Тарифы Услуги Сим-карты

4 формула шеннона для определения количества информации. Формула шеннона, информационная энтропия. Определение с помощью собственной информации

(Claude Elwood Shannon, 30 апреля 1916 - 24 февраля 2001) - американский математик и электротехник, один из создателей математической теории информации, в значительной мере предопределил своими результатами развитие общей теории дискретных автоматов, которые являются важными составляющими кибернетики. В 1936 году закончил Мичиганский университет. После защиты диссертации (1940) в 1941 году поступил на работу в знаменитые Лаборатории Белла.

С 1956 года преподавал в МТИ.

Большую ценность представляет другая работа - Communication Theory of Secrecy Systems (1949), в которой сформулированы математические основы криптографии.

С 1956 - член Национальной академии наук США и Американской академии искусств и наук

Процесс передачи информации

Передается в виде сообщений от некоторого источника информации к ее приемнику посредством канала связи между ними. Источник посылает передаваемое сообщение, которое кодируется в передаваемый сигнал.

Этот сигнал посылается по каналу связи. В результате в приемнике появляется принимаемый сигнал, который декодируется и становится принимаемым сообщением.

Примеры

  • сообщение, содержащее информацию о прогнозе погоды, передается приемнику (телезрителю) от источника - специалиста-метеоролога посредством канала связи - телевизионной передающей аппаратуры и телевизора;
  • живое существо своими органами чувств (глаз, ухо, кожа, язык и так далее) воспринимает информацию из внешнего мира, перерабатывает ее в определенную последовательность нервных импульсов, передает импульсы по нервным волокнам, хранит в памяти в виде состояния нейронных структур мозга, воспроизводит в виде звуковых сигналов, движений и тому подобное, использует в процессе своей жизнедеятельности.

Передача информации по каналам связи часто сопровождается воздействием помех, вызывающих искажение и потерю информации.

В определенных, весьма широких условиях можно пренебречь качественными особенностями информации, выразить ее количество числом, то есть измерить информацию.

В настоящее время получили распространение подходы к определению понятия;количество информации;, основанные на том, что информацию, содержащуюся в сообщении, можно нестрого трактовать в смысле ее новизны или, иначе, уменьшения неопределенности наших знаний об объекте.

Так, американский инженер Р. Хартли в 1928 году, процесс получения информации рассматривает как выбор одного сообщения из конечного наперед заданного множества из N равновероятных сообщений, а количество информации I, содержащееся в выбранном сообщении, определяет как двоичный логарифм N.

Формула Шеннона

I=- (p1 log2 p1 + p2 log2 p2 + … + pN log2 pN)

где pi - вероятность того, что именно i-е сообщение выделено в наборе из N сообщений.

Легко заметить, что если вероятности p1, …, pN равны, то каждая из них равна 1/N, и формула Шеннона превращается в формулу Хартли.

Помимо двух рассмотренных подходов к определению количества информации, существуют и другие.

Важно помнить, что любые теоретические результаты применимы лишь к определенному кругу случаев, очерченному первоначальными допущениями.

В качестве единицы информации условились принять один бит (английский bit - binary, digit - двоичная цифра).

Бит в теории информации - количество информации, необходимое для различения двух равновероятных сообщений.

А в вычислительной технике битом называют наименьшую;порцию; памяти, необходимую для хранения одного из двух знаков «0» и «1», используемых для внутримашинного представления данных и команд.

В 1928 г. американский инженер Р. Хартли предложил научный подход к оценке сообщений. Предложенная им формула имела следующий вид:

I = log 2 K , Где К - количество равновероятных событий; I - количество бит в сообщении, такое, что любое из К событий произошло. Иногда формулу Хартли записывают так:

I = log 2 K = log 2 (1 / р) = - log 2 р, т. к. каждое из К событий имеет равновероятный исход р = 1 / К, то К = 1 / р.

Задача.

