Тарифы Услуги Сим-карты

Понятие об определителе n го порядка. Определители n-го порядка; миноры и алгебраические дополнения. Свойства и вычисление определителей n-го порядка

Определители, их свойства и вычисление

1.Определители второго и третьего порядков; их вычисление .

Определитель первого порядка равен тому единственному элементу, из которого состоит соответствующая матрица.

Определитель второго порядка вычислим, например, по элементам первой строки

Запишем разложение данного определителя по элементам второй строки

Полученный результат совпадает с результатом вычисления определителя по первой строке. Этот же результат получится и при разложении по любому из столбцов. Рекомендуем это проверить самостоятельно.

Из сказанного можно заключить, что определитель второго порядка равен произведению элементов, стоящих на главной диагонали, минус произведение элементов, стоящих на побочной диагонали .

Определители n-го порядка; миноры и алгебраические дополнения. Свойства и вычисление определителей n-го порядка.

Определителем n-го порядка, соответствующим матрице
, называется алгебраическая сумма слагаемых, составленная следующим образом: слагаемыми служат всевозможные произведения элементов матрицы, взятых по одному из каждой строки и каждого столбца, причем слагаемое берется со знаком плюс, если его индексы составляют четную подстановку, и со знаком минус – в противоположном случае.
Замечание: Объясним это определение на примере определителя третьего порядка, для которого уже известна формула вычисления.
.
1) «алгебраическая сумма слагаемых» - . И да, действительно, здесь шесть слагаемых.
2) «слагаемыми служат всевозможные произведения элементов матрицы, взятых по одному из каждой строки и каждого столбца» - рассмотрим например слагаемое . Его первый множитель взят из второй строки, второй – из первой, а третий из третьей. То же самое и со столбцами – первым множитель из первого столбца, второй из третьего, а последний из второго.
3) «причем слагаемое берется со знаком плюс, если его индексы составляют четную подстановку, и со знаком минус – в противоположном случае» - рассмотрим для примера слагаемые (со знаком плюс) и (со знаком минус).

Составим перестановки так, что в первой строке будут номера строк сомножителей, а во второй – номера столбцов.
Для слагаемого : (первый столбец – индекс первого сомножителя и т.д.)
Для слагаемого : .
Определим четность этих перестановок:
а) - элементы в первой строке стоят по порядку. Во второй строке не по порядку стоят пары:
2 левее 1 – одна пара,
3 левее 1 – одна пара.
Итого две пары, т.е. количество пар четно, значит перестановка четная, а значит, слагаемое должно входить в сумму со знаком плюс (как оно и есть на самом деле).
б) - элементы в первой строке стоят по порядку. Во второй строке не по порядку стоят пары:
2 левее 1 – одна пара.
Итого, количество пар чисел, стоящих так, что большее левее меньшего – 1 шт., т.е. нечетно, а значит и перестановка называется нечетной, и соответствующее слагаемое должно входить в сумму со знаком минус (да, это так).

Минором элемента матрицы n -го порядка называется определитель матрицы (n-1) -го порядка, полученный из матрицы А вычеркиванием i -й строки и j -го столбца.

Рассмотрим квадратную таблицу А.

Определение. Определителем n-го порядка называется число, полученное из элементов данной таблицы по следующему правилу:

1 .Определитель n-го порядка равен алгебраической сумме n! членов.

Каждый член представляет собой произведение n-элементов взятых по одному из каждой строки и каждого столбца таблицы.

2 .Член берется со знаком плюс, если перестановки образованные первыми и вторыми индексами элементов , входящие в произведения одинаковой четности (либо обе четные, либо нечетные) и со знаком минус в противоположном случае.

Определитель обозначается символом:

или краткоdet A=.(детерминант А)

Согласно определению = -.

Правило вычисления определителя 3ого порядка:

=

Миноры и алгебраические дополнения

Пусть дан определитель n-го порядка (n>1)

Определение 1. Минором элементаопределителяn-го порядка называется определитель (n-1)-ого порядка полученный из А вычеркиванием i-й строки и j-го столбца, на пересечении которых стоит данный элемент .

Например:

=

Определение 2 . Алгебраическим дополнением элемента называется число

Основные свойства определителей n-го порядка

1.О равносильности строк и столбцов.

