаются в порядке убывания вероятностей их появления (табл. 4.2).

Таблица 4.2. Построение кода Шеннона-Фано

2. Образованный столбец символов делится на две группы таким образом, чтобы суммарные вероятности каждой группы мало отличались друг от друга.

3. Верхняя группа кодируется символом «1», а нижняя – «0».

4. Каждая группа делится на две подгруппы с близкими суммарными вероятностями; верхняя подгруппа кодируется символом «1», а нижняя – «0».

5. Процесс деления и кодирования продолжается до тех пор, пока в каждой подгруппе не окажется по одному символу сообщения источника.

6. Записывается код для каждого символа источника; считывание кода осуществляется слева направо.

При использовании простейшего равномерного кода для кодирования шести элементов алфавита источника потребуется по три двоичных символа на каждую букву сообщения. Если же используется код Шеннона – Фано, то среднее число символов на одну букву

Кодирование Шеннона-Фано является одним из самых первых алгоритмов сжатия, который впервые сформулировали американские учёные Шеннон (Shannon) и Фано (Fano). Данный метод сжатия имеет большое сходство с кодированием Хаффмана , которое появилось на несколько лет позже. Главная идея этого метода - заменить часто встречающиеся символы более короткими кодами, а редко встречающиеся последовательности более длинными кодами. Таким образом, алгоритм основывается на кодах переменной длины. Для того, чобы декомпрессор впоследствии смог раскодировать сжатую последовательность, коды Шеннона-Фано должны обладать уникальностью, то есть, не смотря на их переменную длину, каждый код уникально определяет один закодированый символ и не является префиксом любого другого кода.
Рассмотрим алгоритм вычисления кодов Шеннона-Фано (для наглядности возьмём в качестве примера последовательность "aa bbb cccc ddddd"). Для вычисления кодов, необходимо создать таблицу уникальных символов сообщения c(i) и их вероятностей p(c(i)) , и отсортировать её в порядке невозрастания вероятности символов.
c(i) p(c(i))
d 5 / 17
c 4 / 17
space 3 / 17
b 3 / 17
a 2 / 17

Далее, таблица символов делится на две группы таким образом, чтобы каждая из групп имела приблизительно одинаковую частоту по сумме символов. Первой группе устанавливается начало кода в "0", второй в "1". Для вычисления следующих бит кодов символов, данная процедура повторяется рекурсивно для каждой группы, в которой больше одного символа. Таким образом для нашего случая получаем следующие коды символов:

Длина кода s(i) в полученной таблице равна int(-lg p(c(i))) , если сиволы удалость разделить на группы с одинаковой частотой, в противном случае, длина кода равна int(-lg p(c(i))) + 1 .

длиной в 39 бит. Учитывая, что оргинал имел длину равную 136 бит, получаем коэффициент сжатия ~28% - не так уж и плохо.
Глядя на полученную последовательность, возникает вопрос: "А как же теперь это расжать?". Мы не можем, как в случае кодирования, заменять каждые 8 бит входного потока, кодом переменной длины. При расжатии нам необходимо всё сделать наоборот - заменить код переменной длины символом длиной 8 бит. В данном случае, лучше всего будет использовать бинарное дерево, листьями которого будут являтся символы (аналог дерева Хаффмана).
Кодирование Шеннона-Фано является достаточно старым методом сжатия, и на сегодняшний день оно не представляет особого практического интереса (разве что как упражнение по курсу структур данных). В большинстве случаев, длина сжатой последовательности, по данному методу, равна длине сжатой последовательности с использованием кодирования Хаффмана. Но на некоторых последовательностях всё же формируются не оптимальные коды Шеннона-Фано, поэтому сжатие методом Хаффмана принято считать более эффективным. Для примера, рассмотрим последовательность с таким содержанием символов: "a" - 14, "b" - 7, "c" - 5, "d" - 5, "e" - 4. Метод Хаффмана сжимает её до 77 бит, а вот Шеннона-Фано до 79 бит.

