Тарифы Услуги Сим-карты

Как проявляется технология клиент сервер в организации. Что такое технология клиент–сервер. Сеть с выделенным сервером

Клиент-сервер (Client-server) – вычислительная или сетевая архитектура, в которой задания или сетевая нагрузка распределены между поставщиками услуг (сервисов), называемыми серверами, и заказчиками услуг, называемыми клиентами.

Нередко клиенты и серверы взаимодействуют через компьютерную сеть и могут быть как различными физическими устройствами, так и программным обеспечением.

Сама технология очень проста. Например пользователь делает запрос (в google ищет информацию), а сервер выдает ответ (в виде списка сайтов по этой информации). Это и есть самый простой пример данной технологии. Графически это выглядит так:

Модель клиент-сервер используется при построении системы обработки информации на основе , а также почтовые системы. Существует еще так называемая файл-серверная архитектура, которая существенно отличается от клиент-серверной.

Данные в файл-серверной системе сохраняются на файловом сервере (Novell NetWare или WindowsNT Server), а обрабатываются они на рабочих станциях посредством функционирования «настольных СУБД», таких как Access, Paradox, FoxPro и т.п.

Преимущества технологии «клиент-сервер»

1. Делает возможным, в большинстве случаев, распределение вычислительной системы между несколькими независимыми компьютерами в сети.

Это позволяет упростить обслуживание вычислительной системы. В частности, замена, ремонт, модернизация или перемещение сервера не затрагивают клиентов.

2. Все данные хранятся на сервере, который, как правило, защищён гораздо лучше большинства клиентов. На сервере проще обеспечить контроль полномочий, чтобы разрешать доступ к данным только клиентам с соответствующими правами доступа.

3. Позволяет объединить различных клиентов. Использовать ресурсы одного сервера часто могут клиенты с разными аппаратными платформами, операционными системами и т.п.

Недостатки технологии «клиент-сервер»

  1. Неработоспособность сервера может сделать неработоспособной всю вычислительную сеть.
  2. Поддержка работы данной системы требует отдельного специалиста системного администратора.
  3. Высокая стоимость оборудования.

Многоуровневая архитектура клиент-сервер

Многоуровневая архитектура клиент-сервер – разновидность архитектуры клиент-сервер, в которой функция обработки данных вынесена на один или несколько отдельных серверов. Это позволяет разделить функции хранения, обработки и представления данных для более эффективного использования возможностей серверов и клиентов.



Сеть с выделенным сервером

Сеть с выделенным сервером (Client/Server network) – это локальная вычислительная сеть (LAN), в которой сетевые устройства централизованы и управляются одним или несколькими серверами. Индивидуальные рабочие станции или клиенты (такие, как ПК) должны обращаться к ресурсам сети через сервер(ы).

Клиент-сервер (англ. Client-server) - сетевая архитектура, в которой устройства являются либо клиентами, либо серверами. Клиентом является запрашивающая машина (обычно ПК), сервером - машина, которая отвечает на запрос. Оба термина (клиент и сервер) могут применяться как к физическим устройствам, так и к программному обеспечению.

Сеть с выделенным сервером (англ. Сlient/Server network) - это локальная вычислительная сеть (LAN), в которой сетевые устройства централизованы и управляются одним или несколькими серверами. Индивидуальные рабочие станции или клиенты (такие, как ПК) должны обращаться к ресурсам сети через сервер(ы).

Взаимодействие клиентов и серверов осуществляется с помощью специальных протоколов, например TCP/IP. С помощью технологии клиент-сервер можно осуществлять запуск лицензированных программ с помощью лицензионного менеджера.

Вопрос 57.

IP-адрес - это четырехбайтовое число, которое определяет адрес каждого компьютера в сети Интернет. Записывается оно в десятковом виде и разделяется точками на четыре части: 207.46.135.183 . IP-адрес служит только для распознания адресации одного компьютера другими, в то время как доменные адреса используются людьми для получения доступа к определенному ресурсу в сети Интернет.

Домен - это часть сети, которая определяет географическое расположение, организационное значение, а также имя, данное владельцем каждого ресурса. Доменное имя читается справа налево. Каждый домен отделяется точкой. Вот примеры доменов некоторых стран и организаций:
de - Германия. ru – Россия. ua - Украина.

IP-адрес и доменный адрес - это разные формы записи одного и того же имени компьютера. В сети Интернет существуют специальные DNS-серверы, благодаря которым доменные имена превращаются в IP-имена.

Url-адрес состоит из имени ресурса (http, ftp и других подобных имен), после которого записываются символы " :// ", далее идут доменные адреса компьютеров и полный путь к файлу на компьютере пользователя, который обладает данной информацией. Раздельный символ между каждым отдельным именем - знак "/". Например, у нас есть адрес страницы, url которой будет выглядеть вот так - http:// ,после чего будет идти имя компьютера в сети kupitdomendeshevo, а потом имя домена, обозначающего, к какому роду организаций принадлежит данный сайт - .com/ .

Вопрос 58.

Интернет Проткол подразумевает набор неких правил управления передачи данных между компьютерными терминалами, серверами, мобильными устройствами и т.д. Именно благодаря таким унифицированным настройкам и стало возможным соединение устройств по всему миру между собой посредством специальных программ или одновременного доступа к одному и тому же ресурсу.



На сегодняшний день известно несколько основных типов -это TCP/IP, UDP, FTP, ICMP, DNS, HTTP и т.д.

Различие состоит только в уровнях назначения. Так, например, существуют физические уровни (создание соединения при помощи витой пары или оптоволокна), ARP-уровень, включающий драйверы устройств, сетевой уровень (стандартные протоколы IP и ICMP), транспортный уровень (TCP и UDP), а также прикладной, куда входят протоколы типа HTTP, FTP, DNS, NFS и т.д.

Стек TCP/IP.

Стек TCP/IP – это набор иерархически упорядоченных сетевых протоколов. Название стек получил по двум важнейшим протоколам – TCP (Transmission Control Protocol) и IP (Internet Protocol). Помимо них в стек входят ещё несколько десятков различных протоколов. В настоящее время протоколы TCP/IP являются основными для Интернета, а также для большинства корпоративных и локальных сетей.

В операционной системе Microsoft Windows Server 2003 стек TCP/IP выбран в качестве основного, хотя поддерживаются и другие протоколы (например, стек IPX/SPX, протокол NetBIOS).

Стек протоколов TCP/IP обладает двумя важными свойствами:

· платформонезависимостью, т. е. возможна его реализация на самых разных операционных системах и процессорах;

· открытостью, т. е. стандарты, по которым строится стек TCP/IP, доступны любому желающему.

59- Поисковые службы в интернете. Технологии информационного поиска в интернете. Построение запросов в поисковых службах.

Поисковые инструменты - это особое программное обеспечение, основная цель которого – обеспечить наиболее оптимальный и качественный поиск информации для пользователей Интернета. Поисковые инструменты размещаются на специальных веб-серверах, каждый из которых выполняет определенную функцию:

1. Анализ веб-страниц и занесение результатов анализа на тот или иной уровень базы данных поискового сервера.



2. Поиск информации по запросу пользователя.

3. Обеспечение удобного интерфейса для поиска информации и просмотра результата поиска пользователем.

Приемы работы, используемые при работе с теми или другими поисковыми инструментами, практически одинаковы. Перед тем как перейти к их обсуждению, рассмотрим следующие понятия:

1. Интерфейс поискового инструмента представлен в виде страницы с гиперссылками, строкой подачи запроса (строкой поиска) и инструментами активизации запроса.

2. Индекс поисковой системы – это информационная база, содержащая результат анализа веб-страниц, составленная по определенным правилам.

3. Запрос – это ключевое слово или фраза, которую вводит пользователь в строку поиска. Для формирования различных запросов используются специальные символы ("", ~), математические символы (*, +, ?).

Схема поиска информации в сети Интернет проста. Пользователь набирает ключевую фразу и активизирует поиск, тем самым получает подборку документов по сформулированному (заданному) запросу. Этот список документов ранжируется по определенным критериям так, чтобы вверху списка оказались те документы, которые наиболее соответствуют запросу пользователя. Каждый из поисковых инструментов использует различные критерии ранжирования документов, как при анализе результатов поиска, так и при формировании индекса (наполнении индексной базы данных web-страниц).

Таким образом, если указать в строке поиска для каждого поискового инструмента одинаковой конструкции запрос, можно получить различные результаты поиска. Для пользователя имеет большое значение, какие документы окажутся в первых двух-трех десятках документов по результатам поиска и на сколько эти документы соответствуют ожиданиям пользователя.