Величина определителя n-го порядка не меняется, если у него заменить строки соответствующими столбцами.

2.Если у определителей поменять местами две строки (столбца), то определитель изменит знак на противоположный.

= k

Если все элементы какой-либо строки (или столбца) определителя имеют общий множитель, то этот общий множитель можно вынести за знак определителя.

4.Величина определителя равна нулю, если все элементы какой-либо его строки нули (или столбца).

5.Определитель с двумя пропорциональными строками равен 0.

Например:

6.Величина определителя не изменится, если к его элементам какой-либо строки прибавить соответствующие элементы другой строки, умноженные на одно и то же число.

7.Если элементы какой-либо строки i определителя представлены в виде суммы двух слагаемых, то определитель равен сумме двух определителей, в которых все строки кроме i-й такие же, как в заданном определителе, а i-я строка одного определителя состоит из первых слагаемых, а второго из вторых.

8.Определитель равен сумме произведений всех элементов какой-либо его строки на их алгебраические дополнения.

=

9.Сумма произведений всех элементов какой-либо строки определителя на алгебраические дополнения соответствующих элементов другой строки равна нулю.

Например:

=

Теорема Лапласа

Теорема. Пусть в определителе d порядка n произвольно выбраны k строк (или k столбцов), 1.Тогда сумма произведений всех миноровk-го порядка, содержащихся в выбранных строках, на их алгебраические дополнения равна определителю d.

Следствие . Частный случай теоремы Лапласа - разложение определителя по строке или столбцу. Он позволяет представить определитель квадратной матрицы в виде суммы произведений элементов любой её строки или столбца на их алгебраические дополнения.

Пусть - квадратная матрица размера . Пусть также задан некоторый номер строки i либо номер столбца j матрицы A. Тогда определитель A может быть вычислен по следующим формулам:

Разложение по i-й строке:

Разложение по j-й строке:

где - алгебраическое дополнение к минору, расположенному в строке с номером i и столбце с номером j.

Утверждение является частным случаем теоремы Лапласа. Достаточно в ней положить k равным 1 и выбрать -ую строку, тогда минорами, расположенными в этой строке будут сами элементы.

Примеры для самостоятельного решения .

1.Найти х из уравнений и проверить подстановкой корень в определитель.

а); б)

Пусть дана матрица

Определение: Определителем n-го порядка называется алгебраическая сумма n! слагаемых, каждое из которых является произведением n сомножителей, взятых по одному из каждой строки и каждого столбца матрицы А. Знак перед слагаемым определяется по правилу знаков:

Определение: Пусть – произвольная перестановка чисел 1,2,3...n. Говорят, что элементы и образуют инверсию (нарушение порядка), если, а. Перестановка чисел 1,2,3...n называется четной, если число инверсий, образованных ее элементами, четно, в противном случае она называется нечетной.

Чтобы определить знак перед слагаемым, нужно расположить сомножители, в него входящие, в порядке возрастания первых индексов и рассмотреть перестановку, образованную вторыми индексами. Если эта перестановка четная, то ставим ²+², если нечетная, то ²–².

Определение: Рассмотрим перестановку:

Поменяем местами и, получим перестановку:

Говорят, что перестановка В получается из А транспозицией элементов и.

Утверждение: Всякая транспозиция меняет четность перестановки на противоположную.

Доказательство: Частный случай: транспозиция соседних элементов меняет четность перестановки.

Все элементы перестановок А и В, кроме и, образуют одни и те же инверсии. Элемент с элементами и в перестановках А и В образует одни и те же инверсии. Элемент с элементами и в перестановках А и В образует одни и те же инверсии. Если элементы и в перестановке А не образовывали инверсии, то в В – образуют, если в А – образовывали, то в В уже не будут образовывать. Таким образом, в результате транспозиции соседних элементов число инверсий либо увеличилось, либо уменьшилось на единицу. Четность поменялась.

Общий случай. Чтобы совершить транспозицию двух произвольных элементов перестановки, будем последовательно переставлять соседние элементы. Для того, чтобы поменять местами элементы и, сначала k раз меняем элемент с, ..., затем раз меняем до. Таким образом, перестановка совершается раз. Четность меняется на противоположную.

