Тарифы Услуги Сим-карты

Компьютерные сети от А до Я: технология Ethernet и коммутаторы. Стандарты физической среды

EtherNet стандарт IEEE 802.3

Это самый распространенный на сегодняшний день стандарт технологии сети.

Особенности:

  • работает с коаксиальным кабелем, витой парой, оптическими кабелями;
  • топология – шина, звезда;
  • метод доступа – CSMA/CD.

Архитектура сетевой технологии Ethernet фактически объединяет целый набор стандартов, имеющих как общие черты, так и отличия.

Технология Ethernet была разработана вместе со многими первыми проектами корпорации Xerox PARC. Общепринято считать, что Ethernet был изобретён 22 мая 1973 года, когда Роберт Меткалф составил докладную записку для главы PARC о потенциале технологии Ethernet. Но законное право на технологию Меткалф получил через несколько лет. В 1976 году он и его ассистент Дэвид Боггс издали брошюру под названием «Ethernet: Distributed Packet Switching For Local Computer Networks». Меткалф ушёл из Xerox в 1979 году и основал компанию 3Com для продвижения компьютеров и локальных вычислительных сетей. Ему удалось убедить DEC, Intel и Xerox работать совместно и разработать стандарт Ethernet (DIX). Впервые этот стандарт был опубликован 30 сентября 1980 года .

Дальнейшее развитие технологии EtherNet:

  • 1982-1993 разработка 10Мбит/с EtherNet;
  • 1995-1998 разработка Fast EtherNet;
  • 1998-2002 разработка GigaBit EtherNet;
  • 2003-2007 разработка 10GigaBit EtherNet;
  • 2007-2010 разработка 40 и 100GigaBit EtherNet;
  • 2010 по сей день разработка Terabit Ethernet.

На уровне MAC, который обеспечивает доступ к среде и передаче кадра, для идентификации сетевых интерфейсов узлов сети используются регламентированные стандартом уникальные 6-байтовые адреса, называемые MAC-адресами. Обычно MAC-адрес записывается в виде шести пар шестнадцатеричных цирф, разделенных тире или двоеточиями, например 00-29-5E-3C-5B-88. Каждый сетевой адаптер имеет MAC-адрес.

Структура MAC-адреса Ethernet:

  • первый бит MAC-адреса получателя называется битом I/G (individual/group или широковещательным). В адресе источника он называется индикатором маршрута от источника (Source Route Indicator);
  • второй бит определяет способ назначения адреса;
  • три старших байта адреса называются защитным адресом (Burned In Address, BIA) или уникальным идентификатором организации (Organizationally UniqueIdentifier, OUI);
  • за уникальность младших трех байт адреса отвечает сам производитель.

Некоторые сетевые программы, в частности wireshark, могут сразу отображать вместо кода производителя - название фирмы производителя данной сетевой карты.

Формат кадра технологии EtherNet

В сетях Ethernet существует 4 типа фреймов (кадров):

  • кадр 802.3/LLC (или кадр Novell802.2),
  • кадр Raw 802.3 (или кадр Novell 802.3),
  • кадр Ethernet DIX (или кадр Ethernet II),
  • кадр Ethernet SNAP.

На практике в оборудовании EtherNet используется только один формат кадра, а именно кадр EtherNet DIX, который иногда называют кадром по номеру последнего стандарта DIX.

  • Первые два поля заголовка отведены под адреса:
    • DA (Destination Address) – MAC-адрес узла назначения;
    • SA (Source Address) – MAC-адрес узла отправителя. Для доставки кадра достаточно одного адреса – адреса назначения, адрес источника помещается в кадр для того, чтобы узел, получивший кадр, знал, от кого пришел кадр и кому нужно на него ответить.
  • Поле T (Type) содержит условный код протокола верхнего уровня, данные которого находятся в поле данных кадра, например шестнадцатеричное значение 08-00 соответствует проколу IP. Это поле требуется для поддержки интерфейсных функций мультиплексирования и демультиплексирования кадров при взаимодействии с протоколами верхних уровней.
  • Поле данных. Если длина пользовательских данных меньше 46 байт, то это поле дополняется до минимального размера байтами заполнения.
  • Поле контрольной последовательности кадра (Frame Check Sequence, FCS) состоит из 4 байт контрольной суммы. Это значение вычисляется по алгоритму CRC-32.

Кадр EtherNet DIX (II) не отражает разделения канального уровня EtherNet на уровень MAC и уровень LLC: его поля поддерживают функции обоих уровней, например интерфейсные функции поля T относятся у функциям уровня LLC, в то время как все остальные поля поддерживают функции уровня MAC.

Рассмотрим формат кадра EtherNet II на примере перехваченного пакета с помощью сетевого анализатора Wireshark

Обратите внимание, что так как MAC адрес состоит из кода производителя и номера интерфейса, то сетевой анализатор сразу преобразует код производителя в название фирмы-изготовителя.

Таким образом в технологии EtherNet в качестве адреса назначения и адреса получателя выступают MAC адреса.

Стандарты технологии Ethernet

Физические спецификации технологии Ethernet включают следующие среды передачи данных.

  • l0Base-5 - коаксиальный кабель диаметром 0,5 дюйма (1дм=2,54см), называемый «толстым» коаксиальным кабелем, с волновым сопротивлением 50Ом.
  • l0Base-2 - коаксиальный кабель диаметром 0,25 дюйма, называемый «тонким» коаксиальным кабелем, с волновым сопротивлением 50Ом.
  • l0Base-T - кабель на основе неэкранированной витой пары (Unshielded Twisted Pair, UTP), категории 3,4,5.
  • l0Base-F - волоконно-оптический кабель.

Число 10 обозначает номинальную битовую скорость передачи данных стандарта, то есть 10Мбит/с а слово «Base» - метод передачи на одной базовой частоте. Последний символ обозначает тип кабеля.

Кабель используется как моноканал для всех станций, максимальная длина сегмента 500м. Станция подключаться к кабелю через приемопередатчик - трансивер. Трансивер соединяется с сетевым адаптером разъема DB-15 интерфейсным кабелем AUI. Требуется наличие терминаторов на каждом конце, для поглощения распространяющихся по кабелю сигналов.

Правила «5-4-3» для коаксиальных сетей:

Стандарт сетей на коаксиальном кабеле разрешает использование в сети не более 4 повторителей и, соответственно, не более 5 сегментов кабеля. При максимальной длине сегмента кабеля в 500 м это дает максимальную длину сети в 500*5=2500 м. Только 3 сегмента из 5 могут быть нагруженными, то есть такими, к которым подключаются конечные узлы. Между нагруженными сегментами должны быть ненагруженные сегменты.

l0Base-2

Кабель используется как моноканал для всех станций, максимальная длина сегмента 185 м. Для подключения кабеля к сетевой карте нужен T-коннектор, а на кабеле должен быть BNC-коннектор.

Также используется правило 5-4-3.

l0Base-T

Образует звездообразную топологию на основе концентратора, концентратор осуществляет функцию повторителя и образует единый моноканал, максимальная длина сегмента 100м. Конечные узлы соединяются с помощью двух витых пар. Одна пара для передачи данных от узла к концентратору - Tx, а другая для передачи данных от концентратора к узлу – Rx.
Правила «4-х хабов» для сетей на основе витой пары:
В стандарте сетей на витой паре определено максимально число концентраторов между любыми двумя станциями сети, а именно 4. Это правило носит название «правила 4-х хабов». Очевидно, что если между любыми двумя узлами сети не должно быть больше 4-х повторителей, то максимальный диаметр сети на основе витой пары составляет 5*100 = 500 м (максимальная длина сегмента 100м).

10Base-F

Функционально сеть Ethernet на оптическом кабеле состоит из тех же элементов, что и сеть стандарта 10Base-T

Стандарт FOIRL (Fiber Optic Inter-Repeater Link) первый стандарт комитета 802.3 для использования оптоволокна в сетях Ethernet. Мах длина сегмента 1000м, мах число хабов 4, при общей длине сети не более 2500 м.

Стандарт 10Base-FL незначительное улучшение стандарта FOIRL. Мах длина сегмента 2000 м. Максимальное число хабов 4,а максимальная длина сети - 2500 м.

Стандарт 10Base-FB предназначен только для соединения повторителей. Конечные узлы не могут использовать этот стандарт для присоединения к портам концентратора. Мах число хабов 5, мах длина одного сегмента 2000 м и максимальной длине сети 2740 м.

Таблица. Параметры спецификаций физического уровня для стандарта Ethernet

При рассмотрении правила «5-4-3» или «4-х хабов», в случае появления на пути распространения по кабелям воображаемого сигнала устройства типа «свич», расчет топологических ограничений начинается с нуля.

Пропускная способность сети Ethernet

Пропускная способность оценивается через количество кадров либо количество байт данных, передаваемых по сети за единицу времени. Если в сети не происходят коллизии, максимальная скорость передачи кадров минимального размера(64 байта) составляет 14881 кадров в секунду. При этом полезная пропускная способность для кадров Ethernet II – 5.48 Мбит/с.

Максимальная скорость передачи кадров максимального размера (1500 байт) составляет 813 кадров в секунду. Полезная пропускная способность при этом составит 9.76 Мбит/с.

сеть малоперспективной для решения технологических задач реального времени. Определенные проблемы иногда создает ограничение на максимальное поле данных, равное ~1500 байт .

Выбор длины поля данных диктовался уровнем ошибок (BER) для технологий, существовавших на момент разработки стандарта Ethernet .

Первоначально в качестве среды передачи данных использовался толстый коаксиальный кабель (Z = 50 Ом ), а подключение к нему выполнялось через специальные устройства (трансиверы). Позднее сети начали строиться на основе тонкого коаксиального кабеля. Но и такое решение было достаточно дорогим. Разработка дешевых широкополосных скрученных пар и соответствующих разъемов открыла перед Ethernet широкие перспективы. Те, кому приходилось работать с коаксиальными кабелями Ethernet , знают, что при подсоединении или отсоединении разъема можно получить болезненные удары тока. Для скрученных пар это исключено. Но и эта технология не вечна: скрученные пары мало-помалу уступают свои позиции оптоволоконным кабелям.

Для разного быстродействия Ethernet используются разные схемы кодирования, но алгоритм доступа и формат кадра остается неизменным, что гарантирует программную совместимость .

Однако наличие сотен миллионов интерфейсов Ethernet является серьезным препятствие замены стандарта на более совершенный.

16.1. Архитектура сетей Ethernet

Многие современные физические сетевые среды используют последовательный формат передачи информации. К этой разновидности относится и Ethernet . Фирма "Ксерокс" осуществила разработку протокола Ethernet в 1973 году, а в 1979 году объединение компаний Xerox, Intel и DEC (DIX) предоставило документ для стандартизации протокола в IEEE . Предложение с небольшими изменениями было принято комитетом 802.3 в 1983 году. Кадр Ethernet в современном стандарте имеет формат, показанный на рис. 16.1 .


Рис. 16.1.

Поле преамбула содержит 7 байт 0хАА и служит для стабилизации и синхронизации среды (чередующиеся сигналы CD1 и CD0 при завершающем CD0), далее следует поле SFD (Start Frame Delimiter = 0xAB), которое предназначено для выявления начала кадра. Поле EFD ( End Frame Delimiter) задает конец кадра. Поле контрольной суммы (CRC - Cyclic Redundancy Check ), так же как и преамбула, SFD и EFD, формируются и контролируются на аппаратном уровне. В некоторых модификациях протокола поле EFD не применяется. Пользователю доступны поля, начиная с адреса получателя и кончая полем информация , включительно. После CRC и EFD следует межпакетная пауза (IPG - InterPacket Gap – межпакетный интервал ) длиной 96 бит -тактов (9,6 мкс для 10-мегабитного Ethernet ) или более. Максимальный размер кадра равен 1518 байт (сюда не включены поля преамбулы, SFD и EFD). Интерфейс просматривает все пакеты, следующие по кабельному сегменту, к которому он подключен: ведь определить, корректен ли принятый пакет и кому он адресован, можно лишь приняв его целиком. Корректность пакета по CRC , по длине и кратности целому числу байт определяется после проверки адреса места назначения. Вероятность ошибки передачи при наличии CRC -контроля составляет ~2 -32 . При вычислении CRC используется образующий полином R(x) :

R(x) = x 32 + x 26 + x 23 + x 22 + x 16 + x 12 + x 11 + x 10 + x 8 + x 7 + x 5 + x 4 + x 2 + x + 1 .

Алгоритм вычисления CRC сводится к вычислению остатка от деления кода M(x) , характеризующего кадр , на образующий полином R(x) (Carrier Sense Multiple Access with Collision Detection Access Method and Physical Layer Specification. Published by IEEE 802.3-1985. Wiley-Interscience, John & Sons, Inc .). CRC представляет собой дополнение полученного остатка R(x) . CRC вычисляется сетевым интерфейсом и пересылается, начиная со старших разрядов.

Для пересылки данных в сети (быстродействием <1 Гбит/с) используется манчестерский код , который служит как для передачи данных, так и для синхронизации. Каждый бит -символ делится на две части, причем вторая часть всегда является инверсной по отношению к первой. В первой половине кодируемый сигнал представлен в логически дополнительном виде, а во второй – в обычном. Таким образом, сигнал логического 0 – CD0 характеризуется в первой половине уровнем HI (+0,85 В) , а во второй - LO (-0,85 В) . Соответственно сигнал CD1 характеризуется в первой половине бит -символа уровнем LO , а во второй – HI . Примеры форм сигналов при манчестерском кодировании представлены на рис. 16.2 . Верхний уровень сигнала соответствует +0,85 В , нижний - -0,85 В .


Рис. 16.2.

Минимальная длительность пакета в Ethernet определяется тем, что отправитель должен узнать о столкновении пакетов, если оно произошло, раньше, чем закончит передачу кадра. При этом длительность передаваемого пакета должна быть больше удвоенного максимального времени распространения кадра до самой удаленной точки сетевого сегмента.

Здесь подразумевается сегмент, образуемый кабелями и повторителями. Минимальная длительность кадра, равная 64 байтам, была определена для конфигураций 10 Мбит/c сети с четырьмя повторителями и 500-метровыми кабельными сегментами. Наибольший вклад в задержку вносят повторители (если они используются).

Если размер пакета меньше 64 байт , добавляются байты-заполнители, чтобы кадр в любом случае имел соответствующий размер. При приеме контролируется длина пакета, и если она превышает 1518 байт , пакет считается избыточным и обрабатываться не будет. Аналогичная судьба ждет кадры короче 64 байт . Любой пакет должен иметь длину, кратную 8 бит ( целое число байт ). Если в поле адресата содержатся все единицы, адрес считается широковещательным, то есть обращенным ко всем рабочим станциям локального сегмента сети.

При подключении ЭВМ к сети непосредственно с помощью переключателя ограничение на минимальную длину кадра теоретически снимается. Но работа с более короткими кадрами в этом случае станет возможной лишь при замене сетевого интерфейса на нестандартный (причем как у отправителя, так и получателя) !

Пакет Ethernet может нести от 46 до 1500 байт данных. Формат MAC -адреса получателя или отправителя показан на рис. 16.3 .


Рис. 16.3.

В верхней части рисунка указана длина полей адреса, в нижней – нумерация разрядов. Субполе I/G представляет собой флаг индивидуального или группового адреса. I/G=0 – указывает на то, что адрес является индивидуальным адресом сетевого объекта. I/G=1 характеризует адрес как мультикастинговый, в этом случае дальнейшее разбиение адреса на субполя теряет смысл. Мультикастинговые адреса позволяют обращаться сразу к нескольким станциям в пределах субсети. Субполе U/L является флагом универсального или местного управления (определяет механизм присвоения адреса сетевому интерфейсу). U/L=1 указывает на локальную адресацию ( адрес задан не производителем и ответственность за уникальность лежит на администраторе LAN или на пользователе). U/L=I/G=0 характерно для стандартных уникальных адресов, присваиваемых интерфейсу его изготовителем. Субполе OUI (Organizationally Unique Identifier ) позволяет определить производителя сетевого интерфейса. Каждому производителю присваивается один или несколько OUI . Размер субполя позволяет идентифицировать около 4 миллионов различных производителей. За корректность присвоения уникального адреса интерфейса (OUA – Organizationally Unique Address) несет ответственность производитель. Двух интерфейсов одного и того же производителя с идентичными номерами не должно существовать. Размер поля позволяет произвести примерно 16 миллионов интерфейсов. Комбинация OUI и OUA составляют UAA (Universally Administrated Address = IEEE - адрес ).

Если в поле кадра протокол/тип записан код менее 1500, то это поле характеризует длину кадра. В противном случае – это код протокола, пакет которого инкапсулирован в поле данных кадра.

Доступ к каналу Ethernet базируется на алгоритме CSMA/CD ( Carrier Sense Multiple Access with Collision Detection ). В Ethernet любая станция, подключенная к сети, может попытаться начать передачу пакета (кадра), если кабельный сегмент, к которому она подключена, свободен. Свободен ли сегмент, интерфейс определяет по отсутствию "несущей" в течение 96 бит -тактов. Так как первый бит пакета достигает остальных станций сети не одновременно, может случиться, что попытку передачи совершат две или более станций, тем более что задержки в повторителях и кабелях могут достигать достаточно больших величин. Такие совпадения попыток называются столкновениями . Столкновение ( коллизия ) распознается по наличию в канале сигнала, уровень которого соответствует работе двух или более трансиверов одновременно. При обнаружении столкновения станция прерывает передачу. Возобновление попытки может быть произведено после выдержки (кратной 51,2 мксек, но не превосходящей 52 мс), значение которой является псевдослучайной величиной и вычисляется каждой станцией независимо (T= RAND(0,2 min(N,10) ), где N – содержимое счетчика попыток, а число 10 - backoffLimit).

Обычно после столкновения время разбивается на ряд дискретных доменов с длиной, равной удвоенному времени распространения пакета в сегменте ( RTT ). Для максимально возможного RTT это время равно 512 бит -тактам. После первого столкновения каждая станция ждет 0 или 2 временного домена, прежде чем совершить еще одну попытку. После второго столкновения каждая из станций может выждать 0, 1, 2 или 3 временного домена и т.д. После n-го столкновения случайное число лежит в пределах 0 – (2 n – 1) . После 10 столкновений максимальное значение случайной выдержки перестает расти и остается на уровне 1023 .

Теперь рассмотрим поведение сети при наличии k станций, готовых к передаче. Если некоторая станция осуществляет передачу во время домена доступа с вероятностью p , вероятность того, что станция захватит канал, равна:

Достигает максимума при . при . Среднее число доменов на один доступ равно 1/А . Так как каждый домен имеет протяженность RTT , то средняя длительность времени доступа составит RTT/A . Если среднее время передачи кадра составляет P секунд, то при большом числе станций, готовых к передаче, эффективность канала составит P/(P+RTT/A) .

Таким образом, чем длиннее кабельный сегмент, тем больше среднее время доступа .

После выдержки при столкновении станция увеличивает на единицу счетчик попыток и начинает очередную передачу. Предельное число попыток по умолчанию равно 16; если число попыток исчерпано, связь прерывается и выдается соответствующее сообщение (о недоступности). При этом передаваемый кадр будет безвозвратно потерян.

Длинный кадр способствует "синхронизации" начала передачи пакетов несколькими станциями. Ведь за время передачи с заметной вероятностью может возникнуть необходимость передачи у двух и более станций. В момент, когда они обнаружат завершение пакета, будут включены таймеры IPG . К счастью, информация о завершении передачи пакета доходит до станций сегмента не одновременно. Но задержки, с которыми это связано, являются также причиной того, что факт начала передачи нового пакета одной из станций не становится известным немедленно. При вовлечении в столкновение нескольких станций они могут уведомить остальные станции об этом, послав сигнал "затора" ( JAM - не менее 32 бит ). Содержимое этих 32 бит не регламентируется. Такая схема делает менее вероятным повторное столкновение . Источником большого числа столкновений (помимо информационной перегрузки) может служить запредельная суммарная длина логического кабельного сегмента, слишком большое число повторителей, обрыв кабеля или неисправность одного из интерфейсов. Но сами

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ГОУ ВПО «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ

РАДИОТЕХНИКИ, ЭЛЕКТРОНИКИ И АВТОМАТИКИ

(технический университет)»

Дагестанский филиал

Кафедра Вычислительной техники

Курсовая работа

по дисциплине «Сети ЭВМ»

на тему:

" Локальная сеть Ethernet "

Выполнила: студентка 4го курса

специальности ВМКСиС

Исаева П. М.

Проверил: Фейламазова С. А.

Махачкала 2011г.

    Введение…………………………………………….……………2

    История Ethernet…………………………………………………3

    Сети Ethernet…………………………………………………..…6

    Серверы……………………………………………………….....11

    Оборудование для локальных сетей…………………………..