Тарифы Услуги Сим-карты

Что такое сотовая радиорелейная связь. Радиорелейные станции для "последней мили"

1. Общие принципы построения радиорелейных линий. Спутниковые и радиорелейные системы передачи

1. Общие принципы построения радиорелейных линий

1.1. Принципы радиорелейной связи

Используемые на РРЛ и ТРЛ диапазоны радиочастот обладают рядом достоинств. В каждом из этих широкополосных диапазонов можно передавать много широкополосных сигналов. В этих диапазонах антенны с большими коэффициентами усиления имеют сравнительно небольшие размеры. Применение таких антенн позволяет получить устойчивую связь при малой мощности передатчика. Спектр внешних помех атмосферного и промышленного происхождения лежит в более низкочастотной области, чем УВЧ. Поэтому в диапазонах УВЧ и более высокочастотных таких помех практически нет. Наибольшее распространение на магистральных РРЛ нашли АРРС, работающие в сантиметровом диапазоне волн.

Радиорелейную линию связи строят в виде цепочки приемопередающих РРС. На РРЛ устанавливают передатчики мощностью 0,1...10 Вт, приемники с коэффициентом шума около 10 дБ, антенны с коэффициентом усиления около 40 дБ (площадь раскрыва около 10 м2).

На такой РРЛ между антеннами соседних РРС должна быть прямая видимость. Для этого антенны устанавливают на опорах, чаще всего на высоте 40...100 м. Расстояние между соседними РРС магистральных РРЛ обычно около 50 км. На ТРЛ среднее расстояние между соседними станциями около 250 км. На ТРЛ применяют передатчики мощностью 1...10 кВт, приемники с малошумящими усилителями (МШУ), имеющими эффективную шумовую температуру 150... 200 К, антенны с коэффициентом усиления около 40 дБ

Типы станций . Основные типы РРС: оконечная (ОРС), узловая (УРС) и промежуточная (ПРС). На ОРС и УРС устанавливают радиопередатчики и радиоприемники (рис. 1.1). В составе радиопередатчика - модулятор Мд и передатчик СВЧ сигнала П, в составе радиоприемника - приемник СВЧ сигналов Пр и демодулятор Дм (ср. с рис. В.1). В передатчике СВЧ модулированный сигнал промежуточной частоты (ПЧ) преобразуется в сигнал СВЧ либо УВЧ диапазона, в приемнике СВЧ происходит обратное преобразование принятого СВЧ сигнала в сигнал ПЧ. Приемник СВЧ и передатчик, СВЧ вместе образуют приемопередатчик СВЧ, устанавливаемый на ПРС.

На ОРС, располагаемых на концах РРЛ, происходит ввод и выделение передаваемых сигналов, например МТС.

На ПРС происходит ретрансляция радиосигнала: прием, усиление, сдвиг по частоте и передача в направлении следующей РРС. При передаче радиосигналов вещательного телевидения по РРЛ на каждой ПРС предусмотрена возможность выделения телевизионной программы. Станция, на которой такая возможность реализована, называется ПРС с выделением телевидения (ПРСВ).

На УРС имеет место ретрансляция радиосигнала и разветвление РРЛ. От УРС часто берут начало новые РРЛ или кабельные линии связи. На УРС всегда происходит выделение из МТС части ТФ сигналов и ввод новых, поэтому там всегда устанавливают модуляторы и демодуляторы. Конструктивно их часто объединяют в устройстве, получившем название модем. Рекомендуемое для нашей страны среднее расстояние между соседними УРС составляет 250 км.

На УРС, как правило, имеет место разветвление радиосигналов вещательного телевидения, так называемый транзит по ПЧ. Поскольку модемы вносят шумы, то исключение их из схемы позволяет улучшить отношение сигнал-шум в канале на конце РРЛ. На крупных УРС, где сходятся несколько РРЛ, устанавливают специальные коммутаторы по ПЧ сигналов вещательного телевидения, позволяющие оперативно выбирать ту или иную программу. Модуляторы устанавливают лишь на тех УРС, где необходимо ввести новую ТВ программу. Рекомендуемое расстояние между такими УРС в нашей стране - 2500 км.

Радиорелейный пролет и радиорелейный участок . Часть радиорелейной линии связи между соседними РРС, включающую аппаратуру и среду распространения радиосигнала, называют радиорелейным пролетом. Часть радиорелейной линии связи, ограниченную двумя близлежащими радиорелейными станциями, которые являются оконечными или узловыми, называют радиорелейным участком.

Сдвиг по частоте . Разность уровней сигналов на выходе и входе приемопередатчика ПРС превышает 100 дБ. Чтобы предотвратить самовозбуждение этого устройства, радиосигналы одного направления связи на ПРС (УРС) принимают и передают на разных частотах f1 и f2. Частотным сдвигом называют величину fсдв = |fа -f1|. Обычно на магистральных РРЛ fсдв=266 МГц.

Особенности обслуживания. На РРЛ обслуживающий персонал постоянно присутствует только на ОРС и УРС. Для контроля за состоянием аппаратуры на ПРС и управления ею используют систему телеобслуживания (ТО), при организации которой всю РРЛ разбивают на эксплуатационные участки, содержащие до 10 РРС. В середине такого участка находится УРС, с которой управляют работой ПРС участка, расположенных по обе стороны от УРС. Оконечные РРС обслуживают близлежащие ПРС. Для повышения надежности и устойчивости работы аппаратуру РРЛ резервируют. Распространены два способа автоматического резервирования: постанционное и поучастковое. При постанционном резервировании в случае неисправности рабочего комплекта аппаратуры на данной станции происходит автоматическая замена его на резервный, работающий на тех же частотах.

При поучастковом резервировании на каждой станции устанавливают рабочие и резервные комплекты приемопередатчиков СВЧ, причем рабочие частоты этих комплектов не совпадают. При повреждении аппаратуры на любой ПРС происходит автоматическое переключение модемов на концах радиорелейного участка, после чего передача сигналов на всем участке происходит с помощью резервных СВЧ приемопередатчиков. На РРС с поучастковым резервированием на концах участка устанавливают аппаратуру резервирования, с помощью которой контролируют состояние аппаратуры ВЧ стволов и переключают модемы. Команду переключения с конца участка к началу передают по каналам служебной связи. Каналы служебной связи предназначены также для передачи сигналов ТО и переговоров обслуживающего персонала.

1.2. Многоствольные радиорелейные линии

Стволы РРЛ . На всех станциях одной РРЛ, как правило, устанавливают однотипные приемники и передатчики СВЧ. В большинстве радиорелейных систем Пр и П на ПРС соединяют по ПЧ. Цепочка таких передатчиков и приемников СВЧ на радиорелейном участке образует высокочастотный (ВЧ) ствол. Этот ствол является универсальным, так как по нему можно организовать передачу различных сообщений. Для чего на ОРС и УРС к ВЧ стволу подключают Мд и Дм и соответствующие оконечные устройства. Последние входят в состав модема. Если по ВЧ стволу передают МТС методом аналоговой модуляции, то такой ствол называют телефонным (ТФ). Кроме него методом аналоговой ЧМ организуют телевизионные (ТВ) стволы, по которым передают ТВ программы. Цифровой (ЦФ) ствол организуют, подавая на модулятор РРС цифровой сигнал.

Сигнал, подаваемый на модулятор, называют групповым сигналом ствола , а спектр его - линейным спектром , В аналого-цифровых (АЦФ) стволах ГС составляют из МТС и цифрового сигнала.

Структурная схема трехствольной РРЛ . Для повышения пропускной способности на РРЛ, как правило, организуют одновременную работу нескольких ВЧ стволов на различных частотах на общие антенно-фидерный тракт (АФТ) и антенну. Такую РРЛ называют многоствольной. Она имеет более высокую экономическую эффективность, чем одноствольная, поскольку стоимость антенны, антенных опор, а также общих для всех стволов - технического здания и системы электропитания, значительно выше, чем стоимость аппаратуры ВЧ ствола.

