Тарифы Услуги Сим-карты

Программа для ssd диска smartbuy. Как посмотреть состояние SSD диска, проверить его на ошибки

Приветствую!
Со временем надёжность SSD может снизиться, появится риск возникновения различного рода ошибок. И если одни ошибки могут свидетельствовать о приближающемся износе накопителя, то другие могут быть признаком приближающейся поломки ССД накопителя.

Данная процедура позволит не только определить (а в некоторых случаях и исправить) появившееся ошибки, но и озаботиться копированием ценных файлов на заведомо не имеющий проблем носитель, дабы они не исчезли в случае окончательного выхода из строя SSD накопителя.

Как и чем проверить SSD диск на ошибки

Для диагностики SSD диска на наличие ошибок мы будем использовать утилиты, в задачу которых входит проверка и определение «здоровья» подключенного ССД накопителя.

При оценке состояния SSD используются как собственноручно разработанные алгоритмы оценки состояния носителя, так и считывание с последующим анализом S.M.A.R.T. данных с контроллера SSD диска.

S.M.A.R.T. – технология, в задачу которой входит контроль многочисленных параметров носителя. На основе этих технических данных производится расчёт текущего состояния, и вероятности отказа в работе (поломки). Появление S.M.A.R.T. ошибок не сулит ничего хорошего.

Первый способ, утилита CrystalDyskInfo

Дабы осуществить тестирование SSD диска, прибегнем к использованию бесплатного и в тоже время достаточно информативного решения – утилиты CrystalDiskInfo .

Данная утилита отображает исчерпывающую информацию о состоянии подключенных накопителей, поддерживает русский язык интерфейса и при этом весьма легка в использовании. После запуска утилиты практически моментально будут отображены все необходимых данные о «здоровье» накопителя(ей).

Программа осуществит сбор информации о носителе, считает с него S.M.A.R.T информацию. По окончании будет выведена детальная информация о «здоровье» SSD накопителя.

Среди этого многообразия S.M.A.R.T атрибутов можно откровенно запутаться, потому то разработчиками и был внедрён обобщающий статус, отображающий здоровье жёсткого диска в процентном соотношении.

Если данный статус именуется «Хорошо», то ваш SSD находится в добром здравии, а если «Тревога», то вам необходимо в самый кратчайший срок скопировать (продублировать, сделать бекап) с него важные данные. Есть вероятность только, что имеющийся в вашем распоряжении SSD диск в скором времени выйдет из строя.

Вы, конечно, можете посмотреть и каждый технический атрибут, его текущее и пороговое значение.

Читаются параметры в таблице следующим образом:

Если текущий или наихудший параметр приближается к тому, что размещён в пороговом столбце, то это может говорить о возможной неисправности носителя. Для примера возьмём атрибут «Оставшийся ресурс SSD» – в текущем и наихудшем столбце мы имеем значение 99, а в пороговом 10. Когда значение в 10 единиц высветится в текущем\наихудшем столбце, то это будет говорить о критическом износе и необходимости замены накопителя.

Стоит также обратить внимание на атрибуты: «программные ошибки», «ошибки стирания», «программные сбои» и «сбои стирания». Если имеющееся значение больше порогового, то следует задуматься и безопасности хранящихся на нём данных. Озаботиться вопросом резервного копирования.

Вообще, чтение и расшифровка S.M.A.R.T параметров для технически неподкованного пользователя априори является делом неблагодарным. А в некоторых случаях и трудновыполнимым – некоторые производители SSD дисков ограничивают количество исходящей от контроллера диска S.M.A.R.T. информации. Такие диски зачастую отправляют лишь общий статус «здоровья» – всё хорошо или серьёзный сбой в работе носителя.

В связи с этим лучше ориентироваться на общий вывод о «здоровье», что высвечивается в программе.

Второй способ, утилита SSDLife

С помощью данной утилиты в сможете в оценить состояние и работоспособность SSD диска, узнать, имеются ли какие-либо ошибки в его работе, посмотреть S.M.A.R.T. информацию с него.

Утилита имеет дружелюбный и весьма наглядный интерес, который по достоинству оценит даже новичок.

Официальный сайт утилиты SSDLife

Как и чуть выше описываемая программа, SSDLife начинает анализ жёсткого диска сразу после запуска, а после высветит полученные результаты состояния его работы. Просто запустите утилиту, и вы получите исчерпывающую информацию о SSD и возможных возникающих ошибках в процессе его работы.

Вся необходимая информация, по сути, представлена в основном окне:

В верхней части окна высвечивается информация о текущем состоянии SSD и его примерном сроке службы.

Сразу за ним идёт блок информации, в котором отображается информация как о самом SSD, так и его «здоровье». Чем ближе данная цифра к 100%, тем, соответственно, лучше.

Для любителей посмотреть S.M.A.R.T. информацию в этом же блоке предусмотрена одноимённая кнопка – нажмите её и вы увидите все S.M.A.R.T. параметры, что поступают с контроллера диска.

Спускаясь чуть ниже, мы можем видеть, какой суммарный объём данных был записан и прочитан с используемого вами SSD диска. Данная информация представлена «для справки».

