Тарифы Услуги Сим-карты

Топология локальных сетей. Интерфейсы и порты FDDI. Подключение оборудования к сети FDDI

Технология Fiber Distributed Data Interface - первая технология локальных сетей, которая использовала в качестве среды передачи данных оптоволоконный кабель.

Попытки применения света в качестве среды, несущей информацию, предпринимались давно - еще в 1880 году Александр Белл запатентовал устройство, которое передавало речь на расстояние до 200 метров с помощью зеркала, вибрировавшего синхронно со звуковыми волнами и модулировавшего отраженный свет.

Работы по использованию света для передачи информации активизировались в 1960-е годы в связи с изобретением лазера, который мог обеспечить модуляцию света на очень высоких частотах, то есть создать широкополосный канал для передачи большого количества информации с высокой скоростью. Примерно в то же время появились оптические волокна, которые могли передавать свет в кабельных системах, подобно тому как медные провода передают электрические сигналы в традиционных кабелях. Однако потери света в этих волокнах были слишком велики, чтобы они могли быть использованы как альтернатива медным жилам. Недорогие оптические волокна, обеспечивающие низкие потери мощности светового сигнала и широкую полосу пропускания (до нескольких ГГц) появились только в 1970-е годы. В начале 1980-х годов началось промышленная установка и эксплуатация оптоволоконных каналов связи для территориальных телекоммуникационных систем.

В 1980-е годы начались также работы по созданию стандартных технологий и устройств для использования оптоволокнных каналов в локальных сетях. Работы по обобщению опыта и разработке первого оптоволоконного стандарта для локальных сетей были сосредоточены в Американском Национальном Институте по Стандартизации - ANSI, в рамках созданного для этой цели комитета X3T9.5.

Начальные версии различных составляющих частей стандарта FDDI были разработаны комитетом Х3Т9.5 в 1986 - 1988 годах, и тогда же появилось первое оборудование - сетевые адаптеры, концентраторы, мосты и маршрутизаторы, поддерживающие этот стандарт.

В настоящее время большинство сетевых технологий поддерживают оптоволоконные кабели в качестве одного из вариантов физического уровня, но FDDI остается наиболее отработанной высокоскоростной технологией, стандарты на которую прошли проверку временем и устоялись, так что оборудование различных производителей показывает хорошую степень совместимости

Основы технологии FDDI

Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Разработчики технологии FDDI ставили перед собой в качестве наиболее приоритетных следующие цели:

  • Повысить битовую скорость передачи данных до 100 Мб/с;
  • Повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода - повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т.п.;
  • Максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного трафиков.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Использование двух колец - это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят им воспользоваться, должны быть подключены к обоим кольцам. В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля первичного (Primary) кольца, поэтому этот режим назван режимом Thru - "сквозным" или "транзитным". Вторичное кольцо (Secondary) в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным (рисунок 2.1), образуя вновь единое кольцо. Этот режим работы сети называется Wrap , то есть "свертывание" или "сворачивание" колец. Операция свертывания производится силами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются против часовой стрелки, а по вторичному - по часовой. Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.

В стандартах FDDI отводится много внимания различным процедурам, которые позволяют определить наличие отказа в сети, а затем произвести необходимую реконфигурацию. Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов. При множественных отказах сеть распадается на несколько не связанных сетей.

Рис. 2.1. Реконфигурация колец FDDI при отказе

Кольца в сетях FDDI рассматриваются как общая разделяемая среда передачи данных, поэтому для нее определен специальный метод доступа. Этот метод очень близок к методу доступа сетей Token Ring и также называется методом маркерного (или токенного) кольца - token ring (рисунок 2.2, а).

Станция может начать передачу своих собственных кадров данных только в том случае, если она получила от предыдущей станции специальный кадр - токен доступа (рисунок 2.2, б). После этого она может передавать свои кадры, если они у нее имеются, в течение времени, называемого временем удержания токена - Token Holding Time (THT). После истечения времени THT станция обязана завершить передачу своего очередного кадра и передать токен доступа следующей станции. Если же в момент принятия токена у станции нет кадров для передачи по сети, то она немедленно транслирует токен следующей станции. В сети FDDI у каждой станции есть предшествующий сосед (upstream neighbor) и последующий сосед (downstream neighbor), определяемые ее физическими связями и направлением передачи информации.

Рис. 2.2. Обработка кадров станциями кольца FDDI

Каждая станция в сети постоянно принимает передаваемые ей предшествующим соседом кадры и анализирует их адрес назначения. Если адрес назначения не совпадает с ее собственным, то она транслирует кадр своему последующему соседу. Этот случай приведен на рисунке (рисунок 2.2, в). Нужно отметить, что, если станция захватила токен и передает свои собственные кадры, то на протяжении этого периода времени она не транслирует приходящие кадры, а удаляет их из сети.

Если же адрес кадра совпадает с адресом станции, то она копирует кадр в свой внутренний буфер, проверяет его корректность (в основном по контрольной сумме), передает его поле данных для последующей обработки протоколу лежащего выше над FDDI уровня (например, IP), а затем передает исходный кадр по сети последующей станции (рисунок 2.2, г). В передаваемом в сеть кадре станция назначения отмечает три признака: распознавания адреса, копирования кадра и отсутствия или наличия в нем ошибок.

После этого кадр продолжает путешествовать по сети, транслируясь каждым узлом. Станция, являющаяся источником кадра для сети, ответственна за то, чтобы удалить кадр из сети, после того, как он, совершив полный оборот, вновь дойдет до нее (рисунок 2.2, д). При этом исходная станция проверяет признаки кадра, дошел ли он до станции назначения и не был ли при этом поврежден. Процесс восстановления информационных кадров не входит в обязанности протокола FDDI, этим должны заниматься протоколы более высоких уровней.

На рисунке 2.3 приведена структура протоколов технологии FDDI в сравнении с семиуровневой моделью OSI. FDDI определяет протокол физического уровня и протокол подуровня доступа к среде (MAC) канального уровня. Как и многие другие технологии локальных сетей, технология FDDI использует протокол 802.2 подуровня управления каналом данных (LLC), определенный в стандартах IEEE 802.2 и ISO 8802.2. FDDI использует первый тип процедур LLC, при котором узлы работают в дейтаграммном режиме - без установления соединений и без восстановления потерянных или поврежденных кадров.


Рис. 2.3. Структура протоколов технологии FDDI

Физический уровень разделен на два подуровня: независимый от среды подуровень PHY (Physical), и зависящий от среды подуровень PMD (Physical Media Dependent). Работу всех уровней контролирует протокол управления станцией SMT (Station Management).

Уровень PMD обеспечивает необходимые средства для передачи данных от одной станции к другой по оптоволокну. В его спецификации определяются:

  • Требования к мощности оптических сигналов и к многомодовому оптоволоконному кабелю 62.5/125 мкм;
  • Требования к оптическим обходным переключателям (optical bypass switches) и оптическим приемопередатчикам;
  • Параметры оптических разъемов MIC (Media Interface Connector), их маркировка;
  • Длина волны в 1300 нанометров, на которой работают приемопередатчики;
  • Представление сигналов в оптических волокнах в соответствии с методом NRZI.

Спецификация TP-PMD определяет возможность передачи данных между станциями по витой паре в соответствии с методом MLT-3. Спецификации уровней PMD и TP-PMD уже были рассмотрены в разделах, посвященных технологии Fast Ethernet.

Уровень PHY выполняет кодирование и декодирование данных, циркулирующих между MAC-уровнем и уровнем PMD, а также обеспечивает тактирование информационных сигналов. В его спецификации определяются:

  • кодирование информации в соответствии со схемой 4B/5B;
  • правила тактирования сигналов;
  • требования к стабильности тактовой частоты 125 МГц;
  • правила преобразования информации из параллельной формы в последовательную.