Для подключения нескольких приемопередатчиков к одной антенне (рис. 1.2) служат устройства совмещения (УС) и разделительные фильтры (РФ). Устройства совмещения нужны для разделения волн приема и передачи. В качестве УС используют поляризационные селекторы или ферритовые циркуляторы. Разделительные фильтры приема (РФ1) служат для разделения сигналов различных стволов на приеме на частотах f1, f3, f5. Разделительные фильтры передачи (РФ2) служат для объединения на передаче сигналов на частотах f1", f3", f5".

На рис. 1.2 показаны ТФ и ТВ стволы, а также резервный - Рез. Аппаратура резервирования установлена на концах радиорелейного участка: приемном - Рез. пр и передающем - Рез. П. В точку 3 может поступать сигнал об аварии, который должен быть передан к началу участка на предыдущую УРС, аналогичный сигнал от последующей УРС поступает в т. 4. В ТВ стволе организован транзит по ПЧ. Выбор ответвляемой программы осуществляют с помощью коммутатора по ПЧ-Км ПЧ, к которому также подводят (в т. 5) сигнал ТВ ствола обратного направления.

Пропускная способность ствола. В современных магистральных РРЛ с ЧМ для ВЧ ствола выделена полоса частот 28 МГц. Следовательно, ЧМ сигналы, передаваемые по стволу, должны иметь спектр не шире 28 МГц. Напомним, что ширина спектра ЧМ сигнала

(1.1)

где - максимальная девиация частоты, FB - верхняя модулирующая частота. Поскольку на РРЛ девиация частоты задана, то и величина FB, а следовательно, и пропускная способность ствола ограничены. Ориентировочно F<9 МГц

1.3. Планы распределения частот

Для работы РРЛ выделены полосы частот шириной 400 МГц в диапазоне1 2 ГГц (1,7...2,1 ГГц), 500 МГц в диапазонах 4 (3,4... 3,9), 6 (5,67 ...6,17) и 8 (7,9... 8,4) ГГц и шириной 1 ГГц в диапазонах 11 и 13 ГГц и более высокочастотных. Эти полосы распределяют между ВЧ стволами радиорелейной системы по определенному плану, называемому планом распределения частот. Планы частот составляют так, чтобы обеспечить минимальные взаимные помехи между стволами, работающими на общую антенну.

В полосе 400 МГц может быть организовано 6, в полосе 500 МГц - 8 и в полосе 1 ГГц-12 дуплексных ВЧ стволов.

В плане частот (рис. 1.3) обычно указывают среднюю частоту f0. Частоты приема стволов располагают в одной половине выделенной полосы, а частоты передачи - в другой. При таком делении получают достаточно большую частоту сдвига, чем обеспечивают достаточную развязку между сигналами приема и передачи, поскольку РФ приема (или РФ передачи) будут работать только в половине всей полосы частот системы. При этом можно использовать общую антенну для приема и передачи сигналов. В случае необходимости получают дополнительную развязку между волнами приема и передачи в одной антенне за счет применения разной поляризации. На РРЛ используют волны с линейной поляризацией: вертикальной или горизонтальной. Применяют два варианта распределения поляризаций. В первом варианте на каждой ПРС и УРС происходит изменение поляризации так, что принимают и передают волны разной поляризации. Во втором варианте в направлении "туда" используют одну поляризацию волн, а в направлении "обратно"- другую.

Рисунок 1.3. План распределения частот для радиорелейной системы КУРС для станции типа НВ в диапазонах 4 (f0=3,6536), 6(f0=5,92) и 8(f0=8,157)

Станцию, на которой частоты приема расположены в нижней (Н) части выделенной полосы, а частоты передачи в верхней (В) - обозначают индексом "НВ". На следующей станции частота приема окажется выше частоты передачи и такую станцию обозначают индексом "ВН".

Для обратного направления связи данного ствола можно взять или ту же пару частот, что и для прямого, или другую. Соответственно говорят, что план частот позволяет организовать работу по двухчастотной (рис. 1.4) или четырехчастотной (рис. 1.5) системам. На этих рисунках через f1н, f1в,…f5н, f5в обозначены средние частоты стволов. Индексы частот соответствуют обозначениям стволов на рис. 1.3. При двухчастотной системе на ПРС и У PC для приема с противоположных направлений обязательно должна быть взята одинаковая частота. Антенна WA1 (рис. 1.4,а) будет принимать радиоволны на частоте f1н с двух направлений: главного А и обратного В. Радиоволна, приходящая с направления В, создает помеху. Степень ослабления этой помехи антенной зависит от защитных свойств антенны. Если антенна ослабляет волну обратного направления не менее, чем на 65 дБ по сравнению с волной, приходящей с главного направления, то такую антенну можно использовать при двухчастотной системе. Двухчастотная система имеет то преимущество, что позволяет в выделенной полосе частот организовать в 2 раза больше ВЧ стволов, чем четырехчастотная, однако она требует более дорогих антенн.

На магистральных РРЛ, как правило, применяют двухчастотные системы. В плане частот не предусмотрены защитные частотные интервалы между соседними стволами приема (передачи). Поэтому сигналы соседних стволов трудно разделить с помощью РФ. Чтобы избежать взаимных помех между соседними стволами, на одну антенну работают либо четные, либо нечетные стволы. В плане частот указывают минимальный частотный разнос между стволами приема и передачи, подключенными к одной антенне (98 МГц на рис. 1.3). Как правило, четные стволы используются на магистральных РРЛ, а нечетные - на ответвлениях от них. В таком случае частоты приема и передачи между стволами магистральной РРЛ распределяют согласно рис. 1.4,в, а между стволами зоновой РРЛ при четырехчастотной системе - согласно рис. 1.5,в.

На практике план частот, реализованный на РРЛ на основе двухчастотной (четырехчастотной) системы, называют двухчастотным (четырехчастотным) планом.

На РРЛ имеет место повторение частот передачи через пролет (см. рис. 1.1). При этом для того, чтобы снизить взаимные помехи между РРС, работающими на одинаковых частотах, станции располагают зигзагообразно относительно направления между оконечными пунктами (рис. 1.6). При нормальных условиях распространения сигнал от РРС1 на расстоянии в 150 км сильно ослаблен и практически не может быть принят на РРС4. Однако в отдельных случаях возникают благоприятные условия для era распространения. В целях надежного ослабления такой помехи используют направленные свойства антенн. На трассе между направлением максимального излучения передающей антенны РРС1,т. е. направлением на РРС2, и направлением на РРС4 (направление АС на рис. 1.6) предусматривают защитный угол изгиба трассы a1 в несколько градусов, так чтобы в направлении АС коэффициент усиления передающей антенны на РРС1 был достаточно мал.

Вопросы для самоконтроля

  1. Назовите энергетические параметры радиорелейной аппаратуры. Приведите их значения для РРЛ и ТРЛ.
  2. В каких диапазонах радиоволн и частот работают РРЛ и ТРЛ? Каковы особенности этих диапазонов?
  3. Назовите типы станций на РРЛ, основные функции этих станций.
  4. Что такое ВЧ ствол? По каким признакам различают ВЧ, ТФ и ТВ стволы?
  5. Поясните назначение элементов структурной схемы ОРС трехствольной РРЛ.
  6. Поясните принципы построения плана распределения частот РРЛ. Сопоставьте планы, организованные по двух- и четырехчастотным системам.

Отечественной радиорелейной промышленности более 50 лет. За время своего развития отрасль вышла на ожидаемые позиции. Сегодня радиорелейные каналы (РРЛ) отлично зарекомендовали себя в обеспечении удаленных районов с низкой инфраструктурой, охвате больших пространств и местностей со сложной структурой геологии. К числу заметных отличий от проводной технологии добавился более низкий бюджет оснащения.

Радиорелейная связь относится к беспроводным каналам связи, но их не нужно путать с известным WI —FI . Отличия следующие:

  • В РРЛ создаются резервные каналы и применяется агрегирование. Теоретически, понятие дальности связи к радиорелейным станциям не применяется, так как расстояние ретрансляции зависит от количества вышек;
  • Высокая пропускная способность;
  • Работа в полном канальном дуплексе;
  • Использование собственных (локальных) диапазонов и высокоэффективных модуляций.