Спустившись в нижнюю часть окна программы, мы видим меню с кнопками, используя которые можно осуществить настройку программы, получить справку по работе с утилитой, и провести повторный анализ SSD диска.

Третий способ, утилита Data Lifeguard Diagnostic

Данная утилита также призвана оценить состояние используемого SSD диска. Она была разработана небезызвестной компанией Western Digital, которая специализируется на разработке и производстве HDD\SSD дисков. Утилита Data Lifeguard Diagnostic одинаково хорошо тестирует как свои накопители, так и SSD диски сторонних производителей.

Официальный сайт утилиты Data Lifeguard Diagnostic

Запустив утилиту, она немедля проведёт быструю диагностику всех подключенных к системе накопителей. Результат будет отображён в главном окне программы. Интерфейс программы весьма аскетичен и отображает статус подключенных носителей, без каких-либо подробностей и расчётов оценки «продолжительности жизни» накопителя и т.п.

В программе предусмотрена возможность проведения дополнительного тестирования накопителя. Для этого необходимо совершить двойной клик по желаемому накопителю, и в открывшемся окне выбрать вид теста: расширенный или быстрый.

По окончании теста необходимо нажать по появившейся кнопке VIEW TEST RESULT , дабы увидеть результат тестирования накопителя. Если вы видите в результатах PASS , то ваш накопитель в добром здравии и не имеет ошибок при работе.

Краткий итог

По результатам данного обзора становится понятно, что существует достаточно много утилит, благодаря которым вы можете проверить работоспособность вашего ССД диска, оценить его здоровье. Вы можете выбрать из представленного перечня наиболее удобное и удовлетворяющее вашим требованиям решение для диагностики и контроля работы SSD диска.

Если у вас остались вопросы, вы можете задать их в комментариях.

Какую бы скорость не указывал производитель в характеристиках своих ССД, пользователю всегда хочется проверить все на деле. Но узнать, насколько скорость накопителя близка к заявленной без помощи сторонних программ невозможно. Максимум, что можно сделать, это сравнить то, насколько быстро копируются файлы на твердотельном диске с аналогичными результатами магнитного накопителя. Для того, чтобы узнать реальную скорость, необходимо воспользоваться специальной утилитой.

Тест скорости твердотельного накопителя

В качестве решения выберем простенькую программку под названием . Она имеет русифицированный интерфейс и очень проста в обращении. Итак, приступим.

Сразу после запуска перед нами откроется главное окно, на котором находятся все необходимые настройки и информация.

Перед началом теста установим пару параметров: количество проверок и размер файла. От первого параметра будет зависеть точность измерений. По большому счету, пяти проверок, которые установлены по умолчанию, вполне достаточно для получение корректных измерений. Но если вы хотите получить более точную информацию, то можно установить и максимальное значение.

Второй параметр – это размер файла, чтение и запись которого будет производиться во время тестов. Значение этого параметра будет также влиять как на точность измерений, так и на время выполнения теста. Однако, для того, чтобы не сокращать срок службы ССД, можно установить значение этого параметра в 100 Мегабайт.

После установки всех параметров переходим к выбору диска. Здесь все просто, раскрываем список и выбираем наш твердотельный накопитель.

Теперь можно переходить непосредственно к тестированию. В приложении CrystalDiskMark предусмотрено пять тестов:

  • Seq Q32T1 – тестирование последовательной записи/чтения файла с глубиной 32 на один поток;
  • 4K Q32T1 – тестирование случайной записи/чтения блоков размеров 4 Килобайта с глубиной 32 на один поток;
  • Seq – тестирование последовательной записи/чтения с глубиной 1;
  • – тестирование случайной записи/чтения с глубиной 1.

Каждый из тестов можно запустить отдельно, для этого достаточно кликнуть по зеленой кнопке нужного теста и дождаться результата.

Также можно сделать и полное тестирование, нажав на кнопку All.

Для того, чтобы получить более точные результаты, необходимо закрыть все (по возможности) активные программы (особенно торренты), а также желательно, чтобы диск был заполнен не более, чем на половину.

Поскольку при повседневном использовании персонального компьютера чаще всего используется случайный метод чтения/записи данных (в 80%), то нас больше будут интересовать результаты второго (4K Q32t1) и четвертого (4K) теста.

Теперь давай проанализируем результаты нашего теста. В качестве «подопытного» использовался диск ADATA SP900 объемом 128 ГБайт. В результате мы получили следующее:

  • при последовательном методе накопитель читает данные со скоростью 210-219 Мбит/с ;
  • запись при этом же методе происходит медленнее — всего 118 Мбит/с ;
  • чтение при случайном методе с глубиной в 1 происходит на скорости 20 Мбит/с ;
  • запись при аналогичном методе — 50 Мбит/с ;
  • чтение и запись с глубиной 32 — 118 МБит/с и 99 МБит/с , соответственно.

Стоит обратить внимание на то, что чтение/запись производится с высокими скоростями только с файлами, объем которых равен объему буфера. Те же, что больше буфера будут и читаться и копироваться медленнее.

Итак, с помощью небольшой программы мы можем с легкостью оценить скорость SSD и сравнить ее с той, которую указывают производители. К слову сказать, эта скорость обычно завышена, а с помощью CrystalDiskMark можно узнать на сколько именно.