Уровень MAC ответственен за управление доступом к сети, а также за прием и обработку кадров данных. В нем определены следующие параметры.

Сетевая технология – это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств, достаточных для построения вычислительной сети.

В проектировании локальных сетей основная роль отводится протоколам физического и канального уровней модели OSI. Специфика локальных сетей, в которых используется разделяемая среда передачи данных, нашла свое отражение в разделении канального уровня на два подуровня: логической передачи данных (Logical Link Control), уровень LLC, и управления доступом к сети (Media Access Control), уровень MAC.

Уровень MAC обеспечивает корректное использ общей среды передачи данных, когда по определенному алгоритму любой узел получает возможность передачи своего кадра данных. В современных вычислительных сетях имеют распространение несколько протоколов уровня MAC: Ethernet, Fast Ethernet, Gigabit Ethernet, l00VG-AniLAN, Token Ring, FDDI. Ур LLC организует передачу кадров данных с разл степенью надежности.

Технология Ethernet

Фирменный сетевой стандарт Ethernet был разработан фирмой Xerox в 1975 году. В 1980 году фирмы DEC, Intel, Xerox разработали стандарт Ethernet DIX на основе коаксиального кабеля. Эта последняя версия фирменного стандарта послужила основой стандарта IEEE 802.3. Стандарт IEEE 802.3 имеет модификации, которые различаются типом используемой физической среды:

Спецификации физической среды Ethernet

l0Base-5

l0Base-2

l0Base-T

l0Base-F

Максимальная длина сегмента

Макс. количество сегментов

Макс. количество пользователей

Максимальное число повторителей

Макс. протяженность

«толстый» коаксиал

"тонкий" коаксиал

Топология

звезда, дерево

    l0Base-T - Конечные узлы соединяются по топологии «точка-точка» с многопортовым повторителем с помощью двух витых пар. Преимущество l0Base-T: концентратор контролирует работу узлов и изолирует от сети некорректно работающие узлы.

    l0Base-F – «+» высокая помехоустойчивость,

«–» сложность прокладки оптики.

10 - скорость передачи данных, Base - метод передачи на одной базовой частоте 10 МГц, последний символ - тип кабеля. Локальные сети, построенные по этому стандарту, обеспечивают пропускную способность до 10 Мбит/с. Используемая топология - общая шина, "звезда" и смешанные структуры.

В стандарте 802.3, включая Fast Ethernet и Gigabit Ethernet, в качестве метода доступа к среде передачи данных используется метод коллективного доступа с опознаванием несущей и обнаружением коллизий (carrier-sense-miltiply-access with collision detection, CSMA/CD), метод CSMA/CD.

Этот метод используется в сетях, где все компьютеры имеют непосредственный доступ к общей шине и могут немедленно получить данные, которые посылаются любым компьютером. Простота этого метода позволила ему получить широкое распространение.

Данные передаются кадрами. Каждый кадр снабжается преамбулой (8 байт), которая позволяет синхронизировать работу приемника и передатчика. В заголовках кадра указывается адрес узла-получателя, который позволяет узлу-получателю распознать, что предаваемый кадр предназначен ему, и адрес узла-отправителя для отправки сообщения, подтверждающего факт получения кадра. Минимальная длина кадра - 64 байта, максимальная - 1518 байт. Минимальная длина кадра является одним из параметров, определяющих диаметр сети или максимальную длину сегмента сети. Чем меньше кадр, тем меньше диаметр сети.

Передача кадра возможна, когда никакой другой узел сети не передает свой кадр. Стандарт Ethernet не позволяет одновременную передачу/прием более одного кадра. На практике в сетях Ethernet возможны ситуации, когда два узла пытаются передать свои кадры. В таких случаях происходит искажение передаваемых данных, потому что методы стандарта Ethernet не позволяет выделять сигналы одного узла из общего сигнала и возникает так называемая коллизия. Передающий узел, обнаруживший коллизию, прекращает передачу кадра, делает паузу случайной длины и повторяет попытку захвата передающей среды и передачи кадра. После 16 попыток передачи кадра кадр отбрасывается.

При увеличении количества коллизий, когда передающая среда заполняется повторными кадрами, реальная пропускная способность сети резко уменьшается. В этом случае необходимо уменьшить трафик сети любыми доступными методами (уменьшение количества узлов сети, использование приложений с меньшими затратами сетевых ресурсов, реструктуризация сети).

Технология Fast Ethernet

Развитие локальных сетей, появление новых более быстрых компьютеров привело к необходимости совершенствования стандарта Ethernet с целью увеличения пропускной способности сети до 100 Мбит/с.

Технология Fast Ethernet использует метод доступа CSMA/CD, такой же, как в технологии Ethernet, что обеспечивает согласованность технологий. Отличия Fast Ethernet от Ethernet наблюдаются только на физическом уровне. На канальном уровне изменений нет.

    8В/6Т - каждые 8 бит информации уровня MAC кодируются 6-ю троичными цифрами (3 состояния), группа из 6-ти троичных цифр передается на одну из 3 передающих витых пар, независимо и последовательно, 4 пара используется для прослушивания несущей частоты в целях обнаружения коллизии;

    4В/5В: каждые 4 бита данных подуровня MAC представляются 5 битами.

Диаметр сети сократился до 200 метров, что связано с увеличением скорости передачи данных в 10 раз. Стандарты ТХ и FX могут работать как в полудуплексном режиме (передача ведется в двух направлениях, но попеременно во времени), так и в полнодуплексном режиме (передача ведется одновременно в двух направлениях) за счет использования двух витых пар или двух оптических волокон. Для отделения кадра Ethernet от символов Idle в спецификациях 100Base-FX/ТХ используется комбинация символов Start Delimiter (пара символов J (11000) и К (10001) кода 4В/5В, а после завершения кадра перед первым символом Idle вставляется символ Т).

Для всех трех стандартов справедливы следующие утверждения и характеристики.

    Межкадровый интервал (IPG) равен 0,96 мкс, изменения в MAC не вносились;

    Признаком свободного состояния среды является передача по ней символа Idle соответствующего избыточного кода;

Спецификация Fast Ethernet включает также механизм автосогласования, позволяющий порту узла автоматически настраиваться на скорость передачи данных - 10 или 100 Мбит/с. Этот механизм основан на обмене рядом пакетов с портом концентратора.

Технология Gigabit Ethernet

Стандарт IEEE 802.3z Gigabit Ethernet был принят в 1998 году на основе согласованных усилий группы компаний, образовавших объединение Gigabit Ethernet Alliance. В качестве варианта физического уровня был принят физический уровень технологии Fiber Channel. Разработчики стандарта максимально сохранили преемственность предыдущих стандартов Ethernet: сохраняются все форматы кадров, полудуплексная и полнодуплексная версии протоколов, поддерживаются коаксиальный кабель, витая пара категории 5, волоконно-оптический кабель.

Поддержка полудуплексного режима метода доступа CSMA/CD сокращает диаметр сети до 25 м. Для увеличения диаметра сети до 200 м разработчики изменили размер минимального кадра с 64 до 512 байт. Для сокращения накладных расходов по передаче длинных кадров стандарт разрешает передавать несколько кадров подряд, не дополняя их до 512 байт и не передавая доступ к среде другому узлу. Не поддерживает:

    качество обслуживания;

    избыточные связи;

    тестирование работоспособности узлов и оборудования.

т.к. с этими задачами хорошо справляются протоколы более высоких уровней. Метод доступа CSMA/CD.