Применение радиорелейных линий связи

Радиорелейные линии связи находят широкое применение в различных отраслях промышленности. В общем случае беспроводные каналы заменяют проводные сети многоканальной телефонной связи. Лидером по протяженности радиорелейных линий связи остается Киргизия. Использование РРЛ обусловлено преобладанием горного рельефа на всей территории Республики. Вторым направлением оснащения современными линиями передачи остается телевидение. Учитывая, что средний радиус распространения вещания составляет 100 километров, федеральные каналы все чаще осваивают строительство так называемых беспрограммных телецентров.

Беспроводная связь РРЛ активно используется провайдерами интернета, сотовыми операторами. Известно применение радиорелейных каналов для организации корпоративной связи. Ввиду большего чем у WI —FI бюджета и необходимости получения лицензии, РЛЛ остается недоступным для малого и среднего бизнеса, частных лиц. Срок службы оборудования достигает 30 лет с учетом того, что комплексы могут работать даже в суровых условиях климата.

Традиционные РРЛ магистрального типа постепенно переходит в сегмент городских линий, уступая место оптоволоконным линиям. Однако такие шаги требуют согласования бюджета проекта. Безусловным остается применение РРЛ в северных, малозаселенных районах, где нет необходимости в прогнозировании трафика.

В практике развертывания РРЛ сегодня используются два типа технологии. Первый – PDH – плезиохронная цифровая иерархия. При такой организации передачи сигнала обеспечивается скорость в режимах 32 каналов или мультиплексирования на скорости от 2 до 139 Мбит в секунду. Считается устаревшей технологией радиорелейной связи. На смену предыдущему поколению пришел стандарт SDH . Иерархия цифровой синхронизации обеспечивает более устойчивые каналы связи посредством транспортных модулей STM . Скорость потоков в этом диапазоне варьируется от 155 Мбит в секунду до 160 Гбит. По утверждениям разработчиков стандарта, скорость передачи данных совместимой с PDH технологии может быть и выше.

В практике применения РРЛ-сетей используется несколько вариантов развертывания. Самый популярный сценарий размещения станций – пошаговое размещение вышек на маршруте оснащения. Применение технологии hop-by-hop обеспечивает возможность оперативного внесения изменений в действующие конфигурации или модернизацию устаревшего оборудования.

Принцип построения, используемое оборудование, применение

Основными компонентами, обеспечивающими передачу сигналов на большие расстояния, являются радиорелейные линии прямой видимости. В их задачи входит обеспечение устойчивой связи при передаче до потребителя сообщений в цифровом формате, вещания телевидения и звуковых эфиров. В состав волнового спектра входят диапазоны сантиметровых и дециметровых волн.

В используемых диапазонах прямой видимости не наблюдаются помехи атмосферного и техногенного происхождений. Расстояние между ближайшими станциями, работающих в ширине спектра 30 ГГц является расчетным, зависит от высоты вышек и рельефа в местности размещения.

Для передачи информации на одной частоте или дуплексе используется комплекс аппаратуры. Это радиоствол (канал с широкой пропускной способностью), телефонный ствол и ТВ ствол, предназначенные для передачи сигналов соответствующего типа. Топология построения комплекса оборудования представлена трехуровневой системой:

Радиорелейная связь нашла широкое применение в областях народного хозяйства. Принцип ретрансляции активно используется для организации и построения локальных сетей крупных корпораций. Надежность и достоверность передаваемых сигналов применяется для управления войсками и организации коммерческой связи.

Преимущества технологии РРЛ успешно внедряются в инфраструктуру производств, имеющих большое количество удаленных объектов. Это аэропорты, железнодорожные и морские министерства сообщений. Единственным недостатком, который остается ощутимым при возведении систем передачи данных остается необходимость обеспечения прямой видимости между ретрансляторами. Это требование ставит целый ряд условий перед службами технического оснащения, повышает бюджет проекта за счет необходимости увеличения числа промежуточных станций.

Определение радиорелейной связи противопоставляют прямой радиосвязи. Сообщение абонента многократно передаётся промежуточными звеньями цепи, образующими радиорелейную линию (РРЛ). Название заложено англичанами: relay - смена. Физические особенности распространения заставили инженеров применять ультракороткие волны (УКВ): дециметровые, сантиметровые, реже, метровые. Потому что длинные самостоятельно способны обогнуть Земной шар. Причина применения радиорелейных линий объясняется необходимостью заложить большой объем информации, невозможный на низких частотах. Ограничения объясняет теорема Котельникова.

Примечание. Тропосферную связь считают подвидом радиорелейной.

Достоинства метода

  1. Первое преимущество названо – возможность заложить больший объем информации. Число каналов пропорционально ширине пропускания приёмопередающей аппаратуры. Величину повышает рост частоты. Упомянутый факт обусловлен формулами, описывающими колебательный контур, иные избирательные участки электрической цепи.
  2. Линейность распространения УКВ обусловливает высокие направленные свойства. Направленность растёт с увеличением площади антенны относительно длины волны. Короткие проще охватить тарелкой. Например, дальняя связь осуществляется длинами, достигающими километров. Сантиметровые, дециметровые волны легко охватываются сравнительно малыми параболоидами, значительно снижая требуемую мощность (за исключением случая тропосферной передачи информации), уровень помех. Шумы фактически ограничены внутренней неидеальностью входных каскадов приёмника.
  3. Устойчивость объясняется фактом прямой видимости тандема передатчик-приёмник. Мало влияния оказывают погода, время дня/года.

Указанные преимущества уже в начале второй половины XX века позволяли экономистам сопоставлять экономическую эффективность цепочки с кабелем. Допускалась возможность передачи аналоговых телевизионных каналов. Оборудование вышек значительно сложнее регенераторов. Однако кабелю восполнять сигнал приходится каждые 6 км. Вышки обычно разделены дистанциями 50-150 км, расстояние (км) ограничено величиной, равной квадратному корню из высоты вышки (м), умноженному на 7,2. Наконец, вечная мерзлота сильно усложняет прокладку кабельных линий, лепту вносят болота, скалы, реки.

Эксперты отмечают простоту развёртывания системы, экономию цветных металлов:

  • Медь.
  • Свинец.
  • Алюминий.

Отмечается малая эффективность автономных вышек. Неизбежно требуется обслуживающий персонал. Необходимо людей расквартировать, назначить несение вахты.

Принцип действия

Линия обычно реализует дуплексный (двунаправленный) режим передачи информации. Чаще применяли частотное деление каналов. Первыми европейскими соглашениями установили участки спектра:

  • Дециметровые волны:
  1. 460-470 МГц.
  2. 1300-1600 МГц.
  3. 1700-2300 МГц.

  • Сантиметровые:
  1. 3500-4200 МГц.
  2. 4400-5000 МГц.
  3. 5925-8500 МГц.
  4. 9800-10.000 МГц.

Метровые волны способны огибать препятствия, допускается использование ввиду отсутствия непосредственной видимости. Частоты выше 10 ГГц невыгодны, поскольку превосходно поглощаются осадками. Послевоенные конструкции компании Белла (11 ГГц) оказались неконкурентоспособными. Участок спектра чаще выбирают сообразно получению необходимого числа каналов.

История

Цифровой набор предложили раньше импульсного. Однако реализация идеи запоздала на 60 лет. Судьбу антибиотиков повторяет радиорелейная связь.

Изобретение идеи

Историки единогласно отдают приоритет открытия Иоганну Маттаушу, написавшему (1898) в журнале Заметки электротехника (том 16, 35-36) соответствующую публикацию. Критики отмечают несостоятельность теоретической части, предлагавшей создать телеграфные ретрансляторы. Однако год спустя Эмилем Гуарини-Форестио построен первый работоспособный экземпляр. Уроженец итальянской общины Фазано (Апулия), будучи студентом, 27 мая 1899 года запатентовал в бельгийском подразделении радио-репитер. Дату считают официальным днём рождения радиорелейной связи.