Утверждение: Рассмотрим все перестановки n символов 1,2,3,...,n. Число четных перестановок равно числу нечетных перестановок и равно .

Доказательство: Выпишем все четные перестановки и зададим отображение с нечетными по правилу:

Все перестановки являются нечетными согласно предыдущей теореме.

Указанное нами отображение является биекцией множества всех четных перестановок на множество всех нечетных перестановок, в самом деле, по указанному правилу каждой четной перестановке ставится в соответствие единственная нечетная, т.е. это отображение, очевидно, инъективно: . Указанное отображение сюрьективно, в самом деле, каждая нечетная перестановка В является образом той четной перестановки А, которая получается из В заменой в В местами первого и второго символов, следовательно, отображение биективно, следовательно, число четных перестановок равно числу нечетных равно.



Определение: Всякое биективное отображение множества на себя называется подстановкой.

Подстановку, заданную на множестве 1,2,3,...,n удобно записывать виде: или, где первая и вторая строчки – подстановки.

Подстановка определяется с точностью до расположения столбцов: если в подстановке поменять местами любые два столбца, то получится та же подстановка.

Определение: Подстановка называется четной, если перестановки, записанные в первой и второй строчках либо обе четные, либо обе нечетные. В противном случае подстановка называется нечетной. Четность подстановки не изменится, если поменять в ней любые два столбца, следовательно, число четных подстановок равно числу нечетных, равно.

Теперь правило знаков в определении определителя можно сформулировать так: – произведение n сомножителей, взятых по одному из различных строчек и различных столбцов. Рассмотрим подстановку. Если она четная, то перед слагаемым ставится знак ²+², если нечетная, то ²–².

Пример:

1) Пусть дана матрица, тогда через обозначим транспонированную матрицу:

Докажем, что определитель равен определителю А. ().

Доказательство: Рассмотрим слагаемое входящее в det A. Элемент а является произведением сомножителей, принадлежащих разным строкам и столбцам матрицы А, и, следовательно, разным строкам и столбцам матрицы, следовательно, каждый элемент является слагаемым и в и наоборот. Знак элемента а в определителе определяется четностью подстановки, а в – четностью подстановки. Но эти две подстановки одновременно либо четные либо нечетные.

2) Если в определителе все элементы какой-либо, скажем i-ой строки равны 0, то этот определитель равен 0.

Доказательство: В самом деле, по определению определителя все элементы нулевой строки будут входить в каждое слагаемое, из которых состоит определитель, следовательно, определитель есть сумма n! нулей.

3) Если в определителе поменять местами i и j строчки, то его значение изменится на противоположный.

В самом деле, пусть получена из матрицы а заменой двух строк: i и j. Все слагаемые вида входят и в определитель матрицы А и в определитель матрицы, знак перед этим слагаемым определяется с помощью подстановки: , а знак перед этим же слагаемым в определяется с помощью подстановки

Эти подстановки различной четности.

Библиография:

1. Воеводин В.В. Линейная алгебра. СПБ.: Лань, 2008, 416 с.

2. Беклемишев Д. В. Курс аналитической геометрии и линейной алгебры. М.: Физматлит, 2006, 304 с.

3.Кострикин А.И. Введение в алгебру. часть II. Основы алгебры: учебник для вузов, -М. : Физико-математическая литература, 2000, 368 с

Лекция №8 (2 семестр)

Тема: Ранг матрицы. Базисные строки – база векторов – строк. Определитель Грамма и линейная зависимость.

Определение: Дана матрица

Пусть в А выделены строчки с номерами и столбцы. Элементы, стоящие на пересечении выбранных столбцов и строк образуют матрицу k-того порядка. Определитель М этой матрицы называется минором k-того порядка. Если в матрице А вычеркнуты выбранные строки и столбцы, то оставшиеся элементы образуют матрицу n-k-того порядка. Определитель этой матрицы называется дополнительным минором к минору М.

Определение: Пусть выбраны строки с номерами и столбцы с номерами. Выражение называется алгебраическим дополнением минора М.

Теорема Лапласа: Пусть в квадратной матрице А выбраны k строк с номерами , где . Сумма произведений всевозможных миноров k-того порядка, расположенных в выбранных строках на их алгебраические дополнения равны определителю матрицы А.