В данной статье вы узнаете о том, как узнать основные характеристики твердотельных накопителей , а также, как их протестировать. Для этой операции мы взяли утилиту SSD-Z, на которую мы и будем сегодня делать обзор. Она бесплатна и имеет полезные функции в своем арсенале. Сразу скачать её можно отсюда .

При первом запуске программы многие пользователи сразу скажут, что она похожа на или другие аналогичные утилиты, да это так, поэтому им будет легче разобраться в ней.

На вкладке Device показаны все сведения о диске. Сейчас я поясню по каждому представленному пункту, это для тех, кто не знает английский.

  • Device name – название твердотельного накопителя;
  • Firmware – ;
  • Serial Number – серийный номер;
  • Controller – контроллер, который используется в диске;
  • Technology – технология производства;
  • Сells – тип используемых ячеек памяти;
  • Launch Date – дата создания накопителя;
  • TRIM – Наличие ;
  • Capabilities – технологии поддерживаемые в SSD;
  • Interface – интерфейс, по которому подключается диск;
  • SMART – состояние диска;
  • Temperature – текущая температура диска;
  • POH – время работы;
  • Capacity – ёмкость диска;
  • Bytes Written – записано байт;
  • Volumes – буквенное обозначение диска;
  • Partitions – тип разделов ();
  • Sector Size – размер одного сектора.

Это интересно:

Как видите параметров очень много и это только на одной вкладке. Все сведения важны и в некоторых ситуациях могут пригодиться. Конечно, если в базе утилиты присутствует модель вашего накопителя, то информация непременно найдется. К сожалению, распознать сведения о только что вышедшем диске не удастся. Хотя есть утилиты, которые берут информацию из системы и прочих источников для абсолютно любых накопителей.

Проверка состояния SSD

Я уже писал статью о том, в этой программе есть похожая функция и называется она S.M.A.R.T. О данной технологии я еще напишу, поэтому следите за обновлениями сайта.

В данном разделе вы найдете информацию по ошибкам чтения, время работы диска, температуру и другую полезную информацию. Конечно, при использовании утилиты вы получите куда больше информации.

При переходе на вкладку Partitions мы получаем данные о разделах и дисках, существующих на компьютере. Для выбора другого диска нужно выбрать его внизу программы.

Тестирование скорости SSD

В утилите SSD-Z также наличествует функция тестирование скорости SSD. Находится она на вкладке Benchmark . Так как программа еще сырая, то от результатов объективных сведения лучше не ждать.

Остальные вкладки не несут особо полезной информации. Думаю, программа не плоха и ей еще есть куда стремиться. Было бы не плохо, если бы все функции были организованы в лучшем в виде и собраны в одном месте, чтобы не использовать по несколько программ.

Бытует мнение, что одним из самых существенных недостатков твердотельных накопителей выступает их конечная и притом относительно невысокая надёжность. И действительно, в силу ограниченности ресурса флеш-памяти, которая обуславливается постепенной деградацией её полупроводниковой структуры, любой SSD рано или поздно теряет свою способность к хранению информации. Вопрос о том, когда это может произойти, для многих пользователей остаётся ключевым, поэтому многие покупатели при выборе накопителей руководствуются не столько их быстродействием, сколько показателями надёжности. Масла в огонь сомнений подливают и сами производители, которые из маркетинговых соображений в условиях гарантии на свои потребительские продукты оговаривают сравнительно невысокие объёмы разрешённой записи.

Тем не менее, на практике массовые твердотельные накопители демонстрируют более чем достаточную надёжность для того, чтобы им можно было доверять хранение пользовательских данных. Эксперимент, показавший отсутствие реальных причин для переживаний за конечность их ресурса, некоторое время тому назад проводил сайт TechReport . Им был выполнен тест, показавший, что, несмотря на все сомнения, выносливость SSD уже выросла настолько, что о ней можно вообще не задумываться. В рамках эксперимента было практически подтверждено, что большинство моделей потребительских накопителей до своего отказа способны перенести запись порядка 1 Пбайт информации, а особенно удачные модели, вроде Samsung 840 Pro, остаются в живых, переварив и 2 Пбайт данных. Такие объёмы записи практически недостижимы в условиях обычного персонального компьютера, поэтому срок жизни твердотельного накопителя попросту не может подойти к концу до того, как он полностью морально устареет и будет заменён новой моделью.

Однако убедить скептиков данное тестирование не смогло. Дело в том, что проводилось оно в 2013-2014 годах, когда в ходу были твердотельные накопители, построенные на базе планарной MLC NAND, которая изготавливается с применением 25-нм техпроцесса. Такая память до своей деградации способна переносить порядка 3000-5000 циклов программирования-стирания, а сейчас в ходу уже совсем другие технологии. Сегодня в массовые модели SSD пришла флеш-память с трёхбитовой ячейкой, а современные планарные техпроцессы используют разрешение 15-16 нм. Параллельно распространение приобретает флеш-память с принципиально новой трёхмерной структурой. Любой из этих факторов способен в корне изменить ситуацию с надёжностью, и в сумме современная флеш-память обещает лишь ресурс в 500-1500 циклов перезаписи. Неужели вместе с памятью ухудшаются и накопители и за их надёжность нужно снова начинать переживать?