Большинство поисковых инструментов предлагают два способа поиска – simple search (простой поиск) и advanced search (расширенный поиск) с использованием специальной формы запроса и без нее. Рассмотрим оба вида поиска на примере англоязычной поисковой машины.

Например, AltaVista удобно использовать для произвольных запросов, «Something about online degrees in information technology», тогда как поисковый инструмент Yahoo позволяет получать мировые новости, информацию о курсе валют или прогнозе погоды.

Освоение критериев уточнения запроса и приемов расширенного поиска, позволяет увеличивать эффективность поиска и достаточно быстро найти необходимую информацию. Прежде всего, увеличить эффективность поиска Вы можете за счет использования в запросах логических операторов (операций) Or, And, Near, Not, математических и специальных символов. С помощью операторов и/или символов пользователь связывает ключевые слова в нужной последовательности, чтобы получить наиболее адекватный запросу результат поиска.

60-Особенности HTML документа: гипертекст, гиперссылки внутренние и внешние. Вставка гиперссылок в Word.

HTML (HyperText Markup Language) - язык разметки гипертекста - предназначен для создания Web-страниц.
Под гипертекстом в этом случае понимается текст, связанный с другими текстами указателями-ссылками.

HTML представляет собой достаточно простой набор кодов, которые описывают структуру документа. HTML позволяет выделить в тексте отдельные логические части (заголовки, абзацы, списки и т.д.), поместить на Web-страницу подготовленную фотографию или картинку, организовать на странице ссылки для связи с другими документами.

HTML не задает конкретные и точные атрибуты форматирования документа. Конкретный вид документа окончательно определяет только программа-броузер на компьютере пользователя Интернета.
HTML также не является языком программирования, но web-страницы могут включать в себя встроенные программы-скрипты на языках Javascript и Visual Basic Script и программы-апплеты на языке Java .

Основными компонентами HTML являются:

· Тег (tag). Тег HTML это компонент, который командует Web- броузеру выполнить определенную задачу типа создания абзаца или вставки изображения.

· Атрибут (или аргумент ). Атрибут HTML изменяет тег. Например, можно выровнять абзац или изображение внутри тега.

· Значение . Значения присваиваются атрибутам и определяют вносимые изменения. Например, если для тега используется атрибут выравнивания, то можно указать значение этого атрибута. Значения могут быть текстовыми, типа left или right , а также числовыми, как например ширина и высота изображения, где значения определяют размер изображения в пикселях.

Теги представляют собой зарезервированные последовательности символов, начинающиеся с < (знака меньше) и заканчивающиеся > (знаком больше).
Закрытие тега отличается от открытия только наличием символа "/" .

Предположим, у нас есть гипотетический атрибут форматирования текста, управляемый кодом , и мы хотим применить его к словам "Это мой текст".
HTML-последовательность кодов и собственно текста будет выглядеть так:

Это мой текст

Теги могут вкладываться друг в друга иерархически, но без пересечений, то есть допустимо вложение вида , но не .
Действие вложенных тагов объединяется.Например, если внутрь тега, создающего жирное начертание шрифта, вложен тег курсива, то в результате получится жирный курсив.

ТЕМА №8

8. Локальные вычислительные сети. 1

Введение. 1

8.1. Аппаратные средства ЛВС.. 2

8.2. Топология ЛВС.. 4

8.3. Принципы управления. 6

8.3. Принципы управления. 7

8.4. Технология «клиент-сервер». 8

8.5. Программное обеспечение технологии «клиент-сервер». 9

8.6. Вход в сеть. 11

Организация сетевого доступа к ресурсам компьютера. 12

Организация доступа к файлам и принтерам компьютера. 12

Организация защиты сетевых ресурсов. 13

Настройка компьютера для работы в сети. 16

Отображение сетевого ресурса. 18

Использование сетевого принтера. 19

Разрешение вопросов, возникающих при работе в сети. 21

8.7. Практические упражнения. 23

Упражнение 1. Работа с Сетевым окружением.. 23

Упражнение 2. Копирование с сетевого ресурса. 23

Упражнение 3. Организация сетевого доступа к ресурсу. 24

8.8. Контрольные вопросы.. 24

8.10. Библиографический список. 24


Локальные вычислительные сети

Введение

Компьютерная сеть – это совокупность компьютеров и различных устройств, обеспечивающих информационный обмен между компьютерами в сети без использования каких-либо промежуточных носителей информации.

Средства передачи данных в общем случае могут состоять из следующих элементов: связных компьютеров, каналов связи (спутниковых, телефонных, цифровых, волоконно-оптических, радио- и других), коммутирующей аппаратуры, ретрансляторов, различного рода преобразователей сигналов и других элементов и устройств.

Архитектура сети ЭВМ определяет принципы построения и функционирования аппаратного и программного обеспечения элементов сети.

Современные сети можно классифицировать по различным признакам:

Территориальной распространенности;

Ведомственной принадлежности;

Скорости передачи информации;

Топологии;

Назначению;

Перечню предоставляемых услуг;

Принципам управления (централизованные и децентрализованные);

Методам коммутации (без коммутации, телефонная коммутация, коммутация цепей, сообщений, пакетов и дейтаграмм и т. д.);

Типам среды передачи и т. д.

По территориальной распространенности сети могут быть локальными, глобальными, и региональными. Локальные – это сети, перекрывающие территорию не более 10 м 2 , региональные – расположенные на территории города или области, глобальные на территории государства или группы государств, например, всемирная сеть Internet.

По принадлежности различают ведомственные и государственные сети. Ведомственные принадлежат одной организации и располагаются на ее территории. Государственные сети – сети, используемые в государственных структурах.

По скорости передачи информации компьютерные сети делятся на низко-, средне- и высокоскоростные.

По типу среды передачи разделяются на сети коаксиальные, на витой паре, оптоволоконные, с передачей информации по радиоканалам, в инфракрасном диапазоне.

Компьютеры могут соединяться кабелями, образуя различную топологию сети (звездная, шинная, кольцевая и др.).

Следует различать компьютерные сети и сети терминалов (терминальные сети). Компьютерные сети связывают компьютеры, каждый из которых может работать и автономно. Терминальные сети обычно связывают мощные компьютеры (майнфреймы), а в отдельных случаях и ПК с устройствами (терминалами), которые могут быть достаточно сложны, но вне сети их работа или невозможна, или вообще теряет смысл. Например, сеть банкоматов или касс по продажи авиабилетов. Строятся они на совершенно иных, чем компьютерные сети, принципах и даже на другой вычислительной технике.

Сети условно разделяют налокальные и глобальные в зависимости от удаленности компьютеров. В классификации сетей существует два основных термина: LAN и WAN.

LAN (Local Area Network) – локальные сети, имеющие замкнутую инфраструктуру до выхода на поставщиков услуг. Термин «LAN» может описывать и маленькую офисную сеть, и сеть уровня большого завода, занимающего несколько сотен гектаров. Зарубежные источники дают даже близкую оценку – около шести миль (10 км) в радиусе; использование высокоскоростных каналов.

Локальная вычислительная сеть (ЛВС) представляет собой коммуникационную систему, позволяющую совместно использовать ресурсы компьютеров, подключенных к сети, такие, как принтеры, плоттеры, диски, модемы, приводы CD-ROM и другие периферийные устройства. В локальных вычислительных сетях компьютеры расположены на расстоянии до нескольких километров и обычно соединены при помощи скоростных линий связи со скоростью обмена от 1 до 10 и более Мбит/с (не исключается случаи соединения компьютеров и с помощью низкоскоростных телефонных линий). ЛВС обычно развертываются в рамках некоторой организации (корпорации, учреждения). Поэтому их иногда называют корпоративными системами или сетями. Компьютеры при этом, как правило, находятся в пределах одного помещения, здания или соседних зданий.

WAN (Wide Area Network) – глобальная сеть, покрывающая большие географические регионы, включающие в себя как локальные сети, так и прочие телекоммуникационные сети и устройства. Пример WAN – сети с коммутацией пакетов (Frame Relay), через которую могут «разговаривать» между собой различные компьютерные сети.

Произвольнаяглобальная сеть может включать другие глобальные сети, локальные сети, а также отдельно подключаемые к ней компьютеры (удаленные компьютеры) или отдельно подключаемые устройства ввода-вывода. Глобальные сети бывают четырех основных видов: городские, региональные, национальные и транснациональные . В качестве устройств ввода-вывода могут использоваться, например, печатающие и копирующие устройства, кассовые и банковские аппараты, дисплеи (терминалы) и факсы. Перечисленные элементы сети могут быть удалены друг от друга на значительное расстояние.