Устройство представлено комбинацией приёмопередающей аппаратуры. Конструкция производила демодуляцию принятого сигнала, последующее формирование, излучение ненаправленной антенной, формируя широковещательный канал. Фильтр защищал приёмный тракт от мощного излучения передатчика.

Ощущая недостатки представленной конструкции, Гуарини-Форезио (декабрь 1899) патентует (Швейцария, №21413) конструкцию направленной спиральной антенны (круговая поляризация), снабжённой металлическим рефлектором. Устройство исключало взаимный перехват вышками чужих сообщений. Дальнейшее усовершенствование произведено тесным сотрудничеством с Фернандо Понтселе. Вместе изобретатели провели попытку установить связь меж Брюсселем и Антверпеном, используя Малины промежуточным пунктом, местом базирования ретранслятора.

Конструкцию снабдили цилиндрическими антеннами диаметром 50 см, снабдив аппаратурой высотное здание. Отталкиваясь от результатов, полученных жарким июнем 1901 года, началась подготовка линии Париж – Брюссель дальностью 275 км. Шаг установки ретрансляторов составил 27 км. Декабрь принёс задумке успех, обеспечив время задержки сообщения 3..5 секунд.

Завидя радужные перспективы, Гуарини витал в облаках, предвкушая коммерческий успех (эквивалентный прибылям компании Белла) радиорелейной связи, устраняющей проблемы дальности. Реальность внесла коррективы. Потребовался широкий ассортимент решений:

  1. Питание приёмопередающей аппаратуры.
  2. Конструирование более удобоваримых антенн.
  3. Снижение стоимости оборудования.

Лишь 30 лет спустя изобретение подходящих электронных высокочастотных ламп позволило идее выплыть на поверхность. Изобретатель удостоился ордена Короны Италии.

Ламповые конструкции покоряют Ла-Манш

В 1931 году англо-французский консорциум (Компания международного телефона и телеграфа, Англия; Лаборатория телефонного оборудования, Франция), возглавляемый Андрэ Клавиром, покорил Ла-Манш (Дувр-Кале). Событие осветил журнал Radio News (август, 1931 г, стр. 107). Напомним суть проблемы: прокладка подводного кабеля обходится дорого, разрыв линии означает необходимость тратить значительные средства на ремонт. Инженеры двух стран решили преодолеть водное пространство (40 км) семидюймовыми (18 см) волнами. Экспериментаторы передали:

  1. Телефонный разговор.
  2. Кодированный сигнал.
  3. Изображения.

Система параболических антенн диаметром 10 футов (19-20 длин волн) давала два параллельных луча, конфигурация автоматически блокировала явление интерференции. Мощность потребления передатчика составила 25 Вт, КПД – 50%. Положительные результаты заставили предполагать возможность генерации более высоких частот, включая оптические. Сегодня очевидна нецелесообразность подобных замашек. Технические характеристики используемых вакуумных ламп замалчивались организаторами, упоминался лишь общий принцип действия, изобретённый Хайнрихом Баркхаузеном (Университет Дрездена), усовершенствованный французским экспериментатором Пирье. Затейники выражали благодарность учёным-предшественникам:

  1. Глагольева-Аркадьева А.А. изобрела (1922) микроволновый генератор (5 см..82 мкм) из взвешенных в масляном сосуде алюминиевых опилок.
  2. Профессор Эрнест Николс, доктор Тир проводили аналогичные исследования в США, добившись генерации волн, сравнимых с инфракрасным диапазоном.
  3. Разработчикам помогли бесчисленные эксперименты Густава Ферье, занимавшегося миниатюризацией вакуумных приборов в попытке снизить длину волны.

Ключом стала идея Баркхаузена получать колебания прямо внутри лампы (принцип действия современных магнетронов). Наблюдатели сразу отметили возможность закладки множества каналов. Дециметровое вещание тогда полностью отсутствовало. Диапазон на четыре порядка шире волн, широко используемых тогда телевидением. Резкий рост числа каналов вещания становился настоящей проблемой. Открываемые дециметровым спектром возможности явно превышали потребности.

Уже тогда заметка предполагала использование атомных переходов для генерации волн высокой частоты. Обсуждалось рентгеновское излучение. Журналисты окончили всеобщим призывом инженеров осваивать открывающиеся перспективы.

Дубль два

Несколькими годами позже опыты возобновились. Линия длиной 56 км соединила берега пролива:

  1. Община святого Инглевера (Франция).
  2. Замок Лимпн (Кент, Великобритания).

Создатели линии рассчитывали серьёзно устроиться, поставив две стальные вышки, украшенные параболическими антеннами диаметром 9,75 фута. Генератор спрятался позади рефлектора, тонкое жало волновода пробивало тарелку, облучатель сформирован шаровидным зеркалом. Оператору построили наземный пункт управления, оборудовав необходимыми панелями, включая регулятор напряжения. Функциональный набор предполагал использование азбуки Морзе, факса, телерадиовещания.

Супергетеродинный приёмник с кварцевой стабилизацией понижал входной сигнал до 300 кГц, декодируя амплитудную модуляцию. Согласно заявлениям организаторов, оснастка призвана заменить морские телефонные, телеграфные кабели. Американская компания Белла построила аналогичную систему, форсировав залив Кейп-Код.

Технологии радаров Второй мировой

Начавшаяся Вторая мировая война подстегнула развитие микроволновых генераторов. Помогли начинаниям американские (Стэнфорд) изобретатели клистрона (1937) Рассел и Зигмунд Варианы. Новые лампы помогли создать усилители, генераторы СВЧ диапазона. Ранее повально применяли трубки Баркхаузена-Курца, магнетроны с расщепленным анодом, выдающие слишком малую мощность. Демонстрация прототипа успешно прошла 30 августа 1937 года. Западные разработчики немедля занялись построением станций воздушного обзора.

Братья создали организацию, занимающуюся коммерциализацией изобретения. Линейный ускоритель протонов помогал медикам лечить некоторые заболевания (рак). Принцип действия использует концепцию модуляции скорости (1935) Оскара Хайля и его жены. Хотя эксперты предполагают полную неосведомлённость Варианов относительно существования сего научного труда.

Работы американского физика Хансена (1939) по ускорению частиц могли быть использованы с целью замедления электронов, передающих энергию выходному тракту радиочастоты. Резонатор Хансена иногда называют румбатроном. Клистроны использовались преимущественно фашистами, станции союзников начинялись магнетронами. Армия США построила мобильные системы связи на базе грузовых машин, переплывшие океан помогать союзникам. Армейцам понравилась идея быстро налаживать связь на дальние дистанции. После войны компания AT&T применяла 4-ваттные клистроны, создавая радиорелейную сеть, покрывающую Северную Америку. Собственную инфраструктуру, благодаря 2К25, построил Вестерн Юнион.

Главным двигателем бурного прогресса считают идею резкого расширения объёма каналов, покупаемого низкой стоимость возведения вышек. Релейные сети (РРЛС) окутали три линии обороны Северной Америки времён Холодной войны. Прототип TDX разработали (1946) Лаборатории Белла. Система быстро совершенствовалась, обновляя вакуумные лампы:

  • 416В.
  • 416С.

Послевоенные попытки организовать связь наталкивались на необходимость выбора элементной базы. Эксперты всерьёз обсуждали конструкции ламп, клистронов, жаловались на влияние дождя. Типичные проблемы незащищённой аналоговой связи. Первые линии (включая оборонные сети ПВО США) питались дизельным топливом. Башня непременно вмещала нижний этаж-хранилище горюче-смазочных материалов, чаще ядовитых.