Скорее всего - нет. Дело в том, что наряду с изменением полупроводниковых технологий происходит непрерывное совершенствование контроллеров, управляющих флеш-памятью. В них внедряются более совершенные алгоритмы, которые должны компенсировать происходящие в NAND изменения. И, как обещают производители, актуальные модели SSD как минимум не менее надёжны, чем их предшественники. Но объективная почва для сомнений всё-таки остаётся. Действительно, на психологическом уровне накопители на базе старой 25-нм MLC NAND с 3000 циклов перезаписи выглядят куда основательнее современных моделей SSD с 15/16-нм TLC NAND, которая при прочих равных может гарантировать лишь 500 циклов перезаписи. Не слишком обнадёживает и набирающая популярность TLC 3D NAND, которая хоть и производится по более крупным технологическим нормам, но при этом подвержена более сильному взаимному влиянию ячеек.

Учитывая всё это, мы решили провести собственный эксперимент, который позволил бы определить, какую выносливость могут гарантировать актуальные сегодня модели накопителей, основанные на наиболее ходовых в настоящее время типах флеш-памяти.

Контроллеры решают

Конечность жизни накопителей, построенных на флеш-памяти, уже давно ни у кого не вызывает удивления. Все давно привыкли к тому, что одной из характеристик NAND-памяти выступает гарантированное количество циклов перезаписи, после превышения которого ячейки могут начинать искажать информацию или просто отказывать. Объясняется это самим принципом работы такой памяти, который основывается на захвате электронов и хранении заряда внутри плавающего затвора. Изменение состояний ячеек происходит за счёт приложения к плавающему затвору сравнительно высоких напряжений, благодаря чему электроны преодолевают тонкий слой диэлектрика в одну или другую сторону и задерживаются в ячейке.

Полупроводниковая структура ячейки NAND

Однако такое перемещение электронов сродни пробою - оно постепенно изнашивает изолирующий материал, и в конечном итоге это приводит к нарушению всей полупроводниковой структуры. К тому же существует и вторая проблема, влекущая за собой постепенное ухудшение характеристик ячеек, - при возникновении туннелирования электроны могут застревать в слое диэлектрика, препятствуя правильному распознаванию заряда, хранящегося в плавающем затворе. Всё это значит, что момент, когда ячейки флеш-памяти перестают нормально работать, неизбежен. Новые же технологические процессы лишь усугубляют проблему: слой диэлектрика с уменьшением производственных норм становится только тоньше, что снижает его устойчивость к негативным влияниям.

Однако говорить о том, что между ресурсом ячеек флеш-памяти и продолжительностью жизни современных SSD существует прямая зависимость, было бы не совсем верно. Работа твердотельного накопителя - это не прямолинейная запись и чтение в ячейках флеш-памяти. Дело в том, что NAND-память имеет достаточно сложную организацию и для взаимодействия с ней требуются специальные подходы. Ячейки объединены в страницы, а страницы - в блоки. Запись данных возможна лишь в чистые страницы, но для того, чтобы очистить страницу, необходимо сбросить весь блок целиком. Это значит, что запись, а ещё хуже - изменение данных, превращается в непростой многоступенчатый процесс, включающий чтение страницы, её изменение и повторную перезапись в свободное место, которое должно быть предварительно расчищено. Причём подготовка свободного места - это отдельная головная боль, требующая «сборки мусора» - формирования и очистки блоков из уже побывавших в использовании, но ставших неактуальными страниц.

Схема работы флеш-памяти твердотельного накопителя

В результате реальные объёмы записи в флеш-память могут существенно отличаться от того объёма операций, который инициируется пользователем. Например, изменение даже одного байта может повлечь за собой не только запись целой страницы, но и даже необходимость перезаписи сразу нескольких страниц для предварительного высвобождения чистого блока.

Соотношение между объёмом записи, совершаемой пользователем, и фактической нагрузкой на флеш-память называется коэффициентом усиления записи. Этот коэффициент почти всегда выше единицы, причём в некоторых случаях - намного. Однако современные контроллеры за счёт буферизации операций и других интеллектуальных подходов научились эффективно снижать усиление записи. Распространение получили такие полезные для продления жизни ячеек технологии, как SLC-кеширование и выравнивание износа. С одной стороны, они переводят небольшую часть памяти в щадящий SLC-режим и используют её для консолидации мелких разрозненных операций. С другой - делают нагрузку на массив памяти более равномерной, предотвращая излишние многократные перезаписи одной и той же области. В результате сохранение на два разных накопителя одного и того же количества пользовательских данных с точки зрения массива флеш-памяти может вызывать совершенно различную нагрузку - всё зависит от алгоритмов, применяемых контроллером и микропрограммой в каждом конкретном случае.

Есть и ещё одна сторона: технологии сборки мусора и TRIM, которые в целях повышения производительности предварительно готовят чистые блоки страниц флеш-памяти и потому могут переносить данные с места на место без какого-либо участия пользователя, вносят в износ массива NAND дополнительный и немалый вклад. Но конкретная реализация этих технологий также во многом зависит от контроллера, поэтому различия в том, как SSD распоряжаются ресурсом собственной флеш-памяти, могут быть значительными и здесь.