Функции программного обеспечения компьютера, установленного в сети, условно можно разделить на две группы: управление ресурсами самого компьютера (в том числе и в интересах решения задач для других компьютеров) и управление обменом с другими компьютерами (сетевые функции).

Собственными ресурсами компьютера традиционно управляет ОС. Функции сетевого управления реализует сетевое ПО, которое может быть выполнено как в виде отдельных пакетов сетевых программ, так и в виде сетевой ОС.

Классификация ЛКС

Локальные вычислительные сети подразделяются на два кардинально различающихся класса: одноранговые (одноуровневые или Peer to Peer) сети и иерархические (многоуровневые).

Одноранговые сети.

Одноранговая сеть представляет собой сеть равноправных компьютеров, каждый из которых имеет уникальное имя (имя компьютера) и обычно пароль для входа в него во время загрузки ОС. Имя и пароль входа назначаются владельцем ПК средствами ОС.

Иерархические сети.

В иерархических локальных сетях имеется один или несколько специальных компьютеров – серверов, на которых хранится информация, совместно используемая различными пользователями.

Сервер в иерархических сетях – это постоянное хранилище разделяемых ресурсов. Сам сервер может быть клиентом только сервера более высокого уровня иерархии. Поэтому иерархические сети иногда называются сетями с выделенным сервером. Серверы обычно представляют собой высокопроизводительные компьютеры, возможно, с несколькими параллельно работающими процессорами, с винчестерами большой емкости, с высокоскоростной сетевой картой (100 Мбит/с и более). Компьютеры, с которых осуществляется доступ к информации на сервере, называются станциями или клиентами.

По назначению ЛКС классифицируются :

· Сети терминального обслуживания. В них включается ЭВМ и периферийное оборудование, используемое в монопольном режиме компьютером, к которому оно подключается, или быть общесетевым ресурсом.

· Сети, на базе которых построены системы управления производством и учрежденческой деятельности. Они объединяются группой стандартов МАР/ТОР. В МАР описываются стандарты, используемые в промышленности. ТОР описывают стандарты для сетей, применяемых в офисных сетях.

· Сети, которые объединяют системы автоматизации, проектирования. Рабочие станции таких сетей обычно базируются на достаточно мощных персональных ЭВМ, например фирмы Sun Microsystems.

· Сети, на базе которых построены распределенные вычислительные системы.

По признаку скорости – на низкоскоростные (до 10 Мбит/с), среднескоростные (до 100 Мбит/с), высокоскоростные (свыше 100 Мбит/с).

По типу метода доступа – на случайные, пропорциональные, гибридные;

По типу физической среды передачи – на витую пару, коаксиальный или оптоволоконный кабель, инфракрасный канал, радиоканал.

Аппаратные средства ЛВС

Основными аппаратными компонентами ЛВС являются:

1. Рабочие станции (PC) – это, как правило, персональные ЭВМ, которые являются рабочими местами пользователей сети.

Требования, предъявляемые к составу PC, определяются характеристиками решаемых в сети задач, принципами организации вычислительного процесса, используемой ОС и некоторыми другими факторами. Иногда в PC, непосредственно подключенной к сетевому кабелю, могут отсутствовать накопители на магнитных дисках. Такие PC называютбездисковыми рабочими станциями. Однако в этом случае для загрузки в PC операционной системы с файл-сервера нужно иметь в сетевом адаптере этой станции микросхему дистанционной загрузки. Последняя поставляется отдельно, намного дешевле накопителей и используется как расширение базовой системы ввода-вывода BIOS. В микросхеме записана программа загрузки ОС в оперативную память PC. Основным преимуществом бездисковых PC является низкая стоимость, а также высокая защищенность от несанкционированного проникновения в систему пользователей и компьютерных вирусов. Недостаток бездисковой PC заключается в невозможности работать в автономном режиме (без подключения к серверу), а также иметь свои собственные архивы данных и программ.

2. Серверы в ЛВС выполняют функции распределения сетевых ресурсов. Обычно его функции возлагают на достаточно мощный ПК, мини-ЭВМ, большую ЭВМ или специальную ЭВМ-сервер. В одной сети может быть один или несколько серверов. Каждый из серверов может быть отдельным или совмещенным с PC. В последнем случае не все, а только часть ресурсов сервера оказывается общедоступной.

При наличии в ЛВС нескольких серверов каждый из них управляет работой подключенных к нему PC. Совокупность компьютеров сервера и относящихся к нему PC часто называютдоменом . Иногда в одном домене находится несколько серверов. Обычно один из них является главным, а другие – выполняют роль резерва (на случай отказа главного сервера) или логического расширения основного сервера.

Важнейшими параметрами, которые должны учитываться при выборе компьютера-сервера, являются тип процессора, объем оперативной памяти, тип и объем жесткого диска и тип дискового контроллера. Значения указанных характеристик, так же как и в случае PC, существенно зависят от решаемых задач, организации вычислений в сети, загрузки сети, используемой ОС и других факторов.

Оперативная память в сервере используется не только для собственно выполнения программ, а и для размещения в ней буферов, дискового ввода вывода. Определив оптимально количество и размер буферов, можно существенно ускорить выполнение операций ввода-вывода.

Объем выбираемого накопителя должен быть достаточным для размещения на нем необходимого программного обеспечения (особенно при бездисковых PC), а также совместно.используемых файлов и баз данных.

3. Линии передачи данных соединяют PC и серверы в районе размещения сети друг с другом. В качестве линий передачи данных чаще всего выступают кабели . Наибольшее распространение получили кабели на витой паре (рис. 8.1,а) и коаксиальный кабель (рис. 8.1,б). Более перспективным и прогрессивным является оптоволоконный кабель. В последнее время стали появляться беспроводные сети, средой передачи данных в которых является радиоканал. В подобных сетях компьютеры устанавливаются на небольших расстояниях друг от друга: в пределах одного или нескольких соседних помещений.


а) б)
Рис. 8.1. Сетевые кабели: а –кабель на основе скрученных пар (витая пара);

б – коаксиальный кабель

4. Сетевые адаптеры (интерфейсные платы) используются для подключения компьютеров к кабелю (рис. 8.2). Функцией сетевого адаптера является передача и прием сетевых сигналов из кабеля. Адаптер воспринимает команды и данные от сетевой операционной системы (ОС), преобразует эту информацию в один из стандартных форматов и передает ее в сеть через подключенный к адаптеру кабель.

Рис. 8.2. Сетевой адаптер

Используемые сетевые адаптеры имеют три основные характеристики:тип шины компьютера, к которому они подключаются (ISA, EISA, Micro Channel и пр.),разрядность (8, 16, 32, 64) итопология образуемой сети (Ethernet, Arcnet, Token-Ring).

Кдополнительному оборудованию ЛВС относят источники бесперебойного питания, модемы, трансиверы, репитеры, а также различные разъемы (коннекторы, терминаторы).

Источники бесперебойного питания (ИБП) служат для повышения устойчивости работы сети и обеспечения сохранности данных на сервере. При сбоях по питанию ИБП, подключаемый к серверу через специальный адаптер, выдает сигнал серверу, обеспечивая в течение некоторого времени стабильное напряжение. По этому сигналу сервер выполняет процедуру завершения своей работы, которая исключает потерю данных. Основным критерием выбора ИБП является мощность, которая должна быть не меньше мощности, потребляемой подключаемым к ИБП сервером.

Трансивер – это устройство подключения PC к толстому коаксиальному кабелю.Репитер предназначен для соединения сегментов сетей.Коннекторы (соединители) необходимы для соединения сетевых адаптеров компьютеров с тонким кабелем, а также для соединения кабелей друг с другом.Терминаторы служат для подключения к открытым кабелям сети, а также для заземления (так называемые терминаторы с заземлением).

Модем используется в качестве устройства подключения ЛВС или отдельного компьютера к глобальной сети через телефонную связь.

Топология ЛВС

Топология – это конфигурация соединения элементов в сеть. Топология во многом определяет такие важнейшие характеристики сети, как ее надежность, производительность, стоимость, защищенность и т.д.

Одним из подходов к классификации топологий ЛВС является выделение двух основных классов топологий:широковещательных и последовательных.

В широковещательных конфигурациях каждый персональный компьютер передает сигналы, которые могут быть восприняты остальными компьютерами. К таким конфигурациям относятся топологии «общая шина», «дерево», «звезда с пассивным центром». Сеть типа «звезда с пассивным центром» можно рассматривать как разновидность «дерева», имеющего корень с ответвлением к каждому подключенному устройству.

В последовательных конфигурациях каждый физический подуровень передает информацию только одному персональному компьютеру. Примерами последовательных конфигураций являются: произвольная (произвольное соединение компьютеров), иерархическая, «кольцо», «цепочка», «звезда с интеллектуальным центром», «снежинка» и др.