ОПРЕДЕЛИТЕЛИ. МАТРИЦЫ

1. Понятие определителя n-го порядка.

2. Методы вычисления определителей 2-го и 3-го порядков.

3. Теорема Лапласа.

4. Матрицы и их виды. Действия над матрицами.

5. Обратная матрица.

6. Ранг матрицы.

1. Понятие определителя n-го порядка.

Определитель n-го порядка записывается в виде квадратной таблицы, содержащей n строк и n столбцов:

Числа а ij - элементы определителя, i – номер строки, j –номер столбца, n - порядок определителя.

Диагональ определителя, состоящая из элементов с одинаковыми индексами, называется главной , а другая называется побочной .

Определителем n-го порядка называется число, являющееся алгебраической суммой n! членов, каждый из которых есть произведение n элементов, взятых по одному из каждой строки и из каждого столбца, причем знак всякого члена определяется входящими в его состав элементами.

Основные свойства определителей n - го порядка.

1. При замене строк столбцами значение определителя не меняется.

2. При перестановке двух строк (столбцов) определитель меняет знак.

3. Если все элементы какой-нибудь строки (столбца) определителя равны нулю, то определитель равен нулю.

4. Если определитель имеет две одинаковые или пропорциональные строки (столбца), то такой определитель равен нулю.

5. Общий множитель всех элементов строки (столбца) можно выносить за знак определителя.

6. Значение определителя не изменится, если к элементам какой-нибудь строки (столбца) добавить элементы другой строки (столбца), умноженные на одно и то же число.

7. Если элементы какой-нибудь строки (столбца) являются линейной комбинацией соответствующих элементов двух (или нескольких) других строк (столбцов), то такой определитель равен нулю.

2. Методы вычисления определителей 2-го и 3-го порядков.

Величину называют определителем (детерминантом) второго порядка и обозначают .

Таким образом,

Определителем третьего порядка называют величину

Эта формула называется правилом Сарруса (правило «треугольников») для вычисления определителей 3-го порядка. Для лучшего запоминания формулы можно составить таблицу Сарруса, добавив к определителю первый и второй столбцы. Тогда все члены будут представлять собой произведение элементов по диагоналям.

Примеры: Вычислить определители:

а)

3. Теорема Лапласа.

Вычисление определителей более высоких порядков непосредственно весьма сложно, поэтому для их вычисления используют свойства определителей, а также теорему Лапласа, позволяющую понижать порядок данного определителя.

Пусть дан определитель:

Вычеркнем в этом определителе i-ую строку и j-ый столбец, на пересечении которых находится элемент а ij . Тогда получим определитель M ij

(n-1) – го порядка, который называют минором элемента а ij .

Алгебраическим дополнением А ij элемента а ij называют минор этого элемента, взятый со знаком (+), если сумма индексов i+j – четное число, и со знаком (-), если эта сумма – число нечетное, т.е.

А ij = (-1) i + j M ij

Пример. Дан определитель третьего порядка

Найти минор и алгебраическое дополнение элемента а 32 .

Решение. ,

Теорема Лапласа: Сумма произведений элементов какой-нибудь строки (столбца) на их соответствующие алгебраические дополнения равна определителю, т.е.

Эта теорема дает возможность разложить определитель по элементам какой-нибудь строки или столбца и свести его вычисление к вычислению определителей более низкого порядка. При этом вычисление определителя значительно упрощается, если среди элементов некоторой строки (столбца) имеются нули.

4. Матрицы и их виды. Действия над матрицами.

Матрицей размерности kxn называется прямоугольная таблица чисел:

.

Числа а ij называются ее элементами. В компактном виде матрицу можно записать:, i=1, …, k, j=1, …, n. Матрицы обозначаются заглавными буквами А,В,С, …, элементы матрицы – строчными буквами с двойной индексацией.

Виды матриц.

Матрица называется квадратной n -го порядка , если число строк равно числу столбцов и равно n.

Матрица, состоящая из одной строки, называется матрицей-строкой .

Матрица, состоящая из одного столбца, называется матрицей-столбцом.

Если в матрице А переставить строки и столбцы местами, то получим новую матрицу А Т транспонированную к матрице А:

Матрица, у которой все элементы равны 0, называется нулевой.