Шарик находится в одной из трех урн: А, В или С. Определить сколько бит информации содержит сообщение о том, что он находится в урне В.

Такое сообщение содержит I = log 2 3 = 1,585 бита информации.

Но не все ситуации имеют одинаковые вероятности реализации. Существует много таких ситуаций, у которых вероятности реализации различаются. Например, если бросают несимметричную монету или "правило бутерброда".

"Однажды в детстве я уронил бутерброд. Глядя, как я виновато вытираю масляное пятно, оставшееся на полу, старший брат успокоил меня:

Не горюй, это сработал закон бутерброда.

Что еще за закон такой? - спросил я.

Закон, который гласит: "Бутерброд всегда падает маслом вниз". Впрочем, это шутка, - продолжал брат.- Никакого закона нет. Прсто бутерброд действительно ведет себя довольно странно: большей частью масло оказывается внизу.

Давай-ка еще пару раз уроним бутерброд, проверим, - предложил я. - Все равно ведь его придется выкидывать.

Проверили. Из десяти раз восемь бутерброд упал маслом вниз.

И тут я задумался: а можно ли заранее узнать, как сейчас упадет бутерброд маслом вниз или вверх?

Наши опыты прервала мать…" (Отрывок из книги "Секрет великих полководцев", В.Абчук).

В 1948 г. американский инженер и математик К Шеннон предложил формулу для вычисления количества информации для событий с различными вероятностями. Если I - количество информации, К - количество возможных событий, рi - вероятности отдельных событий, то количество информации для событий с различными вероятностями можно определить по формуле:

I = - Sum р i log 2 р i , где i принимает значения от 1 до К.

Формулу Хартли теперь можно рассматривать как частный случай формулу Шеннона:

I = - Sum 1 / К log 2 (1 / К) = I = log 2 К.

При равновероятных событиях получаемое количество информации максимально.

Задачи. 1. Определить количество информации, получаемое при реализации одного из событий, если бросают а) несимметричную четырехгранную пирамидку; б) симметричную и однородную четырехгранную пирамидку. Решение. а) Будем бросать несимметричную четырехгранную пирамидку. Вероятность отдельных событий будет такова: р1 = 1 / 2, р2 = 1 / 4, р3 = 1 / 8, р4 = 1 / 8, тогда количество информации, получаемой после реализации одного из этих событий, рассчитывается по формуле: I = -(1 / 2 log 2 1/2 + 1 / 4 log 2 1/4 + 1 / 8 log 2 1/8 + 1 / 8 log 2 1/8) = 1 / 2 + 2 / 4 + + 3 / 8 + 3 / 8 = 14/8 = 1,75 (бит). б) Теперь рассчитаем количество информации, которое получится при бросании симметричной и однородной четырехгранной пирамидки: I = log 2 4 = 2 (бит). 2. Вероятность перового события составляет 0,5, а второго и третьего 0,25. Какое количество информации мы получим после реализации одного из них? 3. Какое количество информации будет получено при игре в рулетку с 32-мя секторами?

Физиологи и психологи научились определять количество информации, которое человек может воспринимать при помощи органов чувств, удерживать в памяти и подвергать обработке. Информацию можно представлять в различных формах: звуковой, знаковой и др. рассмотренный выше способ определения количества информации, получаемое в сообщениях, которые уменьшают неопределенность наших знаний, рассматривает информацию с позиции ее содержания, новизны и понятности для человека. С этой точки зрения в опыте по бросанию кубика одинаковое количество информации содержится в сообщениях "два", "вверх выпала грань, на которой две точки" и в зрительном образе упавшего кубика.

При передаче и хранении информации с помощью различных технических устройств информацию следует рассматривать как последовательность знаков (цифр, букв, кодов цветов точек изображения), не рассматривая ее содержание.