Коротко рассмотрим три наиболее широко распространенные (базовые) топологии ЛВС: «звезда», «общая шина» и «кольцо».

В случаетопологии «звезда» каждый компьютер через специальный сетевой адаптер подключается отдельным кабелем к центральному узлу (рис. 8.3). Центральным узлом служит пассивный соединитель или активный повторитель.


Рис. 8.3. Топология «звезда»

Недостатком такой топологии является низкая надежность, так как выход из строя центрального узла приводит к остановке всей сети, а также обычно большая протяженность кабелей (это зависит от реального размещения компьютеров). Иногда для повышения надежности в центральном узле ставят специальное реле, позволяющее отключать вышедшие из строя кабельные лучи.

Топология «общая шина» предполагает использование одного кабеля, к которому подключаются все компьютеры. Информация по нему передается компьютерами поочередно (рис. 8.4).


Рис. 8.4. Топология «общая шина»

Достоинством такой топологии является, как правило, меньшая протяженность кабеля, а также более высокая надежность чем у «звезды», так как выход из строя отдельной станции не нарушает работоспособности сети в целом. Недостатки состоят в том, что обрыв основного кабеля приводит к неработоспособности всей сети, а также слабая защищенность информации в системе на физическом уровне, так как сообщения, посылаемые одним компьютером другому, в принципе, могут быть приняты и на любом другом компьютере.

Прикольцевой топологии данные передаются от одного компьютера другому по эстафете (рис. 8.5). Если некоторый компьютер получает данные, предназначенные не ему, он передает их дальше по кольцу. Адресат предназначенные ему данные никуда не передает.


Рис. 8.5. Кольцевая топология

Достоинством кольцевой топологии является более высокая надежность системы при разрывах кабелей, чем в случае топологии с общей шиной, так как к каждому компьютеру есть два пути доступа. К недостаткам топологии следует отнести большую протяженность кабеля, невысокое быстродействие по сравнению со «звездой» (но соизмеримое с «общей шиной»), а также слабую защищенность информации, как и при топологии с общей шиной.

Топология реальной ЛВС может в точности повторять одну из приведенных выше или включать их комбинацию. Структура сети в общем случае определяется следующими факторами: количеством объединяемых компьютеров, требованиями по надежности и оперативности передачи информации, экономическими соображениями и т. д.

Принципы управления

Существует два основных принципа управления в локальных сетях: централизация и децентрализация.

В сетях сцентрализованным управлением функции управления обменом данными возложены на файл-серверы. Файлы, хранящиеся на сервере, доступны рабочим станциям сети. Одна PC к файлам другой PC доступа не имеет. Правда, обмен файлами между PC может происходить и в обход основных путей с помощью специальных программ.

Существует множество сетевых ОС, реализующих централизованное управление. Среди них Microsoft Windows 2000 Server, Novell NetWare , Microsoft Lan Manager, OS/2 Warp Server Advanced, VINES и др.

Преимуществом централизованных сетей является высокая защищенность сетевых ресурсов от несанкционированного доступа, удобство администрирования сети, возможность создания сетей с большим числом узлов. Основной недостаток состоит в уязвимости системы при нарушении работоспособности файл-сервера (это преодолевается при наличии нескольких серверов или в результате принятия некоторых других мер), а также в предъявлении довольно высоких требований к ресурсам серверов.

В централизованной схемеуправления все вычислительные ресурсы, данные и программы их обработки были сконцентрированы в одной ЭВМ. Пользователи имели доступ к ресурсам машины с помощью терминалов (дисплеев). Терминалы подключались к ЭВМ через интерфейсные соединения или удаленные телефонные линии связи (так называемые удаленные терминалы). Основной функцией терминала было отображение информации, представляемой пользователю. К достоинствам этой схемы можно отнести удобство администрирования, модификации программного обеспечения и защиты информации. Недостатком схемы является ее низкая надежность (выход из строя ЭВМ влечет за собой разрушение вычислительного процесса), сложность масштабирования (наращивания мощности) модификации аппаратного и программного обеспечения, как правило, резкое снижение оперативности при увеличении числа пользователей системы и др.

Децентрализованные (одноранговые) сети не содержат в своем составе выделенных серверов. Функции управления сетью в них поочередно передаются от одной PC к другой. Ресурсы одной PC (диски, принтеры и другие устройства) оказываются доступными другим PC.

Наиболее распространенными программными продуктами, позволяющими строить одноранговые сети, являются следующие программы и пакеты: Novell NetWare Lite, Windows for Workgroups, Artisoft LANtastic, LANsmart, Invisible Software NET-30 и др. Все они могут работать под управлением DOS. Для одноранговой сети могут быть использованы также ОС Windows 2000 Prof.

Развертывание одноранговой сети для небольшого числа PC часто позволяет построить более эффективную и живучую распределенную вычислительную среду. Сетевое программное обеспечение в них является более простым по сравнению с централизованными сетями. Здесь не требуется установка файл-сервера (как компьютера, так и соответствующих программ), что существенно удешевляет систему. Однако такие сети слабее с точки зрения защиты информации и администрирования.

Технология «клиент-сервер»

Технология «клиент-сервер» пришла на смену централизованной схеме управления вычислительным процессом на базе средней или большой ЭВМ (мэйнфрейма).

В архитектуре клиент-сервера место терминала заняла ПЭВМ (клиентская), а мэйнфрейма – один или несколько мощных компьютеров, специально выделенных для решения общих задач обработки информации (компьютеры-серверы). Достоинством этой модели является высокая живучесть и надежность вычислительной системы, легкость масштабирования, возможность одновременной работы пользователя с несколькими приложениями, высокая оперативность обработки информации, обеспечение пользователя высококачественным интерфейсом и т. д.

Заметим, что эта весьма перспективная и далеко не исчерпавшая себя технология получила свое дальнейшее развитие. Совсем недавно стали говорить о технологии intranet , которая появилась в результате перенесения идей сети Internet в среду корпоративных систем. В отличие от технологии «клиент-сервер» эта технология ориентирована не на данные, а на информацию в ее окончательно готовом к потреблению виде. Технология Intranet объединяет в себе преимущества двух предыдущих схем. Вычислительные системы, построенные на ее основе, имеют в своем составе центральные серверы информации и распределенные компоненты представления информации конечному пользователю (программы-навигаторы, или броузеры). Детальное рассмотрение этой технологии выходит за рамки настоящего пособия.

При взаимодействии любых двух объектов в сети всегда можно выделить сторону, предоставляющую некоторый ресурс (сервис, услугу), и сторону, потребляющую этот ресурс. Потребителя ресурса традиционно называютклиентом, а поставщика –сервером.

В качестве ресурса можно рассматривать аппаратный компонент (диск, принтер, модем, сканер и т. д.), программу, файл, сообщение, информацию или даже ЭВМ в целом. Отсюда происхождение множества терминов: файл-сервер или диск-сервер, принт-сервер или сервер печати, сервер сообщений, SQL-сервер (программа обработки запросов к базе данных, сформулированных на языке SQL), компьютер-сервер и т. д. Очевидно, все эти серверы имеют соответствующих клиентов.

С точки зрения программного обеспечения, технология «клиент-сервер» подразумевает наличие программ-клиентов и программ-серверов. Клиентскими программами обычно являются такие программы, как текстовые и табличные процессоры. В роли серверных программ чаще всего выступают системы управления базами данных. Примером типичной пары программ вида «клиент-сервер» можно считать программу текстового процессора, обрабатывающую документ, в котором содержится таблица с информацией из базы данных.

Некоторая программа, выполняемая в сети, по отношению к одним программам может выступать в роли клиента и в то же время являться сервером для других программ. Более того, за некоторый интервал времени роли клиента и сервера между одними и теми же программами могут меняться.

Разновидностью более сложных клиент-серверных моделей являетсятрехзвенная модель «сервера приложений»AS-модель (Application Server). Эта модель описывает процесс функционирования сетей, использующих базы данных. Согласно as-модели, каждая их трех основных функций (управление данными, прикладная обработка и представление информации конечному пользователю) реализуется на отдельном компьютере.

8.5. Программное обеспечение технологии
«клиент-сервер»

Для успешного применения технологии «клиент-сервер» должно использоваться соответствующее программное обеспечение, включающее клиентскую и серверную части. В частности, широко используемый пакет Microsoft Office представляет собой комплекс программдля клиентского компьютера. В его состав входят: текстовый процессор Word, табличный процессор Excel, система подготовки презентаций PowerPoint, система управления базами данных Access и программа управления информацией Outlook.