Спецификации

Максимальная длина сегмента

Кодирование

многомодовая оптика

одномодовая оптика

многомодовая оптика

Топология

звезда, дерево

звезда, дерево

звезда, дерево

звезда, дерево

звезда, дерево

Многомодовый кабель – применяются излучатели, работающие на двух длинах волн: 1300 и 850 нм. Светодиоды с λ=850 нм – дешевле, чем с λ=1300 нм. Длина кабеля уменьшается – затухание на волне 850 м более чем в два раза выше, чем на волне 1300 нм.

Одномодовый кабель – применяются излучатели, работающие на длине волны: 1300.

Увеличение минимального размера кадра с 64 до 512 байт. Разрешается также передавать несколько кадров подряд, не освобождая среду.

Технология Token Ring

Сеть Token Ring так же, как и Ethernet, предполагает использование разделяемой среды передачи данных, которая образуется объединением всех узлов в кольцо. Token Ring - стандарт локальных сетей, использующий разделяемую среду передачи данных, состоящую из отрезков кабеля, соединяющих все станции сети в кольцо.

Сети Token Ring работают с двумя битовыми скоростями - 4 и 16 Мбит/с.

Посланный кадр всегда возвращ в станцию - отправитель. Для контроля сети 1 из станций – актив монитор.

Маркерный метод доступа к разделяемой среде

Право на доступ к среде передается циклически от станции к станции в одну сторону по логическому кольцу с помощью кадра специального формата - маркера или токена (token).

Получив маркер, станция, имеющая данные для передачи, изымает его из кольца, добавляет свои данные и передает следующей станции. Кадр снабжен адресом назначения и адресом источника. Если кадр проходит через станцию назначения, то она копирует кадр в свой внутренний буфер и вставляет в кадр признак подтверждения приема. Станция-отправитель при обратном получении кадра с подтверждением приема изымает этот кадр из кольца и передает маркер другим станциям. Такой алгоритм применяется в сетях Token Ring со скоростью 4 Мбит/с.

Время удержания маркера (token holding time, 10 мс) – после его истечения станция обязана прекратить передачу собственных данных и передать маркер далее по кольцу. Станция может успеть передать за время удержания маркера один или несколько кадров.

В сетях Token Ring 16 Мбит/с используется алгоритм раннего освобождения маркера (Early Token Release). Станция передает маркер доступа следующей станции сразу же после окончания передачи последнего бита кадра, не дожидаясь возвращения по кольцу этого кадра с битом подтверждения приема. По кольцу одновременно продвигаются кадры нескольких станций, пропускная способность используется эффективнее. Свои кадры в каждый момент времени может генерировать только одна станция - владеющая маркером доступа.

Передающая станция может назначать кадрам различные приоритеты: от 0 до 7. Станция имеет право захватить переданный ей маркер только в том случае, если приоритет кадра, который она хочет передать, выше (или равен) приоритета маркера.

За наличие в сети маркера отвечает активный монитор. Если он не получает маркер в течение длительного времени (например, 2,6 с), то он порождает новый маркер.

кадр данных - состоит из следующих полей:

На практике хосты не обязательно соединяются по кругу, более того, конфигурация их соединения может иметь обычную топологию "звезда". Станции в кольцо объединяют с помощью концентраторов, выход предыдущей станции в кольце соединяется со входом последующей.

Сеть Token Ring может строиться на основе нескольких колец, разделенных мостами, маршрутизирующими кадры по принципу «от источника», для чего в кадр Token Ring добавляется специальное поле с маршрутом прохождения колец.

Token Ring более сложная технология, чем Ethernet. Обладает свойствами отказоустойчивости.

Token Ring использует до 75 % полосы пропускания, теоретический максимум использования у Ethernet составляет около 37 %.

Организация локальных сетей Token Ring стоит дороже из-за технологической сложности механизма эстафетной передачи маркера и использования сетевых карт, которые передают пакеты в упорядоченном режиме.

Стандарт Token Ring поддерживает экранированную и неэкранированную витую пару, оптоволоконный кабель. Максимальная длина кольца 4000 м. Максимальное количество узлов 260. Компания IBM предложила новую технологию High-Speed Token Ring, которая поддерживает скорости 100 и 155 Мбит/с и сохраняет основные особенности технологии Token Ring.

Технология FDDI

Технология FDDI (Fiber Distributed Data Interface) разрабатывается институтом ANSI, начиная с 80-х годов. В этой технологии в качестве физической среды передачи данных впервые предлагается оптоволоконный кабель. Имеется возможность использования неэкранированной витой пары.

Сеть FDDI состоит из двух колец для повышения отказоустойчивости. Данные передаются по первичному кольцу сети в одном направлении, по вторичному кольцу - в противоположном. В обычном режиме используется только первичное кольцо. В случае отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), происходит процесс сворачивания колец, при котором первичное кольцо объединяется с вторичным, образуя новое кольцо. При множественных отказах сеть распадается на несколько колец. В стандарте FDDI предусмотрено одновременное подключение узлов к первичному и вторичному кольцам и подключение только к первичному кольцу. Первое называется двойным подключением, а второе - одиночным. При обрыве узла с двойным подключением происходит автоматическое сворачивание колец. Сеть продолжает нормально функционировать. При обрыве узла с одиночным подключением сеть продолжает работать, но узел будет отрезан от сети.

Кольца сети FDDI являются разделяемой средой передачи данных, для доступа к которой применяется маркерный метод, аналогичный используемому в сетях Token Ring. Различия в некоторых деталях. Время удержания маркера является переменной величиной и зависит от степени загрузки сети. При небольшой загрузке сети время удержания маркера больше, при большой загрузке - уменьшается. Сеть FDDI поддерживает скорость 100 Мбит/с. Диаметр сети - 100 км. Макс количество узлов - 500. Однако стоимость реализации данной технологии значительна, поэтому область применения стандарта FDDI - магистрали сетей и крупные сети.

Все компьютеры в локальной сети соединены линиями связи. Геометрическое расположение линий связи относительно узлов сети и физическое подключение узлов к сети называется физической топологией. В зависимости от топологии различают сети: шинной, кольцевой, звездной, иерархической и произвольной структуры.

Различают физическую и логическую топологию. Логическая и физическая топологии сети независимы друг от друга. Физическая топология - это геометрия построения сети, а логическая топология определяет направления потоков данных между узлами сети и способы передачи данных.

В настоящее время в локальных сетях используются следующие физические топологии:

    физическая "шина" (bus);

    физическая “звезда” (star);

    физическое “кольцо” (ring);

    физическая "звезда" и логическое "кольцо" (Token Ring).

Полносвязная топология, Ячеистая топология, Общая шина, звезда, кольцо, смешанная

Шинная:

Данная топология применяется в локальных сетях с архитектурой Ethernet (классы 10Base-5 и 10Base-2 для толстого и тонкого коаксиального кабеля соответственно).

Преимущества сетей шинной топологии:

отказ 1 из узлов не влияет на работу сети в целом;

сеть легко настраивать и конфигурировать;

сеть устойчива к неисправностям отдельных узлов.

Недостатки сетей шинной топологии:

разрыв кабеля может повлиять на работу всей сети;

огранич длина кабеля и кол-во рабочих станций;

трудно определить дефекты соединений

Звезда:

Данные от передающей станции сети передаются через хаб по всем линиям связи всем ПК. Информация поступает на все рабочие станции, но принимается только теми станциями, которым она предназначается. Так как передача сигналов в топологии физ звезда является широковещательной, т.е. сигналы от ПК распространяются одновременно во все направления, то логич топология данной лок сети является логической шиной.

Данная топология применяется в локальных сетях с архитектурой 10Base-T Ethernet.

Преимущества сетей топологии звезда:

легко подключить новый ПК;

имеется возможность централизованного управления;

сеть устойчива к неисправностям отдельных ПК и к разрывам соединения отдельных ПК.