Считая, что алфавит (набор символов знаковой системы) - это событие, то появление одного из символов в сообщении можно рассматривать как одно из состояний события. Если появление символов равновероятно, то можно рассчитать, сколько бит информации несет каждый символ. Информационная емкость знаков определяется их количеством в алфавите. Чем из большего количества символов состоит алфавит, тем большее количество информации несет один знак. Полное число символов алфавита принято называть мощностью алфавита.

Молекулы ДНК (дезоксирибонуклеиновой кислоты) состоят из четырех различных составляющих (нуклеотидов), которые образуют генетический алфавит. Информационная емкость знака этого алфавита составляет:

4 = 2 I , т.е. I = 2 бит.

При таком подходе в результате сообщения о результате бросания кубика, получим различное количество информации, Чтобы его подсчитать, нужно умножить количество символов на количество информации, которое несет один символ.

Количество информации, которое содержит сообщение, закодированное с помощью знаковой системы, равно количеству информации, которое несет один знак, умноженному на число знаков в сообщении.

1928 год американский инженер Ральф Хартли рассматривает процесс получения информации как выбор одного сообщения из конечного заданного множества N равновероятных событий.

Формула Хартли:

где К - количество информации, N -число равновероятных событий.

Формула Хартли может быть записана и так: N=2k

Так как наступление каждого из N событий имеет одинаковую вероятность P, то:

где P- вероятность наступления события.

Тогда, формулу можно записать иначе:

1948 год американский ученый Клод Шеннон предложил другую формулу определения количества информации, учитывая возможную неодинаковую вероятность событий в наборе.

Формула Шеннона:

K = - (p1 *log2 p1+ p2 *log 2p 2 + p 3 *log 2p 3 +…+ pi * log2 pi),

где pi вероятность того, что именно i-е сообщение выделено в наборе из N сообщений.

Также эту формулу записывают:

Современная наука о свойствах информации и закономерностях информационных процессов называется теорией информации. Содержание понятия "информация" можно раскрыть на примере двух исторически первых подходов к измерению количества информации: подходов Хартли и Шеннона: первый из них основан на теории множеств и комбинаторике, а второй - на теории вероятностей.

Информация может пониматься и интерпретироваться в различных проблемах, предметных областях по-разному. Вследствие этого, имеются различные подходы к определению измерения информации и различные способы введения меры количества информации.

Количество информации - числовая величина, адекватно характеризующая актуализируемую информацию по разнообразию, сложности, структурированности (упорядоченности), определенности, выбору состояний отображаемой системы.

Если рассматривается некоторая система, которая может принимать одно из n возможных состояний, то актуальной задачей является задача оценки этого выбора, исхода. Такой оценкой может стать мера информации (события).

Мера - непрерывная действительная неотрицательная функция, определенная на множестве событий и являющаяся аддитивной.

Меры могут быть статические и динамические, в зависимости от того, какую информацию они позволяют оценивать: статическую (не актуализированную; на самом деле оцениваются сообщения без учета ресурсов и формы актуализации) или динамическую (актуализированную т.е. оцениваются также и затраты ресурсов для актуализации информации).

Существуют различные подходы к определению количества информации. Наиболее часто используются следующие объемный и вероятностный.

Объемный подход.

Используется двоичная система счисления, потому что в техническом устройстве наиболее просто реализовать два противоположных физических состояния: намагничено / не намагничено, вкл./выкл., заряжено / не заряжено и другое.

Объём информации, записанной двоичными знаками в памяти компьютера или на внешнем носителе информации, подсчитывается просто по количеству требуемых для такой записи двоичных символов. При этом невозможно нецелое число битов.

Для удобства использования введены и более крупные, чем бит, единицы количества информации. Так, двоичное слово из восьми знаков содержит один байт информации, 1024 байта образуют килобайт (кбайт), 1024 килобайта - мегабайт (Мбайт), а 1024 мегабайта - гигабайт (Гбайт).

Энтропийный (вероятностный) подход.