Квадратная матрица, у которой элементы вдоль главной диагонали равны 1, а остальные – нули, называется единичной матрицей. Она обозначается буквой Е.

Квадратная матрица n-го порядка называется вырожденной (особенной) , если определитель n-го порядка, составленный из ее элементов, равен нулю. Если же этот определитель отличен от нуля, то матрица называется невырожденной (неособенной).

Две матрицы называются равными , если соответствующие элементы их тождественно равны.

Действия над матрицами.

1. Сложение (вычитание) матриц .

Две матрицы одинаковой размерности, т.е. матрицы, имеющие одно и то же число строк и одно и то же число столбцов, можно сложить (вычесть). При этом под суммой (разностью) двух матриц понимают новую матрицу, элементы которой равны сумме (разности) соответствующих элементов данных матриц.

2. Умножение матрицы на число.

Чтобы умножить матрицу на число, нужно каждый элемент данной матрицы умножить на это число.

3. Умножение матриц.

Две матрицы можно перемножить только тогда, когда число столбцов первой матрицы совпадает с числом строк второй матрицы .

Произведением матрицы А на матрицу В называется новая матрица С, у которой элемент с ijj , стоящий на пересечении i-ой строки и j-го столбца, равен сумме произведений элементов i-ой строки матрицы А на элементы j-го столбца матрицы В. Матрица С имеет столько строк, сколько матрица А, и столько столбцов, сколько матрица В. Правило умножения матриц называют « строка на столбец ».

Замечание : операция умножения матриц в общем случае не перестановочна , т.е. АВ ≠ ВА.

Пример. Найти произведение матриц А и В: С=АВ,

где, .

Пусть А = произвольная квадратная матрица n-го порядка с действительными (или комплексными) элементами.

Определение 7. Определителем матрицы А (определителем n-го порядка) называется алгебраическая сумма n! слагаемых, каждое из которых есть произведение n элементов матрицы, взятых по одному из каждой строки и каждого столбца. При этом произведение берётся со знаком «+», если подстановка из индексов входящих в него элементов чётная, и со знаком «-» в противном случае.

Обозначение определителя: |А | = .

Например, при n = 6 произведение а 21 а 13 а 62 а 34 а 46 а 55 является членом определителя, так как в него входит точно по одному элементу из каждой строки и из каждого столбца. Подстановка, составленная из его индексов будет . В ней 4-е инверсии в верхней строке и 2-е инверсии – в нижней. Общее число инверсий равно 6, т.е. подстановка чётная. Следовательно, данное произведение входит в разложение определителя со знаком «+».

Произведение а 21 а 13 а 62 а 34 а 46 а 15 не является членом определителя, так как в него входят два элемента из первой строки.

Свойства определителей.

1 0 . При транспонировании определитель не меняется (напомним, что транспонирование матрицы и определителя означает перемену строк и столбцов местами).

Действительно, если (-1) к является членом определителя, то все a 1 , a 2 , … , a n различны и к – число инверсий в перестановке (a 1 , a 2 , … , a n). При транспонировании номера строк станут номерами столбцов и наоборот. Следовательно, в произведении все множители будут из разных столбцов и строк, т.е. это произведение будет входить в транспонированный определитель. Знак его будет определяться числом инверсий в подстановке . Но это число, очевидно равно к. Итак, (-1) к будет членом транспонированного определителя. Так как мы брали любой член данного определителя, а число членов в данном и транспонированном определителях одинаково, то отсюда и следует их равенство. Из доказанного свойства следует, что всё, что будет доказано для строк определителя, будет верно и для его столбцов.

2 0 . Если все элементы строки (или столбца) определителя равны нулю, то определитель равен нулю.

Это следует из того, что по одному элементу указанной строки (или столбца) будет входить в каждый член определителя.

3 0 . Если все элементы какой-нибудь строки определителя имеют общий множитель, то его можно вынести за знак определителя.

Действительно, если все элементы к-ой строки имеют общий множитель l, то их можно записать в виде . Любой член определителя будет иметь вид (-1) s . Следовательно, из всех членов определителя можно вынести множитель l.

4 0 . Если две строки определителя поменять местами, то определитель сменит знак.