В связи с успехом распространения этого пакета корпорация Microsoft решила собрать воедино комплекс программдля сервера – так появился пакет MS BackOffice.

В состав названного пакета входят следующие компоненты:

· Windows NT Server – сетевая операционная система;

· System Management Server – система администрирования сети;

· SQL Server – сервер управления базами данных;

· SNA Server – сервер для соединения с хост-компьютерами;

· Exchange Server – сервер системы электронной почты;

· Internet Information Server – сервер для работы с Internet.

Windows 2000 Server способна обеспечить совместное использование файлов, печатающих устройств, предоставить услуги по соединению с рабочими станциями (клиентскими компьютерами) и другой сервис.

Существуют следующие две разновидности Windows 2000:

· Windows 2000 Workstation предназначена для использования на автономном компьютере ;

· Windows 2000 Server предназначена для использования в качестве сетевой операционной системы и может использоваться на рабочей станции для реализации дополнительных возможностей.

Windows NT Server целесообразно использовать в случаях, когда предполагается наличие нескольких процессоров (обычно до четырех). Кроме того, Windows NT Server обеспечивает совместное использование ресурсов многими пользователями, возможность соединения с удаленными сетями через сервис удаленного доступа – RAS (Remote Access Service), а также через средства связи с сетями других фирм (Novell, Digital Pathworks и Apple).

System Management Server (SMS) позволяет сетевому администратору централизованно управлять всей сетью. При этом обеспечивается возможность администрирования каждого компьютера, подключенного к сети, включая установленное на нем программное обеспечение. SMS предоставляет следующий сервис:

· управление инвентаризацией программного и аппаратного обеспечения;

· автоматизация установки и распространения программного обеспечения, включая его обновление;

· удаленное устранение неисправностей и предоставление полного контроля администратору за клавиатурой, мышью и экранами всех компьютеров в сети, работающих под управлением MS-DOS или Windows;

· управление сетевыми приложениями.

SQL Server представляет собой систему управления реляционными базами данных, использующую принципы технологии «клиент-сервер». MS SQL Server поддерживает систему обработки транзакций, систему сохранения ссылочной целостности, механизм распределенных транзакций, тиражирование данных.

SNAServer обеспечивает возможность связи с IBM AS/400 и мэйнфреймами IBM (EC ЭВМ). Этот продукт позволяет нескольким настольным ПЭВМ, работающим под управлением MS-DOS, Windows, Macintosh, Unix или OS/2, «видеть» хост-компьютеры.

ExchangeServer обеспечивает средства передачи и приема сообщений в информационной сети организации. Этот сервис включает электронную почту (E-mail) и обмен информационными сообщениями для рабочих групп. Microsoft Exchange Server построен на принципах технологии «клиент-сервер» и масштабируется в соответствии с возрастанием вычислительных возможностей сети.

Internet Information Server обеспечивает возможность создания Web-, FTP- и Gopher-серверов для сети Internet, поддерживает управление ими с помощью встроенной программы Internet Service Manager.

Вход в сеть

Перед окончанием загрузки Windows предлагает ввести «имя пользователя» и пароль (рис. 8.6).

Рис. 8.6. Ввод сетевого пароля

При этом выполняются следующие действия:

1. Принимаемым по умолчанию именем, показываемым в текстовой строке Имя пользователя , является имя компьютера, введенное при настройке. При желании можно изменить входное имя на что-либо другое, например, на ваше имя.

2. Введите в строке Пароль пароль, чтобы предотвратить доступ других пользователей к вашей копии Windows. При вводе пароля буквы заменяются звездочками, чтобы никто не подсмотрел пароль. Если вы не будете пользоваться паролем, эту строку оставьте пустой.

3. Щелкните на кнопке OK . Если вы нажмете кнопку Отмена , Windows Professional не позволит загрузить операционную систему. Т.е. без правильного указания имени пользователя и пароля в Windows работа пользователя невозможна.

Если при запуске Windows вам не было предложено ввести сетевой пароль, а на рабочем столе Windows отсутствует значок Сетевое окружение , это означает, что компьютер не настроен для работы в сети.

Если вы работаете без сети или хотите войти в сеть под другим именем выполните следующую процедуру.

Для Windows:

1. Нажмите кнопку Пуск и выберите пункт Завершение сеанса....

2. Нажмите кнопкуОк .

3. После появления окна Ввод сетевого пароля выполните вышеуказанные в этом разделе действия.

Работа с документом или программой, расположенной на другом компьютере, практически ничем не отличается от работы с аналогичными ресурсами своего компьютера.

Рис. 8.7. Значок Мое сетевое окружение в Windows .

В Windows 2000 данный значок называется Мое сетевое окружение (рис. 8.7). Затем дважды щелкните на значке нужного компьютера. Если нужного компьютера нет в списке, воспользуйтесь значком Вся сеть . Откройте эту папку для просмотра всех рабочих групп, являющихся частями полной сети, к которой подключен ваш компьютер. (Если вы подключены только к своей рабочей группе, вы увидите только одну эту рабочую группу.) При открытии папок рабочих групп выводятся имена всех компьютеров, образующих каждую рабочую группу. Дважды щелкните на искомой папке.

Для каждого компьютера видны только те ресурсы, к которым владелец или системный администратор разрешил доступ.

Департамент общего и профессионального образования Брянской области

Государственное образовательное учреждение

Клинцовский текстильный техникум

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ АВТОМАТИЗИРОВАННЫХ ИНФОРМАЦИОННЫХ СИСТЕМ

Технология «Клиент – сервер»

Студент гр. А-90______________________(Петроченко А.О.)

Преподаватель _______________________ (Широкова А.Л.)

Клинцы – 2011

1. Серверы. Основные понятия серверов

2. Модель клиент-сервер

3. Классификация стандартных серверов

4. Вывод

1. Серверы. Основные понятия серверов

Сервер (от англ. server, обслуживающий). В зависимости от предназначения существует несколько определений понятия сервер.

1. Сервер (сеть) - логический или физический узел сети, обслуживающий запросы к одному адресу и/или доменному имени (смежным доменным именам), состоящий из одного или системы аппаратных серверов, на котором выполняются один или система серверных программ

2. Сервер (программное обеспечение) - программное обеспечение, принимающее запросы от клиентов (в архитектуре клиент-сервер).

3. Сервер (аппаратное обеспечение) - компьютер (или специальное компьютерное оборудование) выделенный и/или специализированный для выполнения определенных сервисных функций.

3. Сервер в информационных технологиях - программный компонент вычислительной системы, выполняющий сервисные функции по запросу клиента, предоставляя ему доступ к определённым ресурсам.

Взаимосвязь понятий. Серверное приложение (сервер) запускается на компьютере, так же называемом "сервер", при этом при рассмотрении топологии сети, такой узел называют "сервером". В общем случае может быть так, что серверное приложение запущено на обычной рабочей станции, или серверное приложение, запущенное на серверном компьютере в рамках рассматриваемой топологии выступает в роли клиента (т.е. не является сервером с точки зрения сетевой топологии).

2. Модель клиент-сервер

Клиент-серверная система характеризуется наличием двух взаимодействующих самостоятельных процессов - клиента и сервера, которые, в общем случае, могут выполняться на разных компьютерах, обмениваясь данными по сети.

Процессы, реализующие некоторую службу, например службу файловой системы или базы данных, называются серверами (servers). Процессы, запрашивающие службы у серверов путем посылки запроса и последующего ожидания ответа от сервера, называются клиентами (clients) .

По такой схеме могут быть построены системы обработки данных на основе СУБД, почтовые и другие системы. Мы будем говорить о базах данных и системах на их основе. И здесь удобнее будет не просто рассматривать клиент-серверную архитектуру, а сравнить ее с другой - файл-серверной.

В файл-серверной системе данные хранятся на файловом сервере (например, Novell NetWare или Windows NT Server), а их обработка осуществляется на рабочих станциях, на которых, как правило, функционирует одна из, так называемых, "настольных СУБД" - Access, FoxPro, Paradox и т.п..

Приложение на рабочей станции "отвечает за все" - за формирование пользовательского интерфейса, логическую обработку данных и за непосредственное манипулирование данными. Файловый сервер предоставляет услуги только самого низкого уровня - открытие, закрытие и модификацию файлов. Обратите внимание - файлов, а не базы данных. Система управления базами данных расположена на рабочей станции.