Этот подход принят в теории информации и кодирования. Данный способ измерения исходит из следующей модели: получатель сообщения имеет определённое представление о возможных наступлениях некоторых событий. Эти представления в общем случае недостоверны и выражаются вероятностями, с которыми он ожидает то или иное событие. Общая мера неопределённостей называется энтропией. Энтропия характеризуется некоторой математической зависимостью от совокупности вероятности наступления этих событий.

Количество информации в сообщении определяется тем, насколько уменьшилась эта мера после получения сообщения: чем больше энтропия системы, тем больше степень её неопределённости. Поступающее сообщение полностью или частично снимает эту неопределённость, следовательно, количество информации можно измерять тем, насколько понизилась энтропия системы после получения сообщения. За меру количества информации принимается та же энтропия, но с обратным знаком.

Подход Р. Хартли основан на фундаментальных теоретико-множественных, по существу комбинаторных основаниях, а также нескольких интуитивно ясных и вполне очевидных предположениях.

Если существует множество элементов и осуществляется выбор одного из них, то этим самым сообщается или генерируется определенное количество информации. Эта информация состоит в том, что если до выбора не было известно, какой элемент будет выбран, то после выбора это становится известным. Необходимо найти вид функции, связывающей количество информации, получаемой при выборе некоторого элемента из множества, с количеством элементов в этом множестве, т.е. с его мощностью.

Если множество элементов, из которых осуществляется выбор, состоит из одного единственного элемента, то ясно, что его выбор предопределен, т.е. никакой неопределенности выбора нет - нулевое количество информации.

Если множество состоит из двух элементов, то неопределенность выбора минимальна. В этом случае минимально и количество информации.

Чем больше элементов в множестве, тем больше неопределенность выбора, тем больше информации.

Таким образом, логарифмическая мера информации, предложенная Хартли, одновременно удовлетворяет условиям монотонности и аддитивности. Сам Хартли пришел к своей мере на основе эвристических соображений, подобных только что изложенным, но в настоящее время строго доказано, что логарифмическая мера для количества информации однозначно следует из этих двух постулированных им условий.

В 1948 году, исследуя проблему рациональной передачи информации через зашумлённый коммуникационный канал, Клод Шеннон предложил революционный вероятностный подход к пониманию коммуникаций и создал первую, истинно математическую, теорию энтропии. Его сенсационные идеи быстро послужили основой разработки двух основных направлений: теории информации, которая использует понятие вероятности и эргодическую теорию для изучения статистических характеристик данных и коммуникационных систем, и теории кодирования, в которой используются главным образом алгебраические и геометрические инструменты для разработки эффективных кодов.

Клод Шеннон предположил, что прирост информации равен утраченной неопределённости, и задал требования к её измерению:

  • 1. мера должна быть непрерывной; то есть изменение значения величины вероятности на малую величину должно вызывать малое результирующее изменение функции;
  • 2. в случае, когда все варианты (буквы в приведённом примере) равновероятны, увеличение количества вариантов (букв) должно всегда увеличивать значение функции;
  • 3. должна быть возможность сделать выбор (в нашем примере букв) в два шага, в которых значение функции конечного результата должно являться суммой функций промежуточных результатов.

Поэтому функция энтропии должна удовлетворять условиям:

определена и непрерывна для всех,

где для всех и. (Нетрудно видеть, что эта функция зависит только от распределения вероятностей, но не от алфавита).

Для целых положительных, должно выполняться следующее неравенство:

Для целых положительных, где, должно выполняться равенство:

информационный пропускной энтропийный

Шеннон определил, что измерение энтропии, применяемое к источнику информации, может определить требования к минимальной пропускной способности канала, требуемой для надёжной передачи информации в виде закодированных двоичных чисел. Для вывода формулы Шеннона необходимо вычислить математическое ожидание «количества информации», содержащегося в цифре из источника информации. Мера энтропии Шеннона выражает неуверенность реализации случайной переменной. Таким образом, энтропия является разницей между информацией, содержащейся в сообщении, и той частью информации, которая точно известна (или хорошо предсказуема) в сообщении. Примером этого является избыточность языка -- имеются явные статистические закономерности в появлении букв, пар последовательных букв, троек и т.д.