Действительно, если (-1) к любой член данного определителя, то в новом определителе номера строк р и q поменяются местами, а номера столбцов останутся прежними. Следовательно, в новом определителе это же самое произведение будет входить в виде (-1) s . Так как в номерах строк произошла одна транспозиция, а номера столбцов не изменились, то к и s имеют противоположные чётности. Итак, все члены данного определителя изменили знак, следовательно, и сам определитель изменил знак.

5 0 . Если две строки определителя пропорциональны, то определитель равен нулю.

Действительно, пусть все элементы к-ой строки равны соответствующим элементам р-ой строки, умноженным на l, т.е. |А | = = = 0.

6 0 . Если в определителе все элементы к-ой строки есть суммы двух слагаемых, то определитель равен сумме двух определителей, в которых все строки, кроме к-ой, такие же как и в данном определителе. На месте элементов к-ой строки одного из них стоят первые слагаемые элементов к-ой строки данного определителя, а на месте элементов к-ой строки второго – вторые их слагаемые.

Пусть элементы к-ой строки будут + с к1 , + с к2 , …. , + с кn . Тогда любой член определителя будет иметь вид

(-1) s = (-1) s + (-1) s .

Собрав все первые слагаемые, мы получим определитель, отличающийся от данного только к-ой строкой. На месте к-ой строки будут стоять , , …. , . Собрав все вторые слагаемые, получим определитель тоже отличающийся от данного только к-ой строкой. В к-ой строке будут стоять с к1 , с к2 , …. , с кn .

7 0 . Если к одной строке определителя прибавить другую его строку, все элементы которой умножены на одно и то же число, то определитель не изменится.

Это свойство является следствием двух предыдущих.

Если в определителе |А | вычеркнуть к-ую строку и р-ый столбец, то останется определитель (n–1)-го порядка. Он называется минором, дополнительным для элемента и обозначается М кр . Число (-1) к+р ×М кр называется алгебраическим дополнением для элемента и обозначается А кр .

8 0 . Дополнительный минор и алгебраическое дополнение не зависит от того, какой элемент стоит в к-ой строке и р-ом столбце определителя.

Лемма 1 D = . (8)

Доказательство. Если а 11 = 0, то равенство (8) очевидно. Пусть а 11 ¹ 0. Так как в каждый член определителя входит точно один элемент из первой строки, то ненулевыми членами определителя могут быть только те, в которые входит а 11 . Все они имеют вид , где g к и к пробегают значения от 2 до n . Знак этого члена в определителе D определяется чётностью подстановки s = .Таким образом D есть алгебраическая сумма слагаемых вида со знаками, определяемыми подстановкой s. Если в этой сумме вынести за скобки а 11 , то получим, что D = а 11 × S , где S есть алгебраическая сумма слагаемых вида , знак которых определяется подстановкой s. Этих слагаемых, очевидно, (n – 1)!. Но подстановка s и подстановка имеют одинаковую чётность. Следовательно, S = М 11 . Так как А 11 = (-1) 1+1 ×М 11 = М 11 , то D = а 11 ×А 11 .

Лемма 2. D = (9)

Доказательство. В определителе D переставим р-ую строку последовательно с каждой предыдущей. При этом р-ая строка займёт место первой строки, но минор, дополнительный к элементу а рк не изменится. Всего будет сделано (р – 1) перестановка строк. Если новый определитель обозначить D 1 , то D = (-1) р-1 ×D. В определителе D 1 переставим к -ый столбец последовательно с каждым предыдущим столбцом, при этом будет сделано (к – 1) перестановка столбцов и минор, дополнительный к а рк , не изменится. Получится определитель

D 2 = . Очевидно, D 2 = (-1) р-1 ×D 1 = (-1) р+к-2 ×D = (-1) р+к ×D. По лемме 1, D 2 = а рк ×М рк. Отсюда D = а рк × (-1) р+к × М рк = а рк ×А рк.

Теорема 3. Определитель равен сумме произведений элементов некоторой строки на их алгебраические дополнения, т.е. D = а к1 А к1 + а к2 ×А к2 +…+а kn ×А kn (10).