В итоге всё это означает, что практическая надёжность двух разных накопителей с одинаковой флеш-памятью может очень заметно различаться лишь за счет различных внутренних алгоритмов и оптимизаций. Поэтому, говоря о ресурсе современного SSD, нужно понимать, что этот параметр определяется не только и не столько выносливостью ячеек памяти, сколько тем, насколько бережно с ними обращается контроллер.

Алгоритмы работы контроллеров SSD постоянно совершенствуются. Разработчики не только стараются оптимизировать объём операций записи в флеш-память, но и занимаются внедрением более эффективных методов цифровой обработки сигналов и коррекции ошибок чтения. К тому же некоторые из них прибегают к выделению на SSD обширной резервной области, за счёт чего нагрузка на ячейки NAND дополнительно снижается. Всё это тоже сказывается на ресурсе. Таким образом, в руках у производителей SSD оказывается масса рычагов для влияния на то, какую итоговую выносливость будет демонстрировать их продукт, и ресурс флеш-памяти - лишь один из параметров в этом уравнении. Именно поэтому проведение тестов выносливости современных SSD и вызывает такой интерес: несмотря на повсеместное внедрение NAND-памяти с относительно невысокой выносливостью, актуальные модели совершенно необязательно должны иметь меньшую надёжность по сравнению со своими предшественниками. Прогресс в контроллерах и используемых ими методах работы вполне способен компенсировать хлипкость современной флеш-памяти. И именно этим исследование актуальных потребительских SSD и интересно. По сравнению с SSD прошлых поколений неизменным остаётся лишь только одно: ресурс твердотельных накопителей в любом случае конечен. Но как он поменялся за последние годы - как раз и должно показать наше тестирование.

Методика тестирования

Суть тестирования выносливости SSD очень проста: нужно непрерывно перезаписывать данные в накопителях, пытаясь на практике установить предел их выносливости. Однако простая линейная запись не совсем отвечает целям тестирования. В предыдущем разделе мы говорили о том, что современные накопители имеют целый букет технологий, направленных на снижение коэффициента усиления записи, а кроме того, они по-разному выполняют процедуры сборки мусора и выравнивания износа, а также по-разному реагируют на команду операционной системы TRIM. Именно поэтому наиболее правильным подходом является взаимодействие с SSD через файловую систему с примерным повторением профиля реальных операций. Только в этом случае мы сможем получить результат, который обычные пользователи могут рассматривать в качестве ориентира.

Поэтому в нашем тесте выносливости мы используем отформатированные с файловой системой NTFS накопители, на которых непрерывно и попеременно создаются файлы двух типов: мелкие - со случайным размером от 1 до 128 Кбайт и крупные - со случайным размером от 128 Кбайт до 10 Мбайт. В процессе теста эти файлы со случайным заполнением множатся, пока на накопителе остаётся более 12 Гбайт свободного места, по достижении же этого порога все созданные файлы удаляются, делается небольшая пауза и процесс повторяется вновь. Помимо этого, на испытуемых накопителях одновременно присутствует и третий тип файлов - постоянный. Такие файлы общим объёмом 16 Гбайт в процессе стирания-перезаписи не участвуют, но используются для проверки правильной работоспособности накопителей и стабильной читаемости хранимой информации: каждый цикл заполнения SSD мы проверяем контрольную сумму этих файлов и сверяем её с эталонным, заранее рассчитанным значением.

Описанный тестовый сценарий воспроизводится специальной программой Anvil’s Storage Utilities версии 1.1.0, мониторинг состояния накопителей проводится при помощи утилиты CrystalDiskInfo версии 7.0.2. Тестовая система представляет собой компьютер с материнской платой ASUS B150M Pro Gaming, процессором Core i5-6600 со встроенным графическим ядром Intel HD Graphics 530 и 8 Гбайт DDR4-2133 SDRAM. Приводы с SATA-интерфейсом подключаются к контроллеру SATA 6 Гбит/с, встроенному в чипсет материнской платы, и работают в режиме AHCI. Используется драйвер Intel Rapid Storage Technology (RST) 14.8.0.1042.

Список моделей SSD, принимающих участие в нашем эксперименте, к настоящему моменту включает уже более пяти десятков наименований:

  1. (AGAMMIXS11-240GT-C, прошивка SVN139B);
  2. ADATA XPG SX950 (ASX950SS-240GM-C, прошивка Q0125A);
  3. ADATA Ultimate SU700 256 Гбайт (ASU700SS-256GT-C, прошивка B170428a);
  4. (ASU800SS-256GT-C, прошивка P0801A);
  5. (ASU900SS-512GM-C, прошивка P1026A);
  6. Crucial BX500 240 Гбайт (CT240BX500SSD1, прошивка M6CR013);
  7. Crucial MX300 275 Гбайт (CT275MX300SSD1, прошивка M0CR021);
  8. (CT250MX500SSD1, прошивка M3CR010);
  9. GOODRAM CX300 240 Гбайт (SSDPR-CX300-240, прошивка SBFM71.0 );
  10. (SSDPR-IRIDPRO-240 , прошивка SAFM22.3);
  11. (SSDPED1D280GAX1, прошивка E2010325);
  12. (SSDSC2KW256G8, прошивка LHF002C);

Как мы тестируем HDD и SSD | Введение

В этой статье мы расскажем о нашей новой методике, программах и процедурах для тестирования пользовательских твердотельных накопителей и механических жестких дисков. Не все издания используют одинаковые методики. Зная, на основе каких данных делаются выводы в обзорах, вы сможете более уверенно принимать решения о покупке. Вы можете взять один из изученных нами SSD или HDD и сравнить его с другим продуктом, побывавшем у нас ранее, ведь мы используем одинаковый алгоритм тестирования, который позволяет делать прямые сравнения разных моделей.