Своё дальнейшее развитие теория информации получила в работах Клода Шеннона, американского инженера и математика (1916 – 2001). Шеннон является одним из создателей математической теории информации. Его основные труды посвящены теории релейно-контактных схем, математической теории связи, кибернетике. К. Шеннон изучал вопросы передачи информации в телеграфии, телефонии или радиовещании в виде сигналов электромагнитных колебаний. Одна из задач, которую ставил перед собой К. Шеннон, заключалась в том, чтобы определить систему кодирования, позволяющую оптимизировать скорость и достоверность передачи информации. Так как в годы войны он служил в шифровальном отделе, где занимался разработкой криптографических систем, то это позже помогло ему открыть методы кодирования с коррекцией ошибок. В своих работах 1948-1949 годов К. Шеннон определил количество информации через энтропию - величину, известную в термодинамике и статистической физике как мера разупорядоченности системы, а за единицу количества информации принял то, что впоследствии назвали битом (bit).

Для дальнейшего изложения необходимо использовать некоторые понятия теории вероятности: случайное событие, опыт, вероятность события, случайная величина. В окружающем нас мире происходят различные события, причём мы можем интуитивно, основываясь на опыте, оценивать одни из них как более возможные, чем другие. Случайным называют событие, которое может наступить или не наступить в результате некоторого испытания, опыта или эксперимента. Будем обозначать события заглавными буквами A, B,Cи т.д. Количественная мера возможности наступления некоторого событияAназывается его вероятностью и обозначается какp(A),p– от английского probability. Чем более возможно наступление случайного события, тем больше его вероятность: еслиAболее возможно чемB, то p(A) > p(B). Вводится понятие достоверного события – событие, которое обязательно наступит. Это событие обозначаюти полагают, что его вероятностьp() = 1. Невозможным называют событие, которое никогда не произойдёт. Его обозначаюти полагают, что его вероятностьp() = 0. Для вероятностей всех остальных событий A выполняется неравенствоp() < p(A)

Для событий вводится понятие суммы и произведения. Сумма событий A+B – это событие, которое состоит в наступлении события A или В. Произведение событий A*B состоит в одновременном наступлении события A и B. События AиBнесовместны , если они не могут наступить вместе в результате одного испытания. Вероятность суммы несовместных событий равна сумме их вероятностей. Если А и В несовместные события, то p(A+B) = p(A) + p(B).

События A1, A2, A3, …Anобразуютполную группу , если в результате опыта обязательно наступит хотя бы одно из них. Если события A1, A2, A3, …Anпопарно несовместны и образуют полную группу, то сумма их вероятностей p1+p2+p3+ ….pn=1. Если они при этом ещё и равновероятны, то вероятность каждого равнаp= 1/n, гдеn– число событий.Вероятность события определяется как отношение числа благоприятных событию исходов опыта к общему числу исходов.Частота события – эмпирическое приближение его вероятности. Она вычисляется в результате проведения серии опытов как отношение числа опытов, в которых событие наступило к общему числу опытов. При большом числе опытов (испытаний) частота события стремится к его вероятности.

К. Шеннон, используя подход Р. Хартли, обратил внимание на то, что при передаче словесных сообщений частота (вероятность) использования различных букв алфавита не одинакова: некоторые буквы используются очень часто, другие - редко.

Рассмотрим алфавит A m состоящий изmсимволов. Обозначим черезp i вероятность (частоту) появления i-ого символа в любой позиции передаваемого сообщения, состоящего из n символов. Один i – ый символ алфавита несёт количество информации равное -Log 2 (p i). Перед логарифмом стоит «минус» потому, что количество информации величина неотрицательная, а Log 2 (x) <0 при 0

На месте каждого символа в сообщении может стоять любой символ алфавита A m ; количество информации, приходящееся на один символ сообщения, равно среднему значению информации по всем символам алфавита A m:

Общее количество информации, содержащееся в сообщении из n символов равно:

(3.2)

Если все символы алфавита A m появляются с равной вероятностью, то все p i = p. Так какр i = 1, то p = 1/m.