Доказательство. Пусть D = . Элементы к-ой строки запишем в виде а к1 =а л1 + 0 + …+ 0, а к2 = 0 + а к2 + 0 + … + 0, … , а = 0 + 0 + …+ 0 + а . Используя свойство 6 0 , получим, что D =
= = а к1 А к1 + а к2 А к2 + … + а А (использовали лемму 2).

Теорема 4. Сумма произведений элементов одной строкиопределителя на алгебраические дополнения соответствующих элементов другой строки равна нулю.

Доказательство. Пусть D = . По предыдущей теореме

D = . Если взять , то в определителе Dбудет две одинаковые строки, т.е. D будет равен нулю. Следовательно, 0 = , если р ¹ к.

Замечание. Теоремы 3 и 4 будут верны, если в их формулировках слово «строка» заменить на слово «столбец».

Способ вычисления определителя n-го порядка.

Для вычисления определителя n -го порядка достаточно в какой-нибудь строке (или столбце) получить как можно больше нулей, используя свойство 7 0 , а потом использовать теорему 3. При этом вычисление определителя n-го порядка сведётся к вычислению определителя (n – 1)-го порядка.

Пример. Вычислите определитель D = .

Решение. Получим нули во второй строке. Для этого второй столбец 1) умножим на (-2) и прибавим к первому столбцу; 2) прибавим к третьему столбцу; 3) умножим на (-4) и прибавим к четвёртому столбцу. Получим, что D = . Разложим полученный определитель по элементам второй строки. При этом произведения всех элементов этой строки на их алгебраические дополнения, кроме элемента 1, равны нулю. Для того, чтобы получить алгебраическое дополнение для элемента 1, нужно вычеркнуть те строку и столбец, где этот элемент стоит, т.е. вторую строку и второй столбец. Знак алгебраического дополнения определяет (-1) 2+2 = (-1) 4 = +1. Итак, D = + . Получили определитель 3-го порядка. Этот определитель можно вычислить, используя диагонали и треугольники, но можно свести к определителю второго порядка. Умножим первый столбец 1) на (-4) и прибавим ко второму столбцу, 2) умножим его на 2 и прибавим к третьему столбцу. Получим, что

D = . Следовательно, D = (-1) 2+1 . Используя свойство 7 0 , прибавим к первому столбцу второй, получим D = - = -3×(23 – 40) = 51.

Некоторые определители (например, такие, в которых стоят «большие» миноры, целиком состоящие из нулей) удобно разлагать по нескольким строкам. Это позволяет делать теорема Лапласа. Пусть в определителе D выделен минор М s-го порядка, элементы которого стоят на строках с номерами к 1 ,к 2 ,…,к s и на столбцах с номерами р 1 ,р 2 ,…,р s . Вычеркнем строки и столбцы с указанными номерами. После этого останется определитель (n – s )-го порядка. Его называют минором М 1 , дополнительным к минору М. Если s = к 1 +…+ к s + р 1 +…+р s , то

алгебраическим дополнением к минору М называется А = (-1) s ×М 1 .

Теорема 5 (теорема Лапласа). Пусть в определителе n -го порядка выделены к строк (или столбцов). Определитель равен сумме произведений всех миноров, стоящих на выделенных строках, на их алгебраические дополнения.

Доказательство

(разложение по элементам i -й строки);

(разложение по элементам j -го столбца).

Убедимся в справедливости теоремы Лапласа на примере определителя матрицы третьего порядка. Разложим его вначале по элементам первой строки

Что совпадает с определением определителя матрицы третьего порядка.

Теорема 6 (теорема Крамера). Если в системе линейных уравнений число неизвестных равно числу уравнений и определитель D системы отличен от нуля, то система имеет решение и только одно. Это решение получается по формулам , где каждое D к получается из D заменой к-го столбца столбцом свободных членов.

Доказательство. Пусть дана система и D ¹ 0. Умножим первое уравнение на А 1к, второе – на А 2к, … ,n- ое уравнение – на А nк и все уравнения сложим. Получим +… ... + + … + =

Используя теоремы 3 и 4, получим х 1 ×0 + … + х к ×D + … + х n ×0 = D к , где D к = (к-ый столбец в определителе D заменён столбцом свободных членов уравнений данной системы). Отсюда = для всех к = 1, 2, …, n .