Таким образом, непосредственным манипулированием данными занимается несколько независимых и несогласованных между собой процессов. Кроме того, для осуществления любой обработки (поиск, модификация, суммирование и т.п.) все данные необходимо передать по сети с сервера на рабочую станцию (см. рис. Сравнение файл-серверной и клиент-серверной моделей)

Рис. Сравнение файл-серверной и клиент-серверной моделей

В клиент-серверной системе функционируют (как минимум) два приложения - клиент и сервер, делящие между собой те функции, которые в файл-серверной архитектуре целиком выполняет приложение на рабочей станции. Хранением и непосредственным манипулированием данными занимается сервер баз данных, в качестве которого может выступать Microsoft SQL Server, Oracle, Sybase и т.п..

Формированием пользовательского интерфейса занимается клиент, для построения которого можно использовать целый ряд специальных инструментов, а также большинство настольных СУБД. Логика обработки данных может выполняться как на клиенте, так и на сервере. Клиент посылает на сервер запросы, сформулированные, как правило, на языке SQL. Сервер обрабатывает эти запросы и передает клиенту результат (разумеется, клиентов может быть много).

Таким образом, непосредственным манипулированием данными занимается один процесс. При этом, обработка данных происходит там же, где данные хранятся - на сервере, что исключает необходимость передачи больших объемов данных по сети.

Что дает архитектура клиент-сервер?

Посмотрим на данную архитектуру с точки зрения потребностей бизнеса. Какие же качества привносит клиент-сервер в информационную систему?

Надежность

Сервер баз данных осуществляет модификацию данных на основе механизма транзакций, который придает любой совокупности операций, объявленных как транзакция, следующие свойства:

  • атомарность - при любых обстоятельствах будут либо выполнены все операции транзакции, либо не выполнена ни одна; целостность данных при завершении транзакции;
  • независимость - транзакции, инициированные разными пользователями, не вмешиваются в дела друг друга;
  • устойчивость к сбоям - после завершения транзакции, ее результаты уже не пропадут.

Механизм транзакций, поддерживаемый сервером баз данных, намного более эффективен, чем аналогичный механизм в настольных СУБД, т.к. сервер централизованно контролирует работу транзакций. Кроме того, в файл-серверной системе сбой на любой из рабочих станций может привести к потере данных и их недоступности для других рабочих станций, в то время, как в клиент-серверной системе сбой на клиенте, практически, никогда не сказывается на целостности данных и их доступности для других клиентов.

Масштабируемость

Масштабируемость - способность системы адаптироваться к росту количества пользователей и объема базы данных при адекватном повышении производительности аппаратной платформы, без замены программного обеспечения.

Общеизвестно, что возможности настольных СУБД серьезно ограничены - это пять-семь пользователей и 30-50 Мб, соответственно. Цифры, разумеется, представляют собой некие средние значения, в конкретных случаях они могут отклоняться как в ту, так и в другую сторону. Что наиболее существенно, эти барьеры нельзя преодолеть за счет наращивания возможностей аппаратуры.

Системы же на основе серверов баз данных могут поддерживать тысячи пользователей и сотни ГБ информации - дайте им только соответствующую аппаратную платформу.

Безопасность

Сервер баз данных предоставляет мощные средства защиты данных от несанкционированного доступа, невозможные в настольных СУБД. При этом, права доступа администрируются очень гибко - до уровня полей таблиц. Кроме того, можно вообще запретить прямое обращение к таблицам, осуществляя взаимодействие пользователя с данными через промежуточные объекты - представления и хранимые процедуры. Так что администратор может быть уверен - никакой слишком умный пользователь не прочитает то, что ему читать неположено.

Гибкость

В приложении, работающем с данными, можно выделить три логических слоя:

  • пользовательского интерфейса ;
  • правил логической обработки (бизнес-правил);
  • управления данными (не следует только путать логические слои с физическими уровнями, о которых речь пойдет ниже).

Как уже говорилось, в файл-серверной архитектуре все три слоя реализуются в одном монолитном приложении, функционирующем на рабочей станции. Поэтому изменения в любом из слоев приводят однозначно к модификации приложения и последующему обновлению его версий на рабочих станциях.

В двухуровневом клиент-серверном приложении, показанном на рисунке выше, как правило, все функции по формированию пользовательского интерфейса реализуются на клиенте, все функции по управлению данными - на сервере, а вот бизнес-правила можно реализовать как на сервере используя механизмы программирования сервера (хранимые процедуры, триггеры, представления и т.п.), так и на клиенте.

В трехуровневом приложении появляется третий, промежуточный уровень, реализующий бизнес-правила, которые являются наиболее часто изменяемыми компонентами приложения (см. рис. Трехуровневая модель клиент-серверного приложения )

Рис. Трехуровневая модель клиент-серверного приложения

Наличие не одного, а нескольких уровней позволяет гибко и с минимальными затратами адаптировать приложение к изменяющимся требованиям бизнеса.

Попробуем все вышеизложенное проиллюстрировать на маленьком примере. Предположим, в некоей организации изменились правила расчета заработной платы (бизнес-правила) и требуется обновить соответствующее программное обеспечение.

1) В файл-серверной системе мы "просто" вносим изменения в приложение и обновляем его версии на рабочих станциях. Но это "просто" влечет за собой максимальные трудозатраты.

2) В двухуровневой клиент-серверной системе, если алгоритм расчета зарплаты реализован на сервере в виде правила расчета зарплаты, его выполняет сервер бизнес-правил, выполненный, например, в виде OLE-сервера, и мы обновим один из его объектов, ничего не меняя ни в клиентском приложении, ни на сервере баз данных.

Дальнейшие распределенные вычислительные системы мы будем создавать с использованием технологии клиент-сервер. Эта технология обеспечивает единый подход к обмену информацией между устройствами, будь это компьютеры, расположенные на разных континентах и связанные через интернет или платы Ардуино, лежащие на одном столе и соединенные витой парой.

В дальнейших уроках я планирую рассказывать о создании информационных сетей с использованием:

  • контроллеров локальной сети Ethernet;
  • WiFi модемов;
  • GSM модемов;
  • Bluetooth модемов.

Все эти устройства осуществляют обмен данными, используя модель клиент-сервер. По такому же принципу происходит передача информации в сети Интернет.

Я не претендую на полное освещение этой объемной темы. Я хочу дать минимум информации, необходимой для понимания последующих уроков.

Технология клиент-сервер.

Клиент и сервер это программы, расположенное на разных компьютерах, в разных контроллерах и других подобных устройствах. Между собой они взаимодействуют через вычислительную сеть с помощью сетевых протоколов.

Программы-серверы являются поставщиками услуг. Они постоянно ожидают запросы от программ-клиентов и предоставляют им свои услуги (передают данные, решают вычислительные задачи, управляют чем-либо и т.п.). Сервер должен быть постоянно включен и “прослушивать” сеть. Каждая программа-сервер, как правило, может выполнять запросы от нескольких программ-клиентов.

Программа-клиент является инициатором запроса, который может произвести в любой момент. В отличие от сервера клиент не должен быть постоянно включен. Достаточно подключиться в момент запроса.

Итак, в общих чертах система клиент-сервер выглядит так:

  • Есть компьютеры, контроллеры Ардуино, планшеты, сотовые телефоны и другие интеллектуальные устройства.
  • Все они включены в общую вычислительную сеть. Проводную или беспроводную - не важно. Они могут быть подключены даже к разным сетям, связанным между собой через глобальную сеть, например через интернет.
  • На некоторых устройствах установлены программы-серверы. Эти устройства называются серверами, должны быть постоянно включены, и их задача обрабатывать запросы от клиентов.
  • На других устройствах работают программы-клиенты. Такие устройства называются клиентами, они инициируют запросы серверам. Их включают только в моменты, когда необходимо обратиться к серверам.

Например, если вы хотите с сотового телефона по WiFi включать утюг, то утюг будет сервером, а телефон – клиентом. Утюг должен быть постоянно включен в розетку, а управляющую программу на телефоне вы будете запускать по необходимости. Если к WiFi сети утюга подключить компьютер, то вы сможете управлять утюгом и с помощью компьютера. Это будет еще один клиент. WiFi микроволновая печь, добавленная в систему, будет сервером. И так систему можно расширять бесконечно.

Передача данных пакетами.

Технология клиент-сервер в общем случае предназначена для использования с объемными информационными сетями. От одного абонента до другого данные могут проходить сложный путь по разным физическим каналам и сетям. Путь доставки данных может меняться в зависимости от состояния отдельных элементов сети. Какие-то компоненты сети могут не работать в этот момент, тогда данные пойдут другим путем. Может изменяться время доставки. Данные могут даже пропасть, не дойти до адресата.

Поэтому простая передача данных в цикле, как мы передавали данные на компьютер в некоторых предыдущих уроках, в сложных сетях совершенно невозможна. Информация передается ограниченными порциями – пакетами. На передающей стороне информация разбивается на пакеты, а на приемной “склеивается” из пакетов в цельные данные. Объем пакетов обычно не больше нескольких килобайт.