Формула (3.2) в случае, когда все символы алфавита равновероятны, принимает вид

Вывод: формула Шеннона (3.2) в случае, когда все символы алфавита равновероятны, переходит в формулу Хартли (2.2).

В общем случае количество энтропии Hпроизвольной системы X (случайной величины), которая может находиться в m различных состояниях x 1 ,x 2 , …x m cвероятностями p 1 ,p 2 , …p m , вычисленное по формуле Шеннона, равно

(3.3)

Напомним, что p 1 +p 2 + … +p m = 1. Если все p i одинаковы, то все состояния системы X равновероятны; в этом случае p i = 1/m, и формула (3.3) переходит в формулу Хартли (2.5):H(X) =Log 2 (m).

Замечание. Количество энтропии системы (случайной величины) Х не зависит от того, в каких конкретно состояниях x 1 ,x 2 , …x m может находиться система, но зависит от числаmэтих состояний и от вероятностей p 1 ,p 2 , …p m , с которыми система может находиться в этих состояниях. Это означает, что две системы, у которых число состояний одинаково, а вероятности этих состояний p 1 ,p 2 , …p m равны (с точностью до порядка перечисления), имеют равные энтропии.

Теорема. Максимум энтропии H(X) достигается в том случае, когда все состояния системы равновероятны. Это означает, что

(3.4)

Если система X может находиться только в одном состоянии (m=1), то её энтропия равна нулю. Рассмотрим систему, которая может принимать только два состояния x1 и x2 с вероятностями p1 иp2:

Количество энтропии такой системы равно

H(X) = - (1/2*Log 2 (1/2)+ 1/2*Log 2 (1/2)) = -Log 2 (1/2) = Log 2 (2) = 1

Это количество принимается за единицу измерения энтропии (информации) и называется 1 бит (1 bit).

Рассмотрим функцию

h(x) = -(x*log 2 (x) + (1-x)*log 2 (1-x)). (3.5)

Область её определения – интервал (0 ;1), Limh(x) = 0 приx0 или 1. График этой функции представлен на рисунке:

Рис. 4. График функции (3.5)

Если обозначить x через p 1 , а (1-x) через p 2 , тоp 1 +p 2 =1;p 1 ,p 2 (0;1), h(x) = H(p 1 ,p 2) = - (p 1 *log 2 (p 1) + (p 2)*log 2 (p 2)) – энтропия системы с двумя состояниями; максимум H достигается приp 1 =p 2 = 0.5.

График h(x) можно использовать при решении следующих задач:

Задача 1. Заданы три случайных величины X, Y, Z, каждая из которых принимает по два значения с вероятностями:

    P(X=x1) = 0.5; P(X=x2) = 0.5;

    P(Y=y1) = 0.2;P(Y=y2) = 0.8;

    P(Z=z1) = 0.3; P(Z=z2) = 0.7 .

Запись P(X=x1) = 0.5 означает, что случайная величина X принимает значение x1 с вероятностью 0.5. Требуется расположить энтропии этих систем в порядке возрастания.

Решение. Энтропия H(X) равна 1 и будет наибольшей; энтропия H(Y) равна значению функции h(x), см. (3.5), приx= 0.2, т.е.H(Y)=h(0.2); энтропияH(Z) =h(0.3). По графику h(x) можно определить, что h(0.2) < h(0.3). Следовательно, H(Y) < H(Z) < H(X).