В обзорах отдельных продуктов публикуются результаты далеко не всех протестированных нами ранее устройств, но вы можете самостоятельно провести сравнение новых и старых моделей, открыв соответствующие обзоры.

В статьях мы учитываем различные параметры производительности, рассматриваем упаковку, аксессуары в комплекте и технические характеристики устройств. Для начала давайте разберемся, что на самом деле означаю спецификации, указываемые производителями.

Как мы тестируем HDD и SSD | Спецификации продуктов

Компании публикуют спецификации, основанные на производительности устройства в свежем состоянии или "из коробки". Разные производители представляют информацию разного типа. Для формирования спецификаций даже нет стандартных процедур. За общее правило принято указывать четыре показателя скорости: последовательное чтение, последовательная запись, произвольное чтение и произвольная запись.

Простая утилита ATTO с графическим интерфейсом предлагает два метода определения скорости последовательных операций. Она тестирует накопители на глубине очереди четыре или десять команд, но не позволяет проверить скорость при обработке одной большой команды, отчего генерирует результаты, которые редко встречаются в реальном мире. SanDisk и ряд других компаний отказались от ATTO в пользу CrystalDiskMark для тестирования скорости последовательного чтения и записи.

Скорость выполнения произвольных операций можно измерить разными способами. Большинство компаний использует Iometer с блоками 4 Кбайт на глубине очереди 32 команды. Хотя получаемые результаты впечатляют, но с реальным поведением накопителей имеют мало общего. Чуть позже мы обсудим эту тему более подробно.

Просматривая характеристики продуктов на сайте производителя или на коробке, нужно помнить ряд моментов. Протестировав множество накопителей в реальных тестах, мы поняли, что не стоит ожидать от производителя указания реалистичных данных. В конце концов, типичного утвержденного сценария использования не существует. Даже на одной системе нагрузки в разные дни варьируются. И особенно нельзя сравнивать спецификации продуктов одного поставщика со спецификациями других производителей. Для получения данных они используют различные конфигурации и методики, и результаты буду сильно отличаться.

Как мы тестируем HDD и SSD | Методика

В наших тестах мы стараемся получить результаты, которые потом можно будет сравнивать с другими. Для этого требуется строгий регламент тестирования. В случае с твердотельными накопителями, любая задача, выполненная накопителем перед процессом тестирования, повлияет на получаемые в дальнейшем результаты. Естественно, все SSD-накопители поступают на тесты в чистом виде, то есть в состоянии "из коробки".

В этом состоянии контроллер способен записывать данные на флэш-память напрямую, минуя процедуру чтения, изменения и записи. Но после заполнения накопителя данными, контроллеру необходимо прочитать блок данных, внести изменения и затем записать его обратно. Это происходит, даже если изменения касаются только одной ячейки. Процесс чтения, изменения и записи может удвоить или даже утроить задержку, в зависимости от типа информации, с которой работает накопитель.

Как мы тестируем HDD и SSD | Тестовое оборудование

Через наши лаборатории проходит много накопителей, примерно по восемь штук в месяц. Нередко приходится проверять устройства, которые еще находятся в разработке, часто с различными неофициальными версиями прошивки. Чтобы поддерживать такой темп и при этом предоставлять качественные комментарии, не нарушая очередность, необходимо использовать сразу несколько тестовых стендов.

Как мы тестируем HDD и SSD | Тестовая система для SATA


Тестовая система для SATA
Системная плата Asus Z87 ROG Maximus VI Extreme
Процессор Intel Core i7-4770K @ 4,5 ГГц
ОЗУ Corsair Vengeance DDR3-1866
Графика Intel HD Graphics 4600
Блок питания Corsair AX860i
Корпус Rosewill RSV-L4000
Thermaltake MAX-1562
Сеть Mellanox ConnectX-3 VPI
Операционная система Microsoft Windows 8.1 Pro

Вышеуказанная конфигурация является стандартной для тестов потребительских SSD и жестких дисков. Таких систем у нас четыре. Эти машины предназначены для тестирования накопителей с интерфейсом SATA. Время от времени с их помощью тестируются накопители для серверных систем. Чтобы сохранить системы в исходном состоянии, мы изолировали их от Интернета, отключив тем самым автоматические обновления, которые могут повлиять на получаемые результаты.