Недостатки сетей топологии звезда:

отказ хаба влияет на работу всей сети;

большой расход кабеля;

Кольцо

Принимающая рабочая станция распознает и получает только адресованное ей сообщение. В сети с топологией типа физическое кольцо используется маркерный доступ, который предоставляет станции право на использование кольца в определенном порядке. Логическая топология данной сети - логическое кольцо.

Данную сеть очень легко создавать и настраивать. К основному недостатку сетей топологии кольцо является то, что повреждение линии связи в одном месте или отказ ПК приводит к неработоспособности всей сети.

Как правило, в чистом виде топология “кольцо” не применяется из-за своей ненадёжности, поэтому на практике применяются различные модификации кольцевой топологии.

В России продолжается процесс интенсивного внедрения новыхи модернизации существующих локальных вычислительных сетей (ЛВС). Возрастающие размеры сетей, прикладные программные системы, требующие все больших скоростей обмена информацией, повышающиеся требования к надежности и отказоустойчивости вынуждают искать альтернативу традиционным сетям Ethernet и Arcnet. Один из видов высокоскоростных сетей - FDDI (Fiber Distributed Data Interface - распределенный оптоволоконный интерфейс данных). В статье рассматриваются возможности использования FDDI при построении корпоративных компьютерных комплексов.

По прогнозам фирмы Peripheral Strategies во всем мире к 1997 году к локальным вычислительным сетям будет подключено более 90% всех персональных компьютеров (в настоящее время - 30-40%). Сетевые компьютерные комплексы становятся неотъемлимыми средствами производства любой организации или предприятия. Быстрый доступ к информации и ее достоверность повышают вероятность принятия правильных решения персоналом и, в конечном итоге, вероятность выигрыша в конкурентной борьбе. В своих управляющих и информационных системах фирмы видят средства стратегического превосходства над конкурентами и рассматривают инвестиции в них как капитальные вложения.

В связи с тем, что обработка и персылка информации с помощью компьютеров становятся все быстрее и эффективнее, происходит настоящий информационный взрыв. ЛВС начинают сливаться в территориально-распределенные сети, увеличивается количество подключенных к ЛВС серверов, рабочих станций и периферийного оборудования.

Сегодня в России компьютерные сети многих крупных предприятий и организаций представляют собой одну или несколько ЛВС, построенных на основе стандартов Arcnet или Ethernet. В качетсве сетевой операционной среды обычноприменяется NetWare v3.11 или v3.12 с одним или несколькими файловыми среверами. Эти ЛВС либо совсем не имеют связи друг с другом, либо соединяются кабелем, работающим в одном из этих стандартов, через внутренние или внешние програмнные маршрутизаторы NetWare.

Современные операционные системы и прикладное программное обеспечение требуют для своей работы пересылки больших объемов информации. Одновременно с этим требуется обеспечивать передачу информации со все большими скоростями и на все большие расстояния. Поэтому рано или поздно производительность сетей Ethernet и программных мостов и маршрутизаторов перестают удовлетворять растущим потребностям пользователей, и они начинают рассматривать возможности применения в своих сетях более скоростных стандартов. Одним из них является FDDI.

Принцип действия сети FDDI

Сеть FDDI представляет собой волоконно-оптическое маркерное кольцо со скростью передачи данных 100 Мбит/сек.

Стандарт FDDI был разработан комитетом X3T9.5 Американского национального института стандартизации (ANSI). Сети FDDI поддерживается всеми ведущими производителями сетевого оборудования. В настоящее время комитет ANSI X3T9.5 переименован в X3T12.

Использование в качестве среды распространения волоконной оптики позволяет существенно расширить полосу пропускания кабеля и увеличить расстояния между сетевыми устройствами.

Сравним пропускную способность сетей FDDI и Ethernet при многопользовательском доступе. Допустимый уровень утилизации сети Ethernet лежит в пределах 35% (3.5 Мбит/сек) от максимальной пропускной способности (10 Мбит/сек), в противном случае вероятность возникновения коллизий становится не слишком высокой и пропускная способность кабеля резко снизится. Для сетей FDDI допустимая утилизация может достигать 90-95% (90-95 Мбит/сек). Таким образом, пропускная способность FDDI приблизительно в 25 раз выше.

Детерминированная природа протокола FDDI (возможность предсказания максимальной задержки при передаче пакета по сети и возможность обеспечить гарантированную полосу пропускания для каждой из станций) делает его идеальным для использования в сетевых АСУ ТП реального времени и в приложениях, кртичных ко времени передачи информации (например для передачи видео и звуковой информации).

Многие из своих ключевых свойств FDDI унаследовала от сетей Token Ring (стандарт IEEE 802.5). Прежде всего - это кольцевая топология и маркерный метод доступа к среде. Маркер - специальный сигнал, вращающийся по кольцу. Станция, получившая маркер, может передавать свои данные.

Однако FDDI имеет и ряд принципиальных отличий от Token Ring, делающий ее более скоростным протоколом. Например, изменен алгоритм модуляции данных на физическом уровне. Token Ring использует схему манчестерского кодирования, требующую удвоения полосы передаваемого сигнала относительно передаваемых данных. В FDDI реализован алгорит кодирования "пять из четырех" - 4В/5В, обеспечивающий передачу четырех информационных бит пятью передаваемыми битами. При передаче 100 Мбит информации в секунуд физически в сеть транслируется 125 Мбит/сек, вместо 200 Мбит/сек, что потребовалось бы при использовании манчестерского кодирования.

Оптимизировано и управление доступа к среде (Medium Access Control - VAC). В Token Ring оно основано на побитовой основе, а в FDDI на параллельной обработке группы из четырех или восьми передаваемых битов. Это снижает требования к быстродействию оборудования.

Физически кольцо FDDI образовано волоконно-оптическим кабелем с двумя светопроводящими воокнами. Одно из них образует первичное кольцо (primary ring), является основным и используется для циркуляции маркеров данных. Второе волокно образует вторичное кольцо (secondary ring), является резервным и в нормальном режиме не используется.

Станции, подключенные к сети FDDI, подразделяются на две категории.

Станции класса А имеют физические поключения к первичному и вторичному кольцам (Dual Attached Station - двукратно подключенная станциия);

2. Станции класса И имеют подключение только к первичному кольцу (Single Attached Station - однократно подключенная станция) и подключается только через специальные устройства, называемые концентраторами.

На рис. 1 показан пример подключения концентратора и станций классов А и В в замкнутый контур, по которому циркулирует маркер. На рис. 2 показана более сложная топология сети с разветвленной структурой (Ring-of-Trees - кольцо из деревьев), образуемой станциями класса В.

Порты сетевых устройств, подключаемых к сети FDDI, классифицируются на 4 категории: А порты, В порты, М порты и S порты. Портом А называется порт, принимающий данные из первичного кольца и передающий их во вторичное кольцо. Порт В - это порт, принимающий данные из вторичного кольца и передающий их в первичное кольцо. М (Master) и S (Slave) порт передают и принимают данные с одного и того же кольца. М порт исползуется на концентраторе для подключения Single Attached Station через S порт.

Стандарт X3T9.5 имеет ряд ограничений. Общая длина двойного волоконно-оптического кольца - до 100 км. К кольцу можно подключить до 500 станций класса А. Расстояние между узлами при использовании многомодового волоконно-оптического кабеля - до 2 км, а при использовании одномодового кабеля определяется в основном параметрами волокна и приемо-передающего оборудования (может достигать 60 и более км).

Отказоустойчивость сетей FDDI

Стандарт ANSI X3T9.5 регламентирует 4 основных отказустойчивых свойства сетей FDDI:

1. Кольцевая кабельная система со станциями класса А отказоустойчива к однократному обрыву кабеля в любом месте кольца. На рис. 3 показан пример обрыва как первичного, так и вторичного волокон в кольцевом кабеле. Станции, находящиеся по обе стороны обрыва, переконфигурируют путь циркуляции маркера и данных, подключая для этого вторичное волоконно-оптическое кольцо.