Угасание технологии

Переход на сантиметровый диапазон требует упразднить металлокерамические, маячковые триоды. Взамен вводят клистроны, лампы бегущей волны. Антенные устройства, наоборот, выходят миниатюрнее. Сантиметровый диапазон сильно увеличивает потери родных спектру ДМВ коаксиальных соединений. Взамен решили ставить волноводы. Третье поколение TDX перешло на твердотельную электронику. Мобильные варианты передавали 24 канала с частотным делением. Каждый вмещал 18 телетайпных линий. Аналогичные системы разрабатывались повсеместно. Лишь в 1980-е пользу технологии подвергли сомнению, ввиду внедрения спутниковой связи. Оптический кабель перекрыл возможности радиолиний.

Это интересно! Группа спутников Риолит занималась перехватом советской радиорелейной связи.

Современное состояние

Ныне идея повсеместно применяется мобильными сетями наземного базирования. Учёные чаще рассматривают возможность переноса энергии. Источником идеи следует считать Николу Теслу, задумавшего ещё в начале XX века покрыть территорию США сетью передатчиков. Изобретатель демонстрировал полную безопасность высокочастотных разрядов. Сегодня эксперты подразумевают перенос действа в открытый космос.

Передача энергии

Открытие электромагнетизма заставило учёных ломать голову, осмысливая способы передачи энергии. Первым реализованным методом назовём тороидальный трансформатор Майка Фарадея (1831). Рассмотрев уравнения Максвела, Джон Генри Пойнтинг создал теорему (1884), описывающую процесс переноса мощности электромагнитной волной. Четыре года спустя Хайнрих Рудольф Герц подтвердил теорию практикой, наблюдая искровой разряд приёмного вибратора. Проблемой занимались Вильям Генри Вэрд (1871), Махлон Лумис (1872), оба желали использовать потенциал атмосферы Земли.

«Секретные» книги полны проектами Теслы победить фашистскую авиацию беспроводными излучателями. Факты упоминают посмертное тотальное изъятие бумаг изобретателя американскими спецслужбами. Катушки Теслы шутя позволяли получить высокочастотные разряды молнии. Башня Ворденклиф (1899) серьёзно пугала округу, производителей меди наводнила ужасом мысль беспроводной передачи. Тесла дистанционно поджигал трубки Гисслера (1891), лампочки накала.

Сербский изобретатель распространил методику генерации колебаний резонансными контурами LC. Методика гениального Теслы предусматривала запуск воздушных шаров на высоты 9,1 км. Пониженное давление облегчало передачу мегавольтных напряжений. Второй идеей изобретатель задумал заставить электрический потенциал Земного шара вибрировать, снабжая станции планеты энергией. Задуманная Мировая Беспроводная система могла также передавать информацию. Неудивителен испуг инвесторов, набивавших карман производством меди.

Метод питания поездов напряжением частотой 3 кГц запатентован Морисом Хатином и Морисом Лебланком (1892). В 1964 году Вильям Браун создал модель игрушечного вертолёта, питаемого энергией электромагнитной волны. Технологии RFID (например, ключ домофона) изобретены в середине 70-х:

  1. Марио Кардулло (1973).
  2. Коэлле (1975).

Позже появились карты доступа. Сегодня технологию заездили мобильные гаджеты, подзаряжающиеся беспроводным путём. Аналогичная технология используется индукционными варочными панелями, плавильными печами. Инженеры активно реализуют идеи компьютерных игр начала второго тысячелетия, планируя создать орбитальные солнечные электростанции, обороняемые боевыми дронами, питаемыми энергией электромагнитных волн. Большинству известен лазерный скальпель, использующий принцип передачи мощности коже пациента.

Это интересно! Концепцию беспроводных дронов (1959) выдвинула фирма Радеон, выполняя проект Министерства обороны. Канадский Исследовательский центр связи (1987) создал первый прототип, месяцами исполнявший возложенные функции.

Консорциум беспроводной передачи энергии

17 декабря 2008 года сформирована организация, призванная рекламировать стандарт беспроводной зарядки устройств Qi. Свыше 250 мировых компаний поддержали идею. Позже проект одобрили Нокиа, Хуавей, Вистеон. Заранее стали известны планы оснастить технологией мобильные устройства. В октябре 2016 обнародовали намерение создать зарядные точки доступа.

24 компании составили «стальной стержень» группы лоббистов. 2017 год пополнил список маркетинговыми менеджерами Apple. Касательно безопасности методики мнения учёных разделились. Эксперты сошлись в одном: вскорости методика индуктивной подзарядки станет общепринятой.

Связь с релейными системами

Подобно тому, как первые экспериментаторы преодолели Ла-Манш, ранние орбитальные солнечные электростанции станут питать спутники, продляя кардинально срок службы оборудования. Затем передача энергии станет глобальной, охватив все человеческие устройства. Технологию проще всего именовать релейной. Энергия станет приниматься, усиливаться, передаваться далее.

Это интересно! Питер Гласер первым (1968) предложил фармить энергию Солнца орбитальными заводами, передавая луч наземным станциям.

Лазерный луч эффективно переносит энергию. Мощность 475 Вт настигла мишень, преодолев многие мили свободного пространства. Система показала КПД 54%. Лаборатории НАСА передали 30 кВт, применив частоту 2,38 ГГц (спектр микроволновой печи) тарелкой диаметром 26 метров. Итоговый КПД достиг 80%. Япония (1983) затеяла исследования передачи энергии слоем ионосферы, полной свободных носителей заряда.

Прототип создан командой Марина Соляшича (Массачусетский технологический университет). Резонансный передатчик отправил 60 Вт энергии на частоте 10 МГц, преодолев дистанцию 2 метра, достигнув КПД 40%. Год спустя группа Грега Лея и Майка Кеннана (Невада), используя частоту 60 кГц, покорила дальность 12 метров. Полагаем, новейшие разработки быстро засекретят.

Обнародованную историю завершает создание НАСА летательного аппарата (2003), питаемого излучением лазера. Анонсированный 12 марта 2015 года проект JAXA призван реализовать идеи Николы Тесла.

Для современного состояния общества характерна непрерывно увеличивающаяся потребность в использовании систем передачи информации. Несмотря на огромный прогресс в сфере телекоммуникаций - как по развитию новых технологий в области связи, так и по объему связных систем, возросли и объективные препятствия для дальнейшего развития. Теснота как в частных диапазонах, гак и в пространстве привела к росту взаимных помех между функционирующими радиосистемами. Для решения проблемы электромагнитной совместимости осуществляется международное и внутригосударственное регулирование радиосвязи. Решение идет, в том числе, по пути сужения диаграмм направленности антенных систем, ограничения излучаемой мощности. Это позволяет осуществить пространственное разнесение радиосистем, ограничить их использование локальными территориями. Однако этот ресурс не беспределен.

Регламентация временных режимов работы радиосистем позволяет использовать их на ограниченной территории в одном частотном промежутке. Но при этом накладывается ограничение на информационные возможности радиосисгем.

При росте числа пользователей растет необходимая полоса частот, которая достигает десятка мегагерц. Даже в ВЧ-диапазонс его общая полоса составляет 27 МГц. Наличие звукового вещания в этих диапазонах делает нереальным развитие радиосвязи с использованием этих частот. Использование этих диапазонов для обмена телевизионными программами, каждой из которых требуется полоса в 6,5 МГц (и это без учета защитного интервала), также нереально. Следовательно, переход в УВЧ-, СВЧ- и КВЧ-диапазоны вызван объективными потребностями в обмене информацией.

Однако, как отмечалось в подразд. 6.1.1, электромагнитные колебания этих частот распространяются только по прямой и, следовательно, приемная и передающие антенны должны находиться в пределах геометрической видимости, без учета дифракции, увеличивающей радиогоризонт по сравнению с видимым на 14%. Естественно решение увеличивать дальность передачи информации последовательной ретрансляцией передаваемых сигналов - этот способ связи носит название «радиорелейная связь» (рис. 11.12).

Рис. 6.12.

Оконечные (ОС) и промежуточные (ПС) радиостанции находятся в пределах прямой видимости. В линии осуществляется, как правило, дуплексная (двухсторонняя) радиосвязь. Видно, что ограничение дальности распространения радиоволн, начиная с УВЧ-диапазона и выше, прямой видимостью, с одной стороны, недостаток - необходимо использовать дополнительную ретрансляционную аппаратуру, а, с другой стороны, достоинство - с учетом направленного излучения можно на ограниченной территории использовать одинаковые частоты.