Как мы тестируем HDD и SSD | Тестовая система для PCIe


Тестовая система для PCIe
Системная плата ASRock Z97 Extreme6
Процессор Intel Core i7-4790K @ 4,5 ГГц
ОЗУ Corsair Vengeance DDR3-1866
Графика Intel HD Graphics 4600
Блок питания Corsair AX860i
Корпус Rosewill RSV-L4000
Модуль с функцией горячей замены накопителей Thermaltake MAX-1562
Сеть Mellanox ConnectX-3 VPI
Операционная система Microsoft Windows 8.1 Pro

Накопители на базе интерфейса PCIe тестируются на двух одинаковых отдельных стендах. Материнская плата ASRock Z97 Extreme6 обеспечивает прямое подключение четырех линий PCIe 3.0 от процессора к интерфейсу M.2. Это идеальный вариант для установки накопителя M.2 в высокопроизводительный пользовательский ПК. Эти системы также изолированы от сети Интернет. Конфигурация операционной системы и программного обеспечения для тестирования соответствует тестовому стенду для накопителей на базе SATA.

Кроме того, у нас есть еще несколько систем для специализированных тестов, клонирования системы, создания образов системы, тестов времени автономной работы от батареи ноутбука и операций безопасного стирания. Всего в нашем распоряжении есть 29 современных систем, начиная от ноутбуков на базе Sandy Bridge для тестирования накопителей на выставках и заканчивая 10 идентичными системами с двумя процессорами Xeon для тестирования сетевых устройств хранения данных (NAS) с подключением до 120 клиентов, использующих Hyper-V.

Для измерения времени работы от батареи мы используем два разных ноутбука. Стандартные SATA-накопители формата 2,5 дюйма тестируются в Lenovo T440 – это один из немногих ноутбуков с поддержкой функции DEVSLP. Для проверки SSD формата m.2 с интерфейсом SATA или PCIe используется ноутбук Lenovo X1 Carbon Gen 3. Этот ноутбук поставляется с накопителем M.2 от Lenovo. Подобных моделей мало, но в ближайшие месяцы их число должно увеличиться.

Как мы тестируем HDD и SSD | Почему важна упаковка

Многие из нас покупают комплектующие для ПК в Интернете. Но иногда желание подержать продукт в руках перед покупкой перевешивает желание немного сэкономить. В любом случае, розничная упаковка является важным фактором, независимо от того, где вы покупаете гаджет.

Онлайн-заказы подразумевают доставку, и нет ничего хуже, когда долгожданная посылка оказывается поврежденной. В наших обзорах мы обязательно смотрим на упаковку розничных SSD-накопителей и жестких дисков. Твердотельные диски по большей части нечувствительны к вибрации, а техническое развитие производства жестких дисков позволило значительно повысить их стойкость к вибрации и ударам в выключенном состоянии. Тем не менее, мы приветствуем наличие вибропоглощающего материала в упаковке.

У SSD производительность варьируется в зависимости от емкости. Меньшие накопители, как правило, медленнее более емких моделей одного семейства. Некоторые производители публикуют спецификации для каждой модели, а некоторые только максимальные скоростные показатели серии, выбирая для этого лучший сценарий. На практике модели на 128 Гбайт и даже 256 Гбайт, как правило, работают немного медленнее версий емкостью 512 Гбайт и 1 Тбайт.

Делая покупку в розничном магазине, нам хочется посмотреть техническую информацию о продукте. Опять же, некоторые производители предоставляют полный список характеристик на коробке, в то время как другие указывают минимум данных. Когда в обзорах мы говорим, что есть, а чего нет, мы надеемся убедить производителей делать более информативное описание продукта для своих клиентов.

Как мы тестируем HDD и SSD | Тестирование по четырем направлениям

Четыре основных направления тестирования включают скорость последовательного чтения, последовательной записи, произвольного чтения и произвольной записи. Не все обозреватели или компании используют аналогичный подход.

Скорость последовательных операций обычно измеряется блоками по 128 Кбайт, хотя некоторые авторы любят использовать блоки по 64 Кбайт, а некоторые даже доходят до 8 Мбайт. В основном, мы используем 128 Кбайт, но сделали отдельную диаграмму, в которой показан диапазон размеров блоков от 512 бит до 8 Мбайт как для последовательного, так и для случайного доступа. Кроме того, глубина очереди на этом графика растет с 1 до 32 команд.

Последовательное чтение блоками по 128 Кбайт, Мбайт/с (больше – лучше)


Последовательная запись блоками по 128 Кбайт, Мбайт/с (больше – лучше)

Скорость произвольных операций почти повсеместно измеряется блоками по 4 Кбайт при очередности 32 команды. Хотя этот показатель не совсем точно отражает реальную производительность, он демонстрирует то, что нам хотят показать производители. Мы показываем скорость произвольных операций блоками 4 Кбайт при различной очередности от 1 до 32 команд. Поскольку производительность PCIe-накопителей хорошо масштабируется, в некоторых тестах мы повышаем очередность до 128 команд.

Произвольное чтение блоками по 4 Кбайт, IOPS (больше – лучше)


Произвольная запись блоками по 4 Кбайт, IOPS (больше – лучше)

В каждом обзоре мы проводим сравнение между скоростью последовательного чтения и записи на глубине очереди в две команды. Также для каждой глубины очереди мы разбиваем скорость произвольного чтения на гистограмме по группам. Графики произвольных операций по 4 Кбайт поделены на высокие и низкие глубины очередей.

Как мы тестируем HDD и SSD | Смешанные задачи

В типичном представлении в смешанных задачах на пользовательских системах операции чтения занимают 80%, на рабочих станциях - 70%.