2. Выключение питания, отказ одной из станций класса В или обрыв кабеля от концентратора до этой станции будет обнаружен концентратором, и произойдет отключение станции от кольца.

3. Две станции класса В подключены сразу к двум концентраторам. Этот специальный вид подключения называется Dual Homing и может быть использован для отказоустойчивого (к неисправностям в концетраторе или в кабельной системе) подключения станций класса В за счет дублирования подключения к основному кольцу. В нормальном режиме обмен данными происходит только через один концентратор. Если по какой-либо причине связь теряется, то обмен будет осуществляться через второй концентратор.

4. Выключение питания или отказ одной из станций класса А не приведет к отказу остальных станций, подключенных к кольцу, т. к. световой сигнал будет рпосто пассивно передаваться к следующей станции через оптический переключатель (Optical Bypass Switch). Стандарт допускает иметь до трех последовательно расположенных выключенных станций.

Оптические переключатели производят фирмы Molex и AMP.

Синхронная и асинхронная передача

Подключение к сети FDDI станции могут передавать свои данные в кольцо в двух режимах - в синхронном и в асинхронном.

Синхронный режим устроен следующим образом. В процессе инициализации сети определяется ожидаемое время обхода кольца маркером - TTRT (Target Token Rotation Time). Каждой станции, захватившей маркер, отводится гарантированное время для передачи ее данных в кольцо. По истечение этого времени станция должна закончить передачу и послать маркер в кольцо.

Каждая станция в момент посылки нового маркера включает таймер, измеряющий временной интервал до момента возвращения к ней маркера - TRT (Token Rotation Timer). Если маркер возвратится к станции раньше ожидаемого времени обхода TTRT, то станция может продлить время передачи своих данных в кольцо и после окончания синхронной передачи. На этом основана асинхронная передача. Дополнительный временной интервал для передачи станцией будет равен рахности между ожидаемым и реальным временем обхода кольца маркером.

Из описанного выше алгоритма видно, что если одна или несколько станций не имеют достаточного объема данных, чтобы полностью использовать временной интервал для синхронной передачи, то неиспользованная ими полоса пропускания сразу становится доступной для асинхронной передачи другими станциями.

Кабельная система

Подстандарт FDDI PMD (Physical medium-dependent layer) в качестве базовой кабельной системы определяет многомодовый волоконно-оптический кабель с диаметром световодов 62.5/125 мкм. Допускается применение кабелей с другим диаметром волокон, например: 50/125 мкм. Длина волны - 1300 нм.

Средняя мощность оптического сигнала на входе станции должна быть не менее -31 dBm. При такой входной мощности вероятность ошибки на бит при ретрансляции данных станцией не должна превышать 2.5*10 -10 . При увеличении мощности входного сигнала на 2 dBm, эта верояность должна снизиться до 10 -12 .

Максимально допустимый уровень потерь сигнала в кабеле стандарт определяет равным 11 dBm.

Подстандарт FDDI SMF-PMD (Single-mode fiber Physical medium-dependent layer) определяет требования к физическому уровнб при использовании одномодового волоконно-оптического кабеля. В этом случае в качетсве передающего элемента обычно используется лазерный свтодиод, а дистанция между станциями может достигать 60 и даже 100 км.

FDDI модули для одномодового кабеля выпускает, например, фирма Cisco Systems для своих маршрутизаторов Cisco 7000 и AGS+. Сегменты одномодового и многомодового кабеля в кольце FDDI могут чередоваться. Для названных маршрутизаторов фирмы Cisco имеется возможность выбора модулей со всеми четрьмя комбинациями портов: многомодовый-многомодовый, многомодовый-одномодовый, одномодовый-многомодовый, одномодовый-одномодовый.

Фирма Cabletron Systems Inc. выпускает повторители Dual Attached - FDR-4000, которые позволяют подключить одномодовый кабель к станции класса А с портами, предназанченными для работы на многомодовом кабеле. Эти повторители дают возможность увеличить расстояние между узлами FDDI кольца до 40 км.

Подстандарт физического уровня CDDI (Copper Distributed Data Interface - распределенный интерфейс данных по медным кабелям) определяет требования к физическому уровню при использовании экранированной (IBM Type 1) и не экранированной (Category 5) витых пар. Эта значительно упрощает процесс инсталляции кабельной системы и удешевляет ее, сетевые адаптеры и оборудование концентраторов. Расстояния меджу станциями при использовании витых пар не должны превышать 100 км.

Фирма Lannet Data Communications Inc. выпускает FDDI модули для своих концентраторов, которые позволяют работать или в стандартном режиме, когда вторичное кольцо используется только в целях отказустойчивости при обрыве кабеля, или в расширенном режиме, когда вторичное кольцо тоже используется для передачи данных. Во втором случае полоса пропускания кабельной системы расширяется до 200 Мбит/сек.

Подключение оборудования к сети FDDI

Есть два основных способа подключения компьютеров к сети FDDI: непосредственно, а также и через мосты или маршрутизаторы к сетям других протоколов.

Непосредственное подключение

Этот способ подключения используется, как правило, для подключения к сети FDDI файлов, архивационных и других серверов, средних и больших ЭВМ, то есть ключевых сетевых компонентов, являющихся главными вычислительными центрами, предоставляющими сервис для многих пользователей и требующих высоких скоростей ввода-вывода по сети.

Аналогично можно подключить и рабочие станции. Однако, поскольку сетевые адаптеры для FDDI весьма дороги, этот способ применяется только в тех случаях, когда высокая скорость обмена по сети является обязательным условияем для нормальной работы приложения. Примеры таких приложений: системы мультимедиа, передача видео и звуковой информации.

Для подключения к сети FDDI персональных компьютеров применяются специалищированные сетевые адаптеры, которые обычным образом вставляются в один из свободных слотов компьютера. Такие адаптеры производятся фирмами: 3Com, IBM, Microdyne, Network Peripherials, SysKonnect и др. На рынке имеются карты под все распространенные шины - ISA, EISA и Micro Channel; есть адаптеры для подключения станций классов А или В для всех видов кабельной системы - волоконно-оптической, экранированной и неэкранированной витых пар.

Все ведущие производители UNIX машин (DEC, Hewlett-Packard, IBM, Sun Microsystems и другие) предусматривают интерфейсы для непосредственного подключения к сетям FDDI.

Подключение через мосты и маршрутизаторы

Мосты (bridges) и маршрутизаторы (routers) позволяют подключить к FDDI сети других протоколов, например, Token Ring и Ethernet. Это делает возможным экономичное подключение к FDDI большого числа рабочих станций и другого сетевого оборудования как в новых, так и в уже существующих ЛВС.

Конструктивно мосты ит маршрутизаторы изготавливаются в двух вариантах - в законченном виде, не допускающем дальнейшего аппаратного наращивания или переконфигурации (так называемые standalone-устройства), и в виде модульных концентраторов.

Примером standalone-устройств являются: Router BR фирмы Hewlett-Packard и EIFO Client/Server Switching Hub фирмы Network Peripherals.

Модульные концентраторы применяются в сложных больших сетях в качестве центральных сетевых устройств. Концентратор представляет собой корпус с источником питания и с коммуникационной платой. В слоты концентратора вставляются сетевые коммуникационные модули. Модульная конструкция концентраторов позволяет легко собрать любую конфигурацию ЛВС, объединить кабельные системы различных типов и протоколов. Оставшиеся свободными слоты можно использовать для дальнейшего наращивания ЛВС.