Пакет это аналог обычного почтового письма. Он также, кроме информации, должен содержать адрес получателя и адрес отправителя.

Пакет состоит из заголовка и информационной части. Заголовок содержит адреса получателя и отправителя, а также служебную информацию, необходимую для “склейки” пакетов на приемной стороне. Сетевое оборудование использует заголовок для определения, куда передавать пакет.

Адресация пакетов.

На эту тему в интернете есть много подробной информации. Я хочу рассказать как можно ближе к практике.

Уже в следующем уроке для передачи данных с использованием клиент-серверной технологии нам придется задавать информацию для адресации пакетов. Т.е. информацию, куда доставлять пакеты данных. В общем случае нам придется задавать следующие параметры:

  • IP-адрес устройства;
  • маску подсети;
  • доменное имя;
  • IP-адрес сетевого шлюза;
  • MAC-адрес;
  • порт.

Давайте разбираться, что это такое.

IP-адреса.

Технология клиент-сервер предполагает, что все абоненты всех сетей мира подключены к единой глобальной сети. На самом деле во многих случаях это так и есть. Например, большинство компьютеров или мобильных устройств подключено к интернету. Поэтому используется формат адресации, рассчитанный на такое громадное количество абонентов. Но даже если технология клиент-сервер применяется в локальных сетях, все равно сохраняется принятый формат адресов, при явной избыточности.

Каждой точке подключения устройства к сети присваивается уникальный номер – IP-адрес (Internet Protocol Address). IP-адрес присваивается не устройству (компьютеру), а интерфейсу подключения. В принципе устройства могут иметь несколько точек подключения, а значит несколько различных IP-адресов.

IP-адрес это 32х разрядное число или 4 байта. Для наглядности принято записывать его в виде 4 десятичных чисел от 0 до 255, разделенных точками. Например, IP-адрес моего сервера 31.31.196.216.

Для того чтобы сетевому оборудованию было проще выстраивать маршрут доставки пакетов в формат IP-адреса введена логическая адресация. IP-адрес разбит на 2 логических поля: номер сети и номер узла. Размеры этих полей зависят от значения первого (старшего) октета IP-адреса и разбиты на 5 групп – классов. Это так называемый метод классовой маршрутизации.

Класс Старший октет Формат

(С-сеть,
У-узел)

Начальный адрес Конечный адрес Количество сетей Количество узлов
A 0 С.У.У.У 0.0.0.0 127.255.255.255 128 16777216
B 10 С.С.У.У 128.0.0.0 191.255.255.255 16384 65534
C 110 С.С.С.У 192.0.0.0 223.255.255.255 2097152 254
D 1110 Групповой адрес 224.0.0.0 239.255.255.255 - 2 28
E 1111 Резерв 240.0.0.0 255.255.255.255 - 2 27

Класс A предназначен для применения в больших сетях. Класс B используется в сетях средних размеров. Класс C предназначен для сетей с небольшим числом узлов. Класс D используется для обращения к группам узлов, а адреса класса E зарезервированы.

Существуют ограничения на выбор IP-адресов. Я посчитал главными для нас следующие:

  • Адрес 127.0.0.1 называется loopback и используется для тестирования программ в пределах одного устройства. Данные посланы по этому адресу не передаются по сети, а возвращаются программе верхнего уровня, как принятые.
  • “Серые” адреса – это IP-адреса разрешенные только для устройств, работающих в локальных сетях без выхода в Интернет. Эти адреса никогда не обрабатываются маршрутизаторами. Их используют в локальных сетях.
    • Класс A: 10.0.0.0 – 10.255.255.255
    • Класс B: 172.16.0.0 – 172.31.255.255
    • Класс C: 192.168.0.0 – 192.168.255.255
  • Если поле номера сети содержит все 0, то это означает, что узел принадлежит той же самой сети, что и узел, который отправил пакет.

Маски подсетей.

При классовом методе маршрутизации число битов адресов сети и узла в IP-адресе задается типом класса. А классов всего 5, реально используется 3. Поэтому метод классовой маршрутизации в большинстве случаях не позволяет оптимально выбрать размер сети. Что приводит к неэкономному использованию пространства IP-адресов.

В 1993 году был введен бесклассовый способ маршрутизации, который в данный момент является основным. Он позволяет гибко, а значит и рационально выбирать требуемое количество узлов сети. В этом методе адресации применяются маски подсети переменной длины.

Сетевому узлу присваивается не только IP-адрес, но и маска подсети. Она имеет такой же размер, как и IP-адрес, 32 бит. Маска подсети и определяет, какая часть IP-адреса относится к сети, а какая к узлу.

Каждый бит маски подсети соответствует биту IP-адреса в том же разряде. Единица в бите маски говорит о том, что соответствующий бит IP-адреса принадлежит сетевому адресу, а бит маски со значением 0 определяет принадлежность бита IP-адреса к узлу.

При передаче пакета, узел с помощью маски выделяет из своего IP-адреса сетевую часть, сравнивает ее с адресом назначения, и если они совпадают, то это означает, что передающий и приемный узлы находятся в одной сети. Тогда пакет доставляется локально. В противном случае пакет передается через сетевой интерфейс в другую сеть. Подчеркиваю, что маска подсети не является частью пакета. Она влияет только на логику маршрутизации узла.

По сути, маска позволяет одну большую сеть разбить на несколько подсетей. Размер любой подсети (число IP-адресов) должен быть кратным степени числа 2. Т.е. 4, 8, 16 и т.д. Это условие определяется тем, что биты полей адресов сети и узлов должны идти подряд. Нельзя задать, например, 5 битов - адрес сети, затем 8 битов – адрес узла, а затем опять биты адресации сети.

Пример формы записи сети с четырьмя узлами выглядит так:

Сеть 31.34.196.32, маска 255.255.255.252

Маска подсети всегда состоит из подряд идущих единиц (признаков адреса сети) и подряд идущих нулей (признаков адреса узла). Основываясь на этом принципе, существует другой способ записи той же адресной информации.

Сеть 31.34.196.32/30

/30 это число единиц в маске подсети. В данном примере остается два нуля, что соответствует 2 разрядам адреса узла или четырем узлам.

Размер сети (количество узлов) Длинная маска Короткая маска
4 255.255.255.252 /30
8 255.255.255.248 /29
16 255.255.255.240 /28
32 255.255.255.224 /27
64 255.255.255.192 /26
128 255.255.255.128 /25
256 255.255.255.0 /24
  • Последнее число первого адреса подсети должно делиться без остатка на размер сети.
  • Первый и последний адреса подсети – служебные, их использовать нельзя.

Доменное имя.

Человеку неудобно работать с IP-адресами. Это наборы чисел, а человек привык читать буквы, еще лучше связно написанные буквы, т.е. слова. Для того, чтобы людям было удобнее работать с сетями используется другая система идентификации сетевых устройств.

Любому IP-адресу может быть присвоен буквенный идентификатор, более понятный человеку. Идентификатор называется доменным именем или доменом.

Доменное имя это последовательность из двух или более слов, разделенных точками. Последнее слово это домен первого уровня, предпоследнее – домен второго уровня и т.д. Думаю, об этом знают все.

Связь между IP-адресами и доменными именами происходит через распределенную базу данных, с использованием DNS-серверов. DNS-сервер должен иметь каждый владелец домена второго уровня. DNS-серверы объединены в сложную иерархическую структуру и способны обмениваться между собой данными о соответствии IP-адресов и доменных имен.

Но это все не так важно. Для нас главное, что любой клиент или сервер может обратиться к DNS-серверу с DNS-запросом, т.е. с запросом о соответствии IP-адрес – доменное имя или наоборот доменное имя – IP-адрес. Если DNS-сервер обладает информацией о соответствии IP-адреса и домена, то он отвечает. Если не знает, то ищет информацию на других DNS-серверах и после этого сообщает клиенту.

Сетевые шлюзы.

Сетевой шлюз это аппаратный маршрутизатор или программа для сопряжения сетей с разными протоколами. В общем случае его задача конвертировать протоколы одного типа сети в протоколы другой сети. Как правило, сети имеют разные физические среды передачи данных.

Пример – локальная сеть из компьютеров, подключенная к Интернету. В пределах своей локальной сети (подсети) компьютеры связываются без необходимости в каком-либо промежуточном устройстве. Но как только компьютер должен связаться с другой сетью, например выйти в Интернет, он использует маршрутизатор, который выполняет функции сетевого шлюза.