Произвольное чтение (80%) блоками по 4 Кбайт, IOPS (больше – лучше)

Устройства на базе SATA полудуплексные. Они могут осуществлять либо чтение, либо запись, но не обе операции одновременно. Накопители, использующие набор команд SCSI (в том числе SAS), являются дуплексными, то есть они могут считывать и записывать одновременно. Дуплексные устройства справляются со смешанными задачами намного лучше.

Загрузочные накопители подвергаются смешанным нагрузкам, так как система постоянно читает и записывает небольшие объемы данных. При запуске приложения программа не только запускает серию операций чтения, но также регистрирует (записывает) данные на хост. И это происходит сотни раз в минуту.

Накопители, используемые лишь для хранения больших объемов данных, имеют иное соотношение операций чтения/записи. Они не выполняют мелких регистрирующих операций, но осуществляют запись и чтение при передаче файлов в и из системы. Большинство таких второстепенных накопителей используется для хранения данных, которые передаются последовательно. Фильмы, музыка, изображения и другие медиафайлы занимают основную часть второстепенного хранилища.

В следующем разделе мы рассмотрим различные соотношения операций чтения/записи и то, как последовательные данные реагируют на многозадачность во второстепенных средах.

Как мы тестируем HDD и SSD | Устойчивое состояние

Устойчивое состояние производительности часто ассоциируется с задачами производственного класса. По большей части, это действительно так. Пользовательские твердотельные накопители большую часть времени находится в простое. Команда TRIM, алгоритмы сбора мусора и выравнивания износа призваны очищать ячейки NAND, чтобы они оставались чистыми и готовыми для записи новых данных.

4К устойчивое состояние


4К устойчивое состояние, последние сто блоков данных

Два графика выше демонстрируют то, что мы привыкли называть устойчивой производительностью. В клиентской среде на SSD никогда не ведется запись блоками по 4 Кбайт в течение нескольких часов подряд. Первый график показывает второй проход операций записи. В отличие от первого, в котором все ячейки чистые и готовы принимать данные, тут уже нужна предварительная очистка. Нас больше интересует второй график. Он иллюстрирует скорость произвольных операций в худшем сценарии. В идеальном случае на нем вы должны увидеть высокий уровень выполнения операций IOPS и ровный график без особых отклонений.

Последовательные смешанные операции в устойчивом состоянии

Бывают ситуации, когда данные о производительности в устойчивом состоянии являются более актуальным показателем, например, в полупрофессиональных задачах. Тест, включающий смешанные операции с последовательным доступом в устойчивом состоянии, показывает нам, как накопитель ведет себя после тяжелой операции редактирования мультимедиа на вторичном накопителе. Так как в разных пользовательских задачах соотношение операций чтения/записи разное, мы показываем весь диапазон, начиная от 100% операций чтения и заканчивая 0% чтения (то есть тестовым прогоном со 100% операций записи).

Как мы тестируем HDD и SSD | Тесты в реальных приложениях

После синтетических тестов, измеряющих предельные значения производительности, мы переходим к анализу накопителей в реальных программах. Эмуляции действий пользователя для систем хранения мы берем из пакета Futuremark PCMark 8.

Примечание от лаборатории:

Мы используем бенчмарк PCMark 8 Storage для тестирования производительности твердотельных накопителей, жестких дисков и гибридных накопителей, где эмулируется работа с приложениями Adobe Creative Suite, Microsoft Office и нескольких популярных игр. С его помощью можно проверить системный диск или любое другое распознанное устройство хранения, включая внешние накопители. В отличие от синтетических тестов систем хранения, PCMark 8 Storage выявляет реальные различия в производительности между накопителями.

Стандартный тест накопителей в PCMark 8 основывается на работе ряда реальных приложений. Запускается требуемая программа, и во время ее работы записывается вся последовательность ее операций ввода/вывода. Затем PCMark 8 воспроизводит эту последовательность на компьютере, как будто эта задача выполняется в данный момент в режиме реального времени. Тест также воспроизводит остановки потока данных в тех местах, где они появляются в реальной программе. Это самый продвинутый тест, доступный для эмулирования работы такого широкого спектра реальных программ.

Как мы тестируем HDD и SSD | Тест хранилища Futuremark PCMark 8 Storage


Послед. чтение Произв. чтение Послед. запись Произв. запись Прочитано данных, Мбайт Записано данных, Мбайт
Photoshop Light 1508 17525 18342 1743 313 2336
Photoshop Heavy 4277 18655 44742 2065 468 5640
Illustrator 1036 21923 682 532 373 89
InDesign 2359 22207 4874 927 401 624
After Effects 1772 17793 86 500 311 16
Word 152 4302 748 205 107 95
Excel 72 3148 119 87 73 15
PowerPoint 56 3441 147 107 83 21
World of Warcraft 1415 14927 10 659 390 5
Battlefield 3 5782 43487 218 431 887 28

Стандартный тестовый прогон предоставляет результат для каждого отдельного теста в виде суммарного времени обслуживания задачи накопителем. Чаще всего эти цифры демонстрируют только небольшие различия между премиальными и бюджетными продуктами. В реальности происходит примерно то же самое.