Концентраторы производятся многими фирмами: 3Com, Cabletron, Chipcom, Cisco, Gandalf, Lannet, Proteon, SMC, SynOptics, Wellfleet и другими.

Концентратор - это центральный узел ЛВС. Его отказ может привести к остановке всей сети, или, по крайней мере, значительной ее части. Поэтому большинство фирм, производящих концентраторы, принимают специальные меры для повышения их отказоустойчивости. Такими мерами являются резервирование источников питания в режиме разделения нагрузки или горячего резервирования, а также возможность смены или доустановки модулей без отключения питания (hot swap).

Для того чтобы снизить стоимость концетратора, все его модули запитываются от общего источника питания. Силовые элементы источника питания являются наиболее вероятной причиной его отказа. Поэтому резервирование источника питания существенно продлевает срок безотказной работы. При инсталляции каждый из источников питания концетратора может быть подключен к отдельному источнику бесперебойного питания (UPS) на случай неисправностей в системе электроснабжения. Каждый из UPS желательно подключить к отельным силовым электрическим сетям от разных подстанций.

Возможность смены или доустановки модулей (часто включая и источники питания) без отключения концентратора позволяет провести ремонт или расширение сети без прекращения сервиса для тех пользователей, сетевые сегменты которых подключены к другим модулям концентратора.

Мосты FDDI-Ethernet

Мосты работают на первых двух уровнях модели взаимодействия открытых систем - на физическом и канальном - и предназначены для связи нескольких ЛВС однотивных или различных протоколов физического уровня, например, Ethernet, Token Ring и FDDI.

По своему принципу действия мосты подразделяются на два типа (Sourece Routing - маршрутизация источника) требуют, чтобы узел-отправитель пакета размещал в нем информацию о пути его маршрутизации. Другими словами, каждая станция должна иметь встроенные функции по мартшрутизации пакетов. Второй тип мостов (Transparent Bridges - прозрачные мосты) обеспечивают прозрачную связь станций, расположенных в разных ЛВС, и все функции по маршрутизации выполняют только сами мосты. Ниже мы будем вести речь только о таких мостах.

Все мосты могут пополнять таблицу адресов (Learn addresses), маршрутизировать и фильтровать пакеты. Интеллектуальные мосты, кроме того, в целях повышения безопасности или производительности могут фильтровать пакеты по критериям, задаваемым через систему управления сетью.

Когда на один из портов моста приходит пакет данных, мост должен или переправить его на тот порт, к которому подключен узел назначения пакета, или просто отфильтровать его, если узел назначения находится на том же самом порту, с которого пришел пакет. Фильтрация позволяет избежать излишнего трафика в других сегментах ЛВС.

Кажый мост строит внутреннюю таблицу физических адресов подключенных к сети узлов. Процесс е заполнения заключается в следующем. Каждый пакет имеет в своем заголовке физические адреса узлов отправления и назначения. Получив на один из своих портов пакет данных, мост работает по следующему алгоритму. На первом шаге мост проверяет, занесен ли в его внутреннюю таблицу адрес узла отправителя пакета. Если нет, то мост заносит его в таблицу и связывает с ним номер порта, на который поступил пакет. На втором шаге проверяется, занесен ли во внутреннюю таблицу адрес узла назначения. Если нет, то мост передает принятый пакет во все сети, подключенные ко всем остальным его портам. Если адрес узла назначения найден во внутренней таблице, мост проверяет, подключена ли ЛВС узла назначения к тому же самому порту, с которого пришел пакет, или нет. Если нет, то мост отфильтровывает пакет, а если да, то передает его только на тот порт, к которому подключен сегмент сети с узлом назначения.

Три главных параметра моста:
- размер внутренней адресной таблицы;
- скорость фильтрации;
- скорость маршрутизации пакетов.

Размер адресной таблицы характеризует максимальное число сетевых устройств, трафик которых может маршрутизировать мост. Типичные значения размеров адресной таблицы лежат в пределах от 500 до 8000. Что же произойдет в случае, если количество подключенных узлов превысит размеры адресной таблицы? Поскольку большинство мостов хранят в ней сетевые адреса узлов, последними передавашими свои пакеты, мост постепенно будет "забывать" адреса узлов, резе других передающих пакеты. Это может привести к снижению эффективности процесса фильрации, но не вызовет принципиальных проблем в работе сети.

Скорости фильтрации и маршрутизации пакетов характеризуют производительность моста. Если они ниже максимально возможной интенсивности передачи пакетов по ЛВС, то мост может являться причиной задержек и снижения производительности. Если выше - значит стоимость моста выше минимально необходимой. Расчитаем, какой должна быть производительность моста для подключения к FDDI нескольких ЛВС протокола Ethernet.

Вычислим максимально возможную интенсивность пакетов сети Ethernet. Структура пакетов Ethernet показана в таблице 1. Минимальная длина пакета равна 72 байт или 576 бит. Время, необходимое для передачи одного бита по ЛВС протокола Ethernet со скростью 10 Мбит/сек равно 0.1 мксек. Тогда время передачи минимального по длине пакета составит 57.6*10 -6 сек. Стандарт Ethernet требует паузы между пакетами в 9.6 мксек. Тогда количество пакетов, переденных за 1 сек, будет равно 1/((57.6+9.6)*10 -6 )=14880 пакетов в секунду.

Если мост подсоединяет к сети FDDI N сетей протокола Ethernet, то, соответственно, его скорости фильтрации и маршрутизации должны быть равны N*14880 пакетов в секунду.

Таблица 1.
Структура пакета в сетях Ethernet.

Со стороны порта FDDI скорость фильтрации пакетов должна быть значительно выше. Для того, чтобы мост не снижал производительность сети, она должны составлять около 500000 пакетов в секунду.

По принципу передачи пакетов мосты подразделяются на Encapsulating Bridges и Translational Bridges пакеты физического уровня одной ЛВС целиком переносят в пакеты физического уровня другой ЛВС. После прохождения по второй ЛВС другой аналогичный мост удаляет оболочку из промежуточного протокола, и пакет продолжает свое движения в исходном виде.

Такие мосты позволяют связать FDDI-магистралью две ЛВС протокола Ethernet. Однако в этом случае FDDI будет использоваться только как среда передачи, и станции, подключенные к сетям Ethernet, не будут "видеть" станций, непосредственно подключенных к сети FDDI.

Мосты второго типа выполняют преобразование из одного протокола физического уровня в другой. Они удаляют заголовок и замыкающую служебную информацию одного протокола и переносят данные в другой протокол. Такое преобразование имеет существенное преимущество: FDDI можно использовать не только как среду передачи, но и для непосредственного подключения сетевого оборудования, прозрачно видимого станциями, подключенными к сетям Ethernet.

Таким образом, подобные мосты обеспечивают прозрачность всех сетей по протоколам сетевого и более верхних уровней (TCP/IP, Novell IPX, ISO CLNS, DECnet Phase IV и Phase V, AppleTalk Phase 1 и Phase 2, Banyan VINES, XNS и др.).

Еще одна важная характеристика моста - наличие или отсутствие поддержки алгоритма реервных путей (Spannig Tree Algorithm - STA) IEEE 802.1D. Иногда его называют также стандартом прозрачных мостов (Transparent Bridging Standard - TBS).

На рис. 1 показана ситуация, когда между ЛВС1 и ЛВС2 судествуют два возможных пути - через мост 1 или через мост 2. Ситации, аналогичные этим, называются активными петлями. Активные петли могут вызвать серьезные сетевые проблемы: дублирующие пакеты нарушают логику работы сетевых протоколов и приводят к снижению пропускной способности кабельной системы. STA обеспечивает блокировку всех возможных путей, кроме одного. Впрочем, в случае проблем с основной линией связи, одни из резервных путей сразу будет назначен активным.