Роутеры, которые есть у каждого, кто подключен к проводному интернету, являются одним из примеров сетевого шлюза. Сетевой шлюз это точка, через которую обеспечивается выход в Интернет.

В общем случае использование сетевого шлюза выглядит так:

  • Допустим у нас система из нескольких плат Ардуино, подключенных через локальную сеть Ethernet к маршрутизатору, который в свою очередь подключен к Интернету.
  • В локальной сети мы используем ”серые” IP-адреса (выше об этом написано), которые не допускают выхода в Интернет. У маршрутизатора два интерфейса: нашей локальной сети с “серым” IP-адресом и интерфейс для подключения к Интернету с ”белым” адресом.
  • В конфигурации узла мы указываем адрес шлюза, т.е. “белый” IP-адрес интерфейса маршрутизатора, подключенного к Интернету.
  • Теперь, если маршрутизатор получает от устройства с ”серым” адресом пакет с запросом на получение информации из Интернета, он заменяет в заголовке пакета ”серый” адрес на свой ”белый” и отправляет его в глобальную сеть. Получив из Интернета ответ, он заменяет ”белый” адрес на запомненный при запросе ”серый” и передает пакет локальному устройству.

MAC-адрес.

MAC-адрес это уникальный идентификатор устройств локальной сети. Как правило, он записывается на заводе-производителе оборудования в постоянную память устройства.

Адрес состоит из 6 байтов. Принято записывать его в шестнадцатеричной системе исчисления в следующих форматах: c4-0b-cb-8b-c3-3a или c4:0b:cb:8b:c3:3a. Первые три байта это уникальный идентификатор организации-производителя. Остальные байты называются ”Номер интерфейса” и их значение является уникальным для каждого конкретного устройства.

IP-адрес является логическим и устанавливается администратором. MAC-адрес – это физический, постоянный адрес. Именно он используется для адресации фреймов, например, в локальных сетях Ethernet. При передаче пакета по определенному IP-адресу компьютер определяет соответствующий MAC-адрес с помощью специальной ARP-таблицы. Если в таблице отсутствуют данные о MAC-адресе, то компьютер запрашивает его с помощью специального протокола. Если MAC-адрес определить не удается, то пакеты этому устройству посылаться не будут.

Порты.

С помощью IP-адреса сетевое оборудование определяет получателя данных. Но на устройстве, например сервере, могут работать несколько приложений. Для того чтобы определить какому приложению предназначены данные в заголовок добавлено еще одно число – номер порта.

Порт используется для определения процесса приемника пакета в пределах одного IP-адреса.

Под номер порта выделено 16 бит, что соответствует числам от 0 до 65535. Первые 1024 портов зарезервированы под стандартные процессы, такие как почта, веб-сайты и т.п. В своих приложениях их лучше не использовать.

Статические и динамические IP-адреса. Протокол DHCP.

IP-адреса могут назначаться вручную. Достаточно утомительная операция для администратора. А в случае, когда пользователь не обладает нужными знаниями, задача становится трудноразрешимой. К тому же не все пользователи находятся постоянно подключенными к сети, а выделенные им статические адреса другие абоненты использовать не могут.

Проблема решается применением динамических IP-адресов. Динамические адреса выдаются клиентам на ограниченное время, пока они непрерывно находятся в сети. Распределение динамических адресов происходит под управлением протокола DHCP.

DHCP – это сетевой протокол, позволяющий устройствам автоматически получать IP-адреса и другие параметры, необходимые для работы в сети.

На этапе конфигурации устройство-клиент обращается к серверу DHCP, и получает от него необходимые параметры. Может быть задан диапазон адресов, распределяемых среди сетевых устройств.

Просмотр параметров сетевых устройств с помощь командной строки.

Существует много способов, как узнать IP-адрес или MAC-адрес своей сетевой карты. Самый простой – это использовать CMD команды операционной системы. Я покажу, как это делать на примере Windows 7.

В папке Windows\System32 находится файл cmd.exe. Это интерпретатор командной строки. С помощь него можно получать системную информацию и конфигурировать систему.

Открываем окно выполнить. Для этого выполняем меню Пуск -> Выполнить или нажимаем комбинацию клавиш Win + R .

Набираем cmd и нажимаем OK или Enter. Появляется окно интерпретатора команд.

Теперь можно задавать любые из многочисленных команд. Пока нас интересуют команды для просмотра конфигурации сетевых устройств.

Прежде всего, это команда ipconfig , которая отображает настройки сетевых плат.

Подробный вариант ipconfig/all .

Только MAC-адреса показывает команда getmac .

Таблицу соответствия IP и MAC адресов (ARP таблицу) показывает команда arp –a .

Проверить связь с сетевым устройством можно командой ping .

  • ping доменное имя
  • ping IP-адрес

Сервер моего сайта отвечает.

Основные сетевые протоколы.

Я коротко расскажу о протоколах, необходимых нам в дальнейших уроках.

Сетевой протокол это набор соглашений, правил, которые определяют обмен данными в сети. Мы не собираемся реализовывать эти протоколы на низком уровне. Мы намерены использовать готовые аппаратные и программные модули, которые реализуют сетевые протоколы. Поэтому нет необходимости подробно разбирать форматы заголовков, данных и т.п. Но, зачем нужен каждый протокол, чем он отличается от других, когда используется знать надо.

Протокол IP.

Inernet Protocol (межсетевой протокол) доставляет пакеты данных от одного сетевого устройства к другому. IP протокол объединяет локальные сети в единую глобальную сеть, обеспечивая передачу пакетов информации между любыми устройствами сетей. Из представленных в этом уроке протоколов IP находится на самом низком уровне. Все остальные протоколы используют его.

IP протокол работает без установления соединений. Он просто пытается доставить пакет по указанному IP-адресу.

IP обрабатывает каждый пакет данных, как отдельную независимую единицу, не связанную с другими пакетами. Невозможно используя только IP протокол, передать значительный объем связанных данных. Например, в сетях Ethernet максимальный объем данных одного IP-пакета составляет всего 1500 байт.

В протоколе IP нет механизмов, позволяющих контролировать достоверность конечных данных. Контрольные коды используются только для защиты целостности данных заголовка. Т.е. IP не гарантирует, что данные в полученном пакете будут правильными.

Если во время доставки пакета произошла ошибка, и пакет был потерян, то IP не пытается заново послать пакет. Т.е. IP не гарантирует, что пакет будет доставлен.

Коротко о протоколе IP можно сказать, что:

  • он доставляет небольшие (не более 1500 байт) отдельные пакеты данных между IP-адресами;
  • он не гарантирует, что доставленные данные будут правильными;

Протокол TCP.

Transmission Control Protocol (протокол управления передачей) основной протокол передачи данных Интернета. Он использует способность IP протокола доставлять информацию от одного узла другому. Но в отличии от IP он:

  • Позволяет переносить большие объемы информации. Разделение данных на пакеты и “склеивание” данных на приемной стороне обеспечивает TCP.
  • Данные передаются с предварительной установкой соединения.
  • Производит контроль целостности данных.
  • В случае потери данных инициирует повторные запросы потерянных пакетов, устраняет дублирование при получении копий одного пакета.

По сути, протокол TCP снимает все проблемы доставки данных. Если есть возможность, он их доставит. Не случайно это основной протокол передачи данных в сетях. Часто используют терминологию TCP/IP сети.

Протокол UDP.

User Datagram Protokol (протокол пользовательских датаграмм) простой протокол для передачи данных без установления соединения. Данные отправляются в одном направлении без проверки готовности приемника и без подтверждения доставки. Объем данных пакета может достигать 64 кБайт, но на практике многие сети поддерживают размер данных только 1500 байт.

Главное достоинство этого протокола – простата и высокая скорость передачи. Часто применяется в приложениях критичных к скорости доставки данных, таких как видеопотоки. В подобных задачах предпочтительнее потерять несколько пакетов, чем ждать отставшие.

Протоколу UDP свойственно:

  • это протокол без установления соединений;
  • он доставляет небольшие отдельные пакеты данных между IP-адресами;
  • он не гарантирует, что данные вообще будут доставлены;
  • он не сообщит отправителю, были ли доставлены данные и не повторит передачу пакета;
  • нет упорядоченности пакетов, порядок доставки сообщений не определен.

Протокол HTTP.

Скорее всего, об этом протоколе в следующих уроках буду писать подробнее. А сейчас коротко скажу, что это протокол передачи гипертекста (Hyper Text Transfer Protocol). Он используется для получения информации с веб-сайтов. При этом веб-браузер выступает в роли клиента, а сетевое устройство в качестве веб-сервера.

В следующем уроке будем применять технологию клиент-сервер на практике, используя сеть Ethernet.