Замечание 1. Энтропия системы тем больше, чем менее отличаются вероятности её состояний друг от друга. На основании этого можно сделать вывод, что H(Y) < H(Z). Например, если для систем X и Y с тремя состояниями заданы вероятности: дляX{0.4; 0.3; 0.3}, дляY{0.1; 0.1; 0.8}, то очевидно, что неопределённость системыXбольше, чем неопределённость системыY: у последней, скорее всего, будет реализовано состояние, вероятность которого равна 0.8 .

Энтропия H(X) характеризует степень неопределённости системы. Чем больше объём полученных о системе сведений, тем больше будет информации о системе, и тем менее неопределённым будет её состояние для получателя информации.

Если энтропия системы после получения информации становится равной нулю, это означает, что неопределённость исчезла, вся энтропия «перешла» в информацию. В этом случае говорят, что была получена полная информацию о системе X.Количество информации, приобретаемое при полном выяснении состояния физической системы, равно энтропии этой системы.

Если после получения некоторого сообщения неопределённость системы Xстала меньше, но не исчезла совсем, то количество информации, содержащееся в сообщении, равно приращению энтропии:

I = H1(X) - H2(X), (3.6)

где H1(X) и H2(X) - энтропия системы до и после сообщения, соответственно. Если H2(X) = 0, то мера неопределённости системы равна нулю и была получена полная информация о системе.

Пример. Вы хотите угадать количество очков, которое выпадет на игральном кубике. Вы получили сообщение, что выпало чётное число очков. Какое количество информации содержит это сообщение?

Решение. Энтропия системы «игральный кубик» H1 равна Log 2 6, т.к. кубик может случайным образом принять шестьравновозможных состояний {1, 2, 3, 4, 5, 6}. Полученное сообщение уменьшает число возможных состояний до трёх: {2, 4, 6}, т.е. энтропия системы теперь равна H2= Log 2 3. Приращение энтропии равно количеству полученной информации I = H1 – H2 = Log 2 6 - Log 2 3 = Log 2 2 = 1bit.

На примере разобранной задачи можно пояснить одно из распространённых определений единицы измерения – 1 бит: 1 бит - количество информации, которое уменьшает неопределённость состояния системы в два раза. Неопределённость дискретной системы зависит от числа её состоянийN. Энтропия до получения информацииH1= Log 2 N. Если после получения информации неопределённость уменьшилась в два раза, то это означает, что число состояний стало равнымN/2, а энтропияH2 =Log 2 N/2. Количество полученной информацииI= H1 -H2 =Log 2 N-Log 2 N/2 =Log 2 2 = 1 бит.

Рассмотрим несколько задач на применение формулы Шеннона и Хартли.

Задача 2. Может ли энтропия системы, которая принимает случайным образом одно из 4-х состояний, равняться: а) 3; б) 2.1 в) 1.9 г) 1; д) 0.3? Ответ объяснить.

Решение. Максимально возможное значение энтропия системы с 4-мя состояниями достигает в случае, когда все состояния равновероятны. Это значение по формуле Хартли равноLog 2 4 = 2 бита. Во всех других случаях энтропия системы с 4-мя состояниями будет меньше 2. Следовательно, возможными значениями энтропии из перечисленных выше, могут быть значения 1.9, 1, 0.3.

Задача 3. Задана функцияH(x)= -x*Log 2 (x) - (1-x)*Log 2 (1-x). Расположите в порядке возрастания следующие значения:H(0.9),H(0.85),H(0.45),H(0.2),H(0.15).

Решение. Используем график функции (3.5). Наибольшим значением будет H(0.45), наименьшим значением – H(0.9), затем по возрастанию идут значенияH(0.15) иH(0.85) = H(0.15); H(0.2). Ответ:H(0.9)

Задача 4. По линии связи переданы сообщения:a) «начало_в_10»;b) «лоанча_1_в0». Сравните количество информации в первом и втором сообщении.

Решение. Первое и второе сообщение состоят из одних и тех же символов: второе получено из первого в результате перестановки этих символов. В соответствии с формулой Шеннона эти сообщения содержат одинаковое количество информации. При этом первое сообщение несёт содержательную информацию, а второе – простой набор символов. Однако, в этом случае можно сказать, что второе сообщение является «зашифрованным» вариантом первого, и поэтому количество информации в обоих сообщениях одинаковое.