Интеллектуальные мосты

До сих пор мы обсуждали свойства произвольных мостов. Интеллектуальные мосты имебт ряд дополнительных функций.

Для больших компьютерных сетей одной из ключевых проблем, определяющих их эффективность, является снижение стоимости эксплуатации, ранняя диагностика возможных проблем, сокращение времени поиска и устранения неисправностей.

Для этого применяются системы централизованного управления сетью. Как правило они работают по SNMP протоколу (Simple Network Management Protocol) и позволяют администратору сети с его рабочего места:
- конфигурировать порты концентраторов;
- производить набор статистики и анализ трафик. Например, для каждой подключенной к сети станции можно получить информацию о том, когда она последний раз посылала пакеты в сеть, о числе пакетов и байт, принятых каждой станцией с ЛВС, отличных от той, к которой она подключена, число переданных широковещательных (broadcast) пакетов и т. д.;

Устанавливать дополнительные фильтры на порты концентратора по номерам ЛВС или по физически адресам сетевых устройств с целью усиления защиты от несанкционированного доступа к ресурсам сети или для повышения эффективности функционирования отдельных сегментов ЛВС;
- оперативно получать сообщения о всех возникающих проблемах в сети и легко их локализовать;
- проводить диагностику модулей концентраторов;
- просматривать в графическом виде изображение передних панелей модулей, установленных в удаленные концентраторы, включая и текущее состояние инидкаторов (это возможно благодаря тому, что программное обеспечение автоматически распознает, какой именно из модулей установлен в каждый конкретный слот концентратора, и получает информацию и текущем статусе всех портов модулей);
- просматривать системных журнал, в который автоматически записывается информация обо всех проблемах с сетью, о времени включения и выключения рабочих станций и серверов и обо всех других важных для администратора событиях.

Перечисленные функции свойственны все интеллектуальным мостам и маршрутизаторам. Часть из них (например, Prism System фирмы Gandalf), кроме того, обладают следующими важными расширенными возможностями:

1. Приоритеты протоколов. По отдельным протоколам сетевого уровня некоторые концентраторы работают в качестве маршрутизаторов. В этом случае может поддерживаться установка приоритетов одних протоколов над другими. Например, можно установить приоритет TCP/IP над всеми остальными протоколами. Это означает, что пакеты TCP/IP будут передаваться в первую очередь (это бывает полезно в случае недостаточной полосы пропускания кабельной системы).

2. Защита от "штормов широковещательных пакетов" (broadcast storm). Одна из характерных неисправностей сетевого оборудования и ошибок в программном обеспечении - самопроизвольная генерация с высокой интенсивностью broadcast-пакетов, т. е. пакетов, адресованных всем остальным подключенным к сети устройствам. Сетевой адрес узла назначения такого пакета состоит из одних единиц. Получив такой пакет на один из своих портов, мост должен адресовать его на все другие порты, включая и FDDI порт. В нормальном режиме такие пакеты используются операционными системами для служебных целей, например, для рассылки сообщений о появлении в сети нового сервера. Однако при высокой интенсивности их генерации, они сразу займут всю полосу пропускания. Мост обеспечивает защиту сети от перегрузки, включая фильтр на том порту, с которого поступают такие пакеты. Фильтр не пропускает broadcast-пакеты и другие ЛВС, предохраняя тем самым остальную сеть от перегрузки и сохраняя ее работоспособность.

3. Сбор статистики в режиме "Что, если?" Эта опция позволяет виртуально устанавливать фильтры на порты моста. В этом режиме физически фильрация не проводится, но ведется сбор статистики о пакетах, которые были бы отфильтрованы при реальном включении фильров. Это позволяет администратору предварительно оценить последствия включения фильтра, снижая тем самым вероятность ошибок при неправильно установленных условиях фильтрации и не приводя к сбоям в работе подключенного оборудования.

Примеры использования FDDI

Приведем два наиболее типовых примера возможного использования сетей FDDI.

Приложения клиент-сервер. FDDI применяется для подключения оборудования, требующего широкой полосы пропускания от ЛВС. Обычно это файловые серверы NetWareб UNIX машины и большие универсальные ЭВМ (mainframes). Кроме того, как было отмечено выше, непосредственно к сети FDDI могут быть подключены и некоторые рабочие станции, требующие высоких скоростей обмена данными.

Рабочие станции пользователей подключаются через многопортовые мосты FDDI-Ethernet. Мост осуществляет фильтрацию и передачу пакетов не только между FDDI и Ethernet, но и между различными Ethernet-сетями. Пакет данных будет передан только в тот порт, где находится узел назначения, сохраняя полосу пропускания других ЛВС. Со стороны сетей Ethernet их взаимодействие эквивалентно связи через магистраль (backbone), только в этом случае она физически существует не в виде распределенной кабельной системы, а целиком сосредочена в многопортовом мосту (Collapsed Backbone или Backbone-in-a-box).

Технология FDDI (англ. Fiber Distributed Data Interface - Волоконно-оптический интерфейс передачи данных) во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Разработчики технологии FDDI ставили перед собой в качестве наиболее приоритетных следующие цели:

  • · Повысить битовую скорость передачи данных до 100 Мб/с;
  • · Повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода - повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т.п.;
  • · Максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного трафиков.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Использование двух колец - это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят им воспользоваться, должны быть подключены к обоим кольцам. В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля первичного (Primary) кольца, поэтому этот режим назван режимом Thru - "сквозным" или "транзитным". Вторичное кольцо (Secondary) в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным (рисунок 2.1), образуя вновь единое кольцо. Этот режим работы сети называется Wrap, то есть "свертывание" или "сворачивание" колец. Операция свертывания производится силами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются против часовой стрелки, а по вторичному - по часовой. Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.

В стандартах FDDI отводится много внимания различным процедурам, которые позволяют определить наличие отказа в сети, а затем произвести необходимую реконфигурацию. Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов. При множественных отказах сеть распадается на несколько не связанных сетей.

Кольца в сетях FDDI рассматриваются как общая разделяемая среда передачи данных, поэтому для нее определен специальный метод доступа. Этот метод очень близок к методу доступа сетей Token Ring и также называется методом маркерного (или токенного) кольца - token ring (рисунок 2.2, а).

Станция может начать передачу своих собственных кадров данных только в том случае, если она получила от предыдущей станции специальный кадр - токен доступа (рисунок 2.2, б). После этого она может передавать свои кадры, если они у нее имеются, в течение времени, называемого временем удержания токена - Token Holding Time (THT). После истечения времени THT станция обязана завершить передачу своего очередного кадра и передать токен доступа следующей станции. Если же в момент принятия токена у станции нет кадров для передачи по сети, то она немедленно транслирует токен следующей станции. В сети FDDI у каждой станции есть предшествующий сосед (upstream neighbor) и последующий сосед (downstream neighbor), определяемые ее физическими связями и направлением передачи информации.

Каждая станция в сети постоянно принимает передаваемые ей предшествующим соседом кадры и анализирует их адрес назначения. Если адрес назначения не совпадает с ее собственным, то она транслирует кадр своему последующему соседу. Этот случай приведен на рисунке (рисунок 2.2, в). Нужно отметить, что, если станция захватила токен и передает свои собственные кадры, то на протяжении этого периода времени она не транслирует приходящие кадры, а удаляет их из сети.

Если же адрес кадра совпадает с адресом станции, то она копирует кадр в свой внутренний буфер, проверяет его корректность (в основном по контрольной сумме), передает его поле данных для последующей обработки протоколу лежащего выше над FDDI уровня (например, IP), а затем передает исходный кадр по сети последующей станции В передаваемом в сеть кадре станция назначения отмечает три признака: распознавания адреса, копирования кадра и отсутствия или наличия в нем ошибок.

После этого кадр продолжает путешествовать по сети, транслируясь каждым узлом. Станция, являющаяся источником кадра для сети, ответственна за то, чтобы удалить кадр из сети, после того, как он, совершив полный оборот, вновь дойдет до нее (рисунок 2.2, д). При этом исходная станция проверяет признаки кадра, дошел ли он до станции назначения и не был ли при этом поврежден. Процесс восстановления информационных кадров не входит в обязанности протокола FDDI, этим должны заниматься протоколы более высоких уровней.

Сеть FDDI (от английского Fiber Distributed Data Interface, оптоволоконный распределенный интерфейс данных) – стандарт локальных сетей, развивающий идею Token Ring. Стандарт FDDI был предложен Американским национальным институтом стандартов ANSI (спецификация ANSI X3T9.5). Затем был принят стандарт ISO 9314, соответствующий спецификациям ANSI.

В отличие от других стандартных локальных сетей, стандарт FDDI изначально ориентировался на высокую скорость передачи (100 Мбит/с) и на применение оптоволоконного кабеля.

Выбор оптоволокна в качестве среды передачи определил такие преимущества новой сети, как высокая помехозащищенность, максимальная секретность передачи информации и прекрасная гальваническая развязка абонентов. Высокая скорость передачи, которая в случае оптоволоконного кабеля достигается гораздо проще, позволяет решать многие задачи, недоступные менее скоростным сетям, например, передачу изображений в реальном масштабе времени. Кроме того, оптоволоконный кабель легко решает проблему передачи данных на расстояние нескольких километров без ретрансляции, что позволяет строить большие по размерам сети, охватывающие даже целые города и имеющие при этом все преимущества локальных сетей (в частности, низкий уровень ошибок).

За основу стандарта FDDI был взят метод маркерного доступа, предусмотренный международным стандартом IEEE 802.5 (Token-Ring). Несущественные отличия от этого стандарта определяются необходимостью обеспечить высокую скорость передачи информации на большие расстояния. Топология сети FDDI – это кольцо, наиболее подходящая топология для оптоволоконного кабеля. В сети применяется два разнонаправленных оптоволоконных кабеля, один из которых обычно находится в резерве, однако такое решение позволяет использовать и полнодуплексную передачу информации (одновременно в двух направлениях) с удвоенной эффективной скоростью в 200 Мбит/с (при этом каждый из двух каналов работает на скорости 100 Мбит/с).

Применяется и звездно-кольцевая топология с концентраторами, включенными в кольцо (как в Token-Ring).

Основные технические характеристики сети FDDI.

  • Максимальное количество абонентов сети – 1000.
  • Максимальная протяженность кольца сети – 20 километров.
  • Максимальное расстояние между абонентами сети – 2 километра.
  • Среда передачи – многомодовый оптоволоконный кабель (возможно применение витой пары).
  • Метод доступа – маркерный.
  • Скорость передачи информации – 100 Мбит/с (200 Мбит/с для дуплексного режима передачи).

Ограничение на общую длину сети в 20 км связано не с затуханием сигналов в кабеле, а с необходимостью ограничения времени полного прохождения сигнала по кольцу для обеспечения предельно допустимого времени доступа. А вот максимальное расстояние между абонентами (2 км при многомодовом кабеле) определяется как раз затуханием сигналов в кабеле (оно не должно превышать 11 дБ). Предусмотрена также возможность применения одномодового кабеля, и в этом случае расстояние между абонентами может достигать 45 километров, а полная длина кольца – 200 километров.

Имеется также реализация FDDI на электрическом кабеле (CDDI – Copper Distributed Data Interface или TPDDI – Twisted Pair Distributed Data Interface). При этом используется кабель категории 5 с разъемами RJ-45. Максимальное расстояние между абонентами в этом случае должно быть не более 100 метров. Стоимость оборудования сети на электрическом кабеле в несколько раз меньше. Но эта версия сети уже не имеет столь очевидных преимуществ перед конкурентами, как изначальная оптоволоконная FDDI. Электрические версии FDDI стандартизованы гораздо хуже оптоволоконных, поэтому совместимость оборудования разных производителей не гарантируется.

Стандарт FDDI для достижения высокой гибкости сети предусматривает включение в кольцо абонентов двух типов:

  • Абоненты (станции) класса А (абоненты двойного подключения, DAS – Dual-Attachment Stations) подключаются к обоим (внутреннему и внешнему) кольцам сети. При этом реализуется возможность обмена со скоростью до 200 Мбит/с или резервирования кабеля сети (при повреждении основного кабеля используется резервный). Аппаратура этого класса применяется в самых критичных с точки зрения быстродействия частях сети.
  • Абоненты (станции) класса В (абоненты одинарного подключения, SAS – Single-Attachment Stations) подключаются только к одному (внешнему) кольцу сети. Они более простые и дешевые, по сравнению с адаптерами класса А, но не имеют их возможностей. В сеть они могут включаться только через концентратор или обходной коммутатор, отключающий их в случае аварии.

Кроме собственно абонентов (компьютеров, терминалов и т.д.) в сети используются связные концентраторы (Wiring Concentrators), включение которых позволяет собрать в одно место все точки подключения с целью контроля работы сети, диагностики неисправностей и упрощения реконфигурации. При применении кабелей разных типов (например, оптоволоконного кабеля и витой пары)

концентратор выполняет также функцию преобразования электрических сигналов в оптические и наоборот. Концентраторы также бывают двойного подключения (DAC – Dual-Attachment Concentrator) и одинарного подключения (SAC – Single-Attachment Concentrator).

Стандарт FDDI предусматривает также возможность реконфигурации сети с целью сохранения ее работоспособности в случае повреждения кабеля. Поврежденный участок кабеля исключается из кольца, но целостность сети при этом не нарушается вследствие перехода на одно кольцо вместо двух (то есть абоненты DAS начинают работать, как абоненты SAS). Это равносильно процедуре сворачивания кольца в сети Token-Ring.

В отличие от метода доступа, предлагаемого стандартом IEEE 802.5, в FDDI применяется так называемая множественная передача маркера. Если в случае сети Token-Ring новый (свободный) маркер передается абонентом только после возвращения к нему его пакета, то в FDDI новый маркер передается абонентом сразу же после окончания передачи им пакета. Последовательность действий здесь следующая:

  1. Абонент, желающий передавать, ждет маркера, который идет за каждым пакетом.
  2. Когда маркер пришел, абонент удаляет его из сети и передает свой пакет. Таким образом, в сети может быть одновременно несколько пакетов, но только один маркер.
  3. Сразу после передачи своего пакета абонент посылает новый маркер.
  4. Абонент-получатель, которому адресован пакет, копирует его из сети и, сделав пометку в поле статуса пакета, отправляет его дальше по кольцу.
  5. Получив обратно по кольцу свой пакет, абонент уничтожает его. В поле статуса пакета он имеет информацию о том, были ли ошибки, и получил ли пакет приемник.

В сети FDDI не используется система приоритетов и резервирования, как в Token-Ring. Но предусмотрен механизм адаптивного планирования нагрузки, что позволяет абонентам гибко реагировать на загрузку сети и автоматически поддерживать ее на оптимальном уровне.

В заключение следует отметить, что несмотря на очевидные преимущества FDDI данная сеть не получила широкого распространения, что связано главным образом с высокой стоимостью ее аппаратуры (порядка нескольких сот и даже тысяч долларов). Основная область применения FDDI сейчас – это базовые, опорные (Backbone) сети, объединяющие несколько сетей. Применяется FDDI также для соединения мощных рабочих станций или серверов, требующих высокоскоростного обмена.

В настоящее время сети Fast Ethernet и Gigabit Ethernet почти полностью вытеснили FDDI, несмотря на все преимущества данной технологии.