Радиорелейные линии используются там, где это экономически оправдано, например, для организации связи на ограниченное время или в сложных условиях - рельеф, болотистая местность и т.п.

Упрощенная функциональная схема радиорелейной линии представлена на рис. 6.13.


Рис. 6.13.

Оконечные радиостанции включают в себя передающую и приемную части. Источники информации (ИИ) объединены схемой уплотнения информации (СУИ), формирующей групповой сигнал, поступающий на вход передатчика (ИД). Промежуточные радиостанции принимают и передают далее радиосигнал, который подвергается восстановлению с целью сохранения необходимого качества связи. Таких промежуточных радиостанций может быть несколько, в зависимости от рельефа местности и протяженности радиорелейной линии. На промежуточной станции может быть предусмотрен отбор и добавление информации, гем самым линия преобразуется в сегь и место расположения промежуточной станции привязывается к источникам и получателям информации. На оконечной радиостанции, кроме приема, осуществляется разделение группового сигнала на составляющие схемой разделения информации (СРИ) и передача соответствующим получателям информации (ПИ).

Абсолютно аналогично выглядит и образ ный канал. Упомянутое здесь формирование группового сигнала и его последующее разделение далее будет рассмотрено в отдельном разделе. Этот метод общий и применяется с целью более рационального использования передающих, приемных и антенных устройств, а также конструкций - вышек, зданий, входящих в систему.

Отдельно стоит вопрос снижения уровня внутрисистемных помех. Для решения этой проблемы и принимается ряд мер (рис. 6.14).


Рис. 6.14.

Работа на прием и передачу ведется на разных частотах и поляризациях. Это позволяет исключить в пределах ОС и ПС попадание излучаемого сигнала на вход приемника. Кроме того, осуществляется смена несущих частот по линии. Дополнительно предусмотрено, чтобы станции нс располагались по прямой с целью предотвращения попадания сигнала передатчика, расположенного через одну станцию, на вход приемника одновременно с сигналом соседней станции. Информационные потоки группируются в радиочастотные каналы и образуют стволы радиорелейной линии (РРЛ) и их может быть несколько, поэтому изображенные на рис. 6.13 и 6.14 схемы являются упрощенными, поясняющими только принцип построения РРЛ.

Расстояние между станциями определяется прямой видимостью. Будем для простоты считать рельеф местности ровным, без возвышенностей и впадин.

На рис. 6. 15 обозначено: - радиус Земли (R y = 6370км); /;,и h 2 - высота подъема антенн Л, и А 2 над Землей. Линия прямой видимости, равная Л, + d 2 , почти касается поверхности Земли. Учтем малость /?, и h 2 по сравнению с /? 3 и определим расстояние между антеннами Д равное d } + d 2

Рис. 6.15.

Так как f2R = 3500 м, примем с учетом некоторого огибания поверхности Земли радиоволнами:

(D измеряется в километрах, А,и /г, - в метрах). Если считать /г, « /г, «25, то D = 40 км. Как правило, величину подъема антенн с целью уменьшения стоимости мачт не делают более 40 м и D = 40 - 60 км. При проектировании учитывают рельеф и по возможности антенные мачты устанавливают на возвышениях.

В PPJI используют частоты в области 4 и 6 ГГц. Это позволяет получить достаточно широкую полосу частот и, следовательно, обеспечить высокую пропускную способность. В то же время влияние осадков на т рассе несущественно воздействует на поглощение электромагнитных волн в атмосфере.

На практике в диапазоне 6 ГГц выделяют полосу частот в 500 МГц, в которой формируют 16 каналов - по 8 в каждом направлении, т.е. 8 стволов. Использование вертикальной и горизонтальной поляризаций позволяет одной антенной осуществлять прием и передачу радиосигналов. Но это возможно при небольшом числе стволов.

Радиореле́йная свя́зь - один из видов наземной радиосвязи , основанный на многократной ретрансляции радиосигналов . Радиорелейная связь осуществляется, как правило, между стационарными объектами.

Исторически радиорелейная связь между станциями осуществлялась с использованием цепочки ретрансляционных станций, которые могли быть как активными, так и пассивными.

Отличительной особенностью радиорелейной связи от всех других видов наземной радиосвязи является использование узконаправленных антенн , а также дециметровых , сантиметровых или миллиметровых радиоволн.

История

История радиорелейной связи берет начало в январе 1898 года с публикации пражского инженера Йоганна Маттауша (Johann Mattausch) в австрийском журнале Zeitschrift für Electrotechnik (v. 16, S. 35 - 36) Однако его идея использования «транслятора» (Translator), по аналогии с трансляторами проводной телеграфии, была довольно примитивной и не могла быть реализована.

Первую реально работающую систему радиорелейной связи изобрел в 1899 году 19-летний бельгийский студент итальянского происхождения Эмиль Гуарини (Гварини) Форесио (Émile Guarini Foresio) . 27 мая 1899 г. по старому стилю, Эмиль Гуарини-Форесио подал заявку на патент на изобретение №142911 в Бельгийское патентное ведомство, впервые описав в ней устройство радиорелейного ретранслятора (répétiteur) . Этот исторический факт является самым ранним документальным свидетельством приоритета Э. Гуарини-Форесио, что позволяет считать указанную дату официальным днем рождения радиорелейной связи. В августе и осенью того же 1899 г. аналогичные заявки были представлены Э. Гуарини-Форесио в Австрии, Великобритании, Дании, Швейцарии .

Особенностью изобретения Гуарини-Форесио явилась комбинация приёмного и передающего устройств в одном ретрансляторе, осуществлявшем приём сигналов, их демодуляцию в когерере и последующее использование для управления реле, обеспечивавшем формирование обновлённых сигналов, которые затем переизлучались через антенну. Для обеспечения электромагнитной совместимости приёмный сегмент ретранслятора окружен защитным экраном, призванным оградить цепи приёма от мощного излучения передатчика.

В 1931 году Андре Клавир, работая во французском исследовательском подразделении LCT компании ITT , показал возможность организации радиосвязи с помощью ультракоротких радиоволн. В ходе предварительных испытаний 31 марта 1931 года Клавир с помощью экспериментальной радиорелейной линии, работающей на частоте 1,67 ГГц, успешно передал и принял телефонные и телеграфные сообщения, разместив две параболические антенны диаметром 3 м на двух противоположных берегах пролива Ла-Манш . Примечательно, что места установки антенн практически совпадали с местами взлёта и посадки исторического перелета через Ла-Манш Луи Блерио . Следствием успешного эксперимента Андре Клавира стала дальнейшая разработка коммерческого радиорелейного оборудования. Первое коммерческое радиорелейное оборудование было выпущено ITT, а точнее её дочерней компанией STC, в 1934 году и использовало амплитудную модуляцию несущего колебания мощностью в 0,5 Ватт на частоте 1,724 и 1,764 ГГц, полученного с помощью клистрона .

Запуск первой коммерческой радиорелейной линии состоялся 26 января 1934 года. Линия имела протяжённость 56 км над проливом Ла-Манш и соединяла аэропорты Лимпн в Англии и Сент-Энглевер во Франции. Построенная радиорелейная линия позволяла одновременно передавать один телефонный и один телеграфный канал и использовалась для координации воздушного сообщения между Лондоном и Парижем. В 1940 году в ходе Второй Мировой Войны линия была демонтирована.

Радиорелейная связь прямой видимости

Как правило под радиорелейной связью понимают именно радиорелейную связь прямой видимости.

При построении радиорелейных линий связи антенны соседних радиорелейных станций располагаются в пределах прямой видимости . Требование наличия прямой видимости обусловлено возникновением дифракционных замираний при полном или частичном закрытии трассы распространения радиоволн. Потери при дифракционных замираниях могут вызывать сильное ослабление сигнала, таким образом радиосвязь между соседними радиорелейными станциями станет невозможна. Поэтому для устойчивой радиосвязи антенны соседних радиорелейных станций как правило располагают на естественных возвышенностях или специальных телекоммуникационных башнях или мачтах таким образом, чтобы трасса распространения радиоволн не имела препятствий.

С учётом ограничения на необходимость наличия прямой видимости между соседними станциями дальность радиорелейной связи ограничена как правило 40 - 50 км.

Тропосферная радиорелейная связь

При построении тропосферных радиорелейных линий связи используется эффект отражения дециметровых и сантиметровых радиоволн от турбулентных и слоистых неоднородностей в нижних слоях атмосферы - тропосфере .

Использование эффекта дальнего тропосферного распространения радиоволн УКВ диапазона позволяет организовать связь на расстояние до 300 км при отсутствии прямой видимости между радиорелейными станциями. Дальность связи может быть увеличена до 450 км при расположении радиорелейных станций на естественных возвышенностях.

Для тропосферной радиорелейной связи характерно значительное ослабление сигнала. Ослабление возникает как при распространении сигнала через атмосферу, так и вследствие рассеяния части сигнала при отражении от тропосферы. Поэтому для устойчивой радиосвязи как правило используют передатчики мощностью до 10 кВт, антенны с большой апертурой (до 30 x 30 м), а значит, и большим коэффициентом усиления, а также высокочувствительные приёмники с малошумящими элементами.

Также для тропосферных радиорелейных линий связи характерно постоянное наличие быстрых, медленных и селективных замираний радиосигнала. Уменьшение влияния быстрых замираний на принимаемый сигнал достигается использованием разнесенного частотного и пространственного приёма. Поэтому на большинстве стационарных тропосферных радиорелейных станций расположено несколько приёмных антенн.

Примером наиболее известных и протяжённых тропосферных радиорелейных линий связи являются:

  • ТРРЛ «Север» , «ACE High», «White Alice», «JASDF», линия «Дью» , линии «NARS»;
  • ТСУС «Барс»

Радиорелейные ретрансляторы

В отличие от радиорелейных станций ретрансляторы не добавляют в радиосигнал дополнительной информации. Ретрансляторы могут быть как пассивными, так и активными.

Пассивные ретрансляторы представляют собой простой отражатель радиосигнала без какого-нибудь приёмопередающего оборудования и, в отличие от активных ретрансляторов, не могут усиливать полезный сигнал или переносить его на другую частоту. Пассивные радиорелейные ретрансляторы применяются в случае отсутствия прямой видимости между радиорелейными станциями; активные - для увеличения дальности связи.

В качестве пассивного ретранслятора могут выступать как плоские отражатели, так и антенны радиорелейной связи, соединённые коаксиальными или волноводными вставками (так называемые антенны, соединённые «спина к спине»).

Плоские отражатели как правило используются при небольших углах отражения и обладают эффективностью близкой к 100 %. Однако с увеличением угла отражения эффективность плоского отражателя уменьшается. Достоинством плоских отражателей является возможность использования для ретрансляции нескольких частотных диапазонов радиорелейной связи.

Антенны, соединённые «спина к спине» как правило используются при углах отражения близких к 180° и обладают эффективностью 50-60 %. Подобные отражатели не могут использоваться для ретрансляции нескольких частотных диапазонов из-за ограниченных возможностей самих антенн.

Smart-ретрансляторы

Среди новых направлений в развитии радиорелейной связи, наметившихся в последнее время, заслуживает внимания создание интеллектуальных ретрансляторов (smart relay) Их появление связано с особенностью реализации технологии MIMO , при которой необходимо знать передаточные характеристики радиорелейных каналов. В smart-ретрансляторе осуществляется так называемая "интеллектуальная" обработка сигналов. В отличие от традиционного набора операций "приём – усиление – переизлучение" в простейшем случае она предусматривает дополнительную коррекцию амплитуд и фаз сигналов с учётом характеристик передачи пространственных MIMO -каналов на том или ином интервале радиорелейной линии . В этом случае делается допущение, что все каналы MIMO имеют одинаковые коэффициенты передачи. Оно вполне может быть оправдано с учётом узких лучей диаграмм направленности приёмной и передающей антенн на дальностях связи, при которых расширение диаграмм направленности не приводит к заметному проявлению эффекта многолучевого распространения радиоволн.

Более сложный вариант реализации принципа smart relay предполагает полную демодуляцию принятых сигналов в ретрансляторе с извлечением передаваемой в них информации, её запоминанием и последующим использованием для модуляции переизлучаемых сигналов с учётом характеристик состояния канала MIMO в направлении на следующий ретранслятор сети . Такая обработка, хотя и является более сложной, позволяет максимально учесть искажения, вносимые в полезные сигналы по трассе их распространения.

Частотные диапазоны

Для организации радиосвязи используются деци- , санти- и миллиметровые волны .

Для обеспечения дуплексной связи каждый частотный диапазон условно разделяется на две части относительно центральной частоты диапазона. В каждой части диапазона выделяются частотные каналы заданной полосы. Частотным каналам «нижней» части диапазона соответствуют определённые каналы «верхней» части диапазона, причём таким образом, что разница между центральными частотами каналов из «нижней» и «верхней» частей диапазона была всегда одна и та же для любых частотных каналов одного частотного диапазона.

Диапазон (ГГц) Границы диапазона (ГГц) Ширина каналов (МГц) Рекомнендации ITU-R Решения ГКРЧ
0,4 0,4061 - 0,430
0,41305 - 0,450
0,05, 0,1, 0,15, 0,2, 0,25, 0,6
0,25, 0,3, 0,5, 0,6, 0,75, 1, 1,75, 3,5
ITU-R F.1567
1,4 1,350 - 1,530 0,25, 0,5, 1, 2, 3,5 ITU-R F.1242
2 1,427 - 2,690 0,5 ITU-R F.701
1,700 - 2,100
1,900 - 2,300
29 ITU-R F.382
1,900 - 2,300 2,5, 3,5, 10, 14 ITU-R F.1098
2,300 - 2,500 1, 2, 4, 14, 28 ITU-R F.746
2,290 - 2,670 0,25, 0,5, 1, 1,75, 2, 2,5 3,5, 7, 14 ITU-R F.1243
3,6 3,400 - 3,800 0,25, 25 ITU-R F.1488
4 3,800 - 4,200
3,700 - 4,200
29
28
ITU-R F.382 Решение ГКРЧ № 09-08-05-1
3,600 - 4,200 10, 30, 40, 60, 80, 90 ITU-R F.635
U4 4,400 - 5,000
4,540 - 4,900
10, 28, 40, 60, 80
20, 40
ITU-R F.1099 Решение ГКРЧ № 09-08-05-2
L6 5,925 - 6,425
5,850 - 6,425
5,925 - 6,425
29,65
90
5, 10, 20, 28, 40, 60
ITU-R F.383 Решение ГКРЧ № 10-07-02
U6 6,425 - 7,110 3,5, 5, 7, 10, 14, 20, 30, 40, 80 ITU-R F.384 Решение ГКРЧ № 12-15-05-2
7 ITU-R F.385
8 ITU-R F.386
10 10,000 - 10,680
10,150 - 10,650
1,25, 3,5, 7, 14, 28
3,5, 7, 14, 28
ITU-R F.747
10,150 - 10,650 28, 30 ITU-R F.1568
10,500 - 10,680
10,550 - 10,680
3,5, 7
1,25, 2,5, 5
ITU-R F.747
11 10,700 - 11,700 5, 7, 10, 14, 20, 28, 40, 60, 80 ITU-R F.387 Решение ГКРЧ № 5/1,

Решение ГКРЧ 09-03-04-1 от 28.04.2009

12 11,700 - 12,500
12,200 - 12,700
19,18
20
ITU-R F.746
13 12,750 - 13,250 3,5, 7, 14, 28 ITU-R F.497 Решение ГКРЧ 09-02-08 от 19.03.2009
12,700 - 13,250 12,5, 25 ITU-R F.746
14 14,250 - 14,500 3,5, 7, 14, 28 ITU-R F.746
15 14,400 - 15,350
14,500 - 15,350
3,5, 7, 14, 28, 56
2,5, 5, 10, 20, 30, 40, 50
ITU-R F.636 Решение ГКРЧ № 08-23-09-001
18 17,700 - 19,700
17,700 - 19,700
17,700 - 19,700
18,580 - 19,160
7,5, 13,75, 27,5, 55, 110, 220
1,75, 3,5, 7
2,5, 5, 10, 20, 30, 40, 50
60
ITU-R F.595 Решение ГКРЧ № 07-21-02-001
23 21,200 - 23,600
22,000 - 23,600
2,5, 3,5 - 112
3,5 - 112
ITU-R F.637 Решение ГКРЧ № 06-16-04-001
27 24,250 - 25,250
25,250 - 27,500
25,270 - 26,980
24,500 - 26,500
27,500 - 29,500
2,5, 3,5, 40
2,5, 3,5
60
3,5 - 112
2,5, 3,5 - 112
ITU-R F.748 Решение ГКРЧ № 09-03-04-2
31 31.000 - 31,300 3,5, 7, 14, 25, 28, 50 ITU-R F.746
32 31,800 - 33,400 3,5, 7, 14, 28, 56, 112 ITU-R F.1520
38 36,000 - 40,500
36,000 - 37,000
37,000 - 39,500
38,600 - 39,480
38,600 - 40,000
39,500 - 40,500
2,5, 3,5
3,5 - 112
3,5, 7, 14, 28, 56, 112
60
50
3,5 - 112
ITU-R F.749 Решение ГКРЧ № 06-14-02-001
42 40,500 - 43,500 7, 14, 28, 56, 112 ITU-R F.2005 Решение ГКРЧ № 08-23-04-001
52 51,400 - 52,600 3,5, 7, 14, 28, 56 ITU-R F.1496
57 55,7800 - 57,000
57,000 - 59,000
3,5, 7, 14, 28, 56
50, 100
ITU-R F.1497 Решение ГКРЧ № 06-13-04-001
70/80 71,000 - 76,000 / 81,000 - 86,000 125, N x 250 ITU-R F.2006 Решение ГКРЧ № 10-07-04-1
94 92,000 - 94,000 / 94,100 - 95,000 50, 100, N x 100 ITU-R F.2004 Решение ГКРЧ № 10-07-04-2

Частотные диапазоны от 2 ГГц до 38 ГГц относятся к «классическим» радиорелейным частотным диапазонам. Законы распространения и ослабления радиоволн, а также механизмы появления многолучевого распространения в данных диапазонах хорошо изучены и накоплена большая статистика использования радиорелейных линий связи. Для одного частотного канала «классического» радиорелейного частотного диапазон выделяется полоса частот не более 28 МГц или 56 МГц.

Диапазоны от 38 ГГц до 92 ГГц для радиорелейной связи стали выделяться недавно и являются более новыми. Несмотря на это данные диапазоны считаются перспективными с точки зрения увеличения пропускной способности радиорелейных линий связи, так как в данных диапазонах возможно выделение более широких частотных каналов.

Модуляция и помехоустойчивое кодирование

Одними из особенностей использования радиорелейных линий связи является:

  • необходимость передачи больших объёмов информации в сравнительно узкой полосе частот,
  • ограниченная мощность сигнала, накладываемые на радиорелейные станции.

Методы резервирования

С целью уменьшения неготовности интервалов РРЛ применяют различные методы резервирования. Обычно конфигурации с резервированием обозначают в виде суммы "N+M", где N обозначает общее количество стволов РРЛ, а M - количество зарезервированных стволов РРЛ. Иногда после суммы добавляют аббревиатуру HSB (Hot StandBy, "горячий" резерв), SD (Space Diversity, пространственный разнесённый приём) ил FD (Frequency Diversity, частотный разнесённый приём), обозначающую метод резервирования стволов РРЛ.

Методы резервирования радиорелейной связи можно разделить

«Горячий» резерв

Конфигурация оборудования РРЛ с N стволами и M резервным стволом, находящимся в "горячем" резерве. Резервирование достигается путём дублирования всех (части) функциональных блоков РРЛ. В случае выхода одного из блоков РРЛ из строя, блоки, находящиеся в "горячем" резерве замещают неработоспособные блоки.

Частотный разнесённый приём

Метод частотного разнесенного приёма направлен на устранение частотно-селективых замираний в канале связи.

Пространственный разнесённый приём

Метод пространственного разнесения применяется для устранения замираний, возникающих вследствие многолучевого распространения радиоволн в канале связи. Метод пространственного разнесения чаще всего используется при строительстве радиорелейных линий связи, проходящими над поверхностями с коэффициентом отражения близким к 1 (водная поверхность, болота, сельскохозяйственные поля).

Поляризационный разнесённый приём

Одним из недостатков поляризационного разнесённого приёма является необходимость использования более дорогостоящих двухполяризационных антенн.

Кольцевые топологии

Наиболее надёжным методом резервирования является построения радиорелейных линий связи по кольцевой топологии.

Применение радиорелейной связи

Из всех видов радиосвязи радиорелейная связь обеспечивает наибольшее отношение сигнал/шум на входе приёмника при заданной вероятности ошибки. Именно поэтому при необходимости организации надёжной радиосвязи между двумя объектами чаще всего используются радиорелейные линии связи.

Магистральные радиорелейные линии связи

Исторически радиорелейные линии связи использовались для организации каналов связи телевизионного и радиовещания, а также для связи телеграфных и телефонных станций на территории со слабо развитой инфраструктурой.

Сети связи нефтепроводов и газопроводов

Радиорелейные линии связи применяются при строительстве и обслуживании нефте- и газопроводов в качестве основных или резервных оптическому кабелю линий связи для передачи телеметрической информации.

Сотовые сети связи

Радиорелейная связь находит применение в организации каналов связи между различными элементами сотовой сети, особенно в местах со слабо развитой инфраструктурой.

Современные радиорелейные линии связи способны обеспечить передачу больших объёмов информации от базовых станций 2G, 3G и 4G к основным элементам опорной сети сотовой связи.

Недостатки радиорелейной связи

  • Ослабление сигнала в свободном пространстве
  • Ослабление сигнала в дожде и тумане На частотах до 12 ГГц осадки в виде дождя или снега слабо влияют на работу радиорелейных линий связи.
  • Литература
    • Mattausch J. Telegraphie ohne Draht. Eine Studie. // Zeitschrift für Elektrotechnik. Organ des Elektrotechnischen Vereines in Wien.- Heft 3, 16. Jänner 1898. - XVI. Jahrgang. - S. 35-36..
    • Слюсар В.И. Радиорелейным системам связи 115 лет. // Первая миля. Last mile (Приложение к журналу "Электроника: наука, технология, бизнес"). – 2015. - № 3.. - С. 108 - 111 .
    • Slyusar V.I. First Antennas for Relay Stations.// International Conference on Antenna Theory and Techniques, 21-24 April, 2015, Kharkiv, Ukraine. - Pp. 254 - 255. .
    • Harry R. Anderson Fixed Braadband Wireless System Design - John Wiley & Sons, Inc., 2003 - ISBN 0-470-84438-8
    • Roger L. Freeman Radio System Design for Telecommunications Third Edition - John Wiley & Sons, Inc., 2007 - ISBN 978-0-471-75713-9
    • Ingvar Henne, Per Thorvaldse n Planning of line-of-sight radio relay systems Second edition - Nera, 1999
    • Каменский Н. Н., Модель А. М., под редакцией Бородича С. В. Справочник по радиорелейной связи - Радио и связь, 1981
    • Слюсар В.И. Современные тренды радиорелейной связи. //Технологии и средства связи. – 2014. - № 4.. - С. 32 - 36. .
    • В. Т. Свиридов. Радиорелейные линии связи. //Государственное издательство физико-математической литературы. – 1959. - С. 81 .