Задача 5. Получены три различных сообщенияA,B,C:

A= «прибытие в десять часов»;B= «прибытие в десять часов ноль минут»;C= «прибытие ровно в десять часов». Используя энтропийный подход Шеннона, сравните количество информации, содержащееся в этих сообщениях.

Решение. Обозначим количество информации в сообщениях A, B, C черезI(A),I(B),I(C) соответственно. В смысле «содержания» эти сообщения совершенно одинаковы, но одинаковое содержание выражено с помощью разного количества символов. При этом все символы сообщения А содержатся в сообщении B и С, сообщение С = A + «ровно», В = A + «ноль минут»; в соответствии с подходом Шеннона получаем: I(A) < I(C) < I(B).


где I - количество информации;
N - количество возможных событий;
р i - вероятность i-го события.

Например, пусть при бросании несимметричной четырехгранной пирамидки вероятности отдельных событий будут равны:

Р 1 = 1/2, р 2 = 1/4, р 3 = 1/8, р 4 = 1/8.

Тогда количество информации, которое мы получим после реализации одного из них, можно рассчитать по формуле (2.2):

I = -(l/2 log 2 l/2 + l/4 log 2 l/4 + l/8 log 2 l/8 + l/8 log 2 l/8) = (1/2 + 2/4 + 3/8 + 3/8) битов = 14/8 битов = 1,75 бита.

Этот подход к определению количества информации называется вероятностным .

Для частного, но широко распространенного и рассмотренного выше случая, когда события равновероятны (p i = 1/N), величину количества информации I можно рассчитать по формуле:

(2.3)

По формуле (2.3) можно определить, например, количество информации, которое мы получим при бросании симметричной и однородной четырехгранной пирамидки:

I = log 2 4 = 2 бита. Таким образом, при бросании симметричной пирамидки, когда события равновероятны, мы получим большее количество информации (2 бита), чем при бросании несимметричной (1,75 бита), когда события неравновероятны.

Количество информации, которое мы получаем, достигает максимального значения , если события равновероятны .

Выбор оптимальной стратегии в игре "Угадай число". На получении максимального количества информации строится выбор оптимальной стратегии в игре "Угадай число", в которой первый участник загадывает целое число (например, 3) из заданного интервала (например, от 1 до 16), а второй - должен "угадать" задуманное число. Если рассмотреть эту игру с информационной точки зрения, то начальная неопределенность знаний для второго участника составляет 16 возможных событий (вариантов загаданных чисел).

При оптимальной стратегии интервал чисел всегда должен делиться пополам, тогда количество возможных событий (чисел) в каждом из полученных интервалов будет одинаково и отгадывание интервалов равновероятно. В этом случае на каждом шаге ответ первого игрока ("Да" или "Нет") будет нести максимальное количество информации (1 бит).

Как видно из табл. 1.1, угадывание числа 3 произошло за четыре шага, на каждом из которых неопределенность знаний второго участника уменьшалась в два раза за счет получения сообщения от первого участника, содержащего 1 бит информации. Таким образом, количество информации, необходимое для отгадывания одного из 16 чисел, составило 4 бита.

Задания

1.3. Вычислить с помощью электронного калькулятора количество информации, которое будет получено:

  • при бросании симметричного шестигранного кубика;
  • при игре в рулетку с 72 секторами;
  • при игре в шахматы игроком за черных после первого хода белых, если считать все ходы равновероятными;
  • при игре в шашки.

1.4. Вероятность первого события составляет 0,5, а второго и третьего - 0,25. Какое количество информации мы получим после реализации одного из них?

1.5. Какое количество информации получит второй игрок в игре "Угадай число" при оптимальной стратегии, если первый игрок загадал число: от 1 до 64? От 1 до 128?