символ код Хаффмана код Шеннона-Фано
a 0 00
b 111 01
c 101 10
d 110 110
e 100 111
Кстати, в одном источнике (не буду указывать каком), эту последовательность сжали методом Шеннона-Фано до 84 бит, а методом Хаффмана до тех же 77. Такие отличаи в степени сжатия возникают из-за нестрогого определения способа деления символов на группы.
Как же мы делили на группы? Достаточно просто:

Из-за такой неопределённости у некоторых людей возникают даже такие мысли: "... программа иногда назначает некоторым символам..." и так далее - рассуждения о длине кодов. Если вы не пишете AI, то такое понятие, как "программа иногда" что-то делает, звучит смешно. Правильно реализованный алгоритм - работает строго опеределённо.

ЛАБОРАТОРНАЯ РАБОТА 9

Эффективное кодирование

Цель: Изучение методик эффективного кодирования.

1. Построить код Шеннона-Фано по выбранным вариантам и результаты свести в таблицы.

2. Построить код Хаффмана по выбранным вариантам и результаты свести в таблицы. Для каждого построенного кода построить кодовое дерево.

Отчет по лабораторной работе должен содержать:

– краткие теоретические сведения о коде Шеннона-Фано и коде Хаффмана;

– построить коды Шеннона-Фано и Хаффмана при различных вариантах входных данных (для каждого кода выбрать произвольно три группы по 12 символов в каждой, присвоить каждому символу вероятность (сумма равна единице) и построить указанные коды).

– выводы.

Основные понятия и определения

Код Шеннона-Фано

Код строят следующим образом: знаки алфавита сообщений вписываются в таблицу в порядке убывания вероятностей. Затем их разделяют на две группы так, чтобы суммы вероятностей в каждой из групп были по возможности одинаковы. Всем знакам верхней половины в качестве первого символа приписывают «0», а всем нижним – «1». Каждую из полученных групп, в свою очередь разбивают на две подгруппы с одинаковыми суммарными вероятностями и т. д. Процесс повторяется до тех пор, пока в каждой подгруппе останется по одному знаку.

Пример 1. Проведем эффективное кодирование ансамбля из восьми знаков, характеристики которого представлены в табл. 3.1.

Таблица 3.1

Знаки Вероятность Кодовые комбинации Ступень разбиения
Z 1 0.22
Z 2 0.2
Z 3 0.16
Z 4 0.16
Z 5 0.1
Z 6 0.1
Z 7 0.04
Z 8 0.02

Рис. 3.1. Дерево группового разделения вероятностей Шеннона-Фано

Ясно, что при обычном (не учитывающем статистических характеристик) кодировании для представления каждого знака требуется три двоичных символа. Используя методику Шеннона-Фано, получаем совокупность кодовых комбинаций, приведенных в табл. 3.1.

Так как вероятности знаков представляют собой целочисленные отрицательные степени двойки, то избыточность при кодировании устраняется полностью. Среднее число символов на знак в этом случае точно равно энтропии. Убедимся в этом, вычислив энтропию

,

и среднее число символов на знак

,

где – число символов в кодовой комбинации, соответствующей знаку .

В общем случае для алфавита из восьми знаков среднее число символов на знак будет меньше трех, но больше энтропии алфавита .

Пример 2. Определим среднюю длину кодовой комбинации при эффективном кодировании знаков ансамбля. Приведенного в табл. 3.2.

Энтропия ансамбля равна 2,76. В результате сопоставления отдельным знакам ансамбля кодовых комбинаций по методике Шеннона-Фано (табл. 3.2) получаем среднее число символов на знак, равное 2,84.

Таблица 3.2

Характеристики ансамбля из восьми знаков

Знаки Вероятность Кодовые комбинации Ступень разбиения
Z 1 0,22
Z 2 0,20
Z 3 0,16
Z 4 0,16
Z 5 0,10
Z 6 0,10
Z 7 0,04
Z 8 0,02

Следовательно, некоторая избыточность в последовательностях символов осталась. Из теоремы Шеннона следует, что эту избыточность также можно устранить, если перейти к кодированию достаточно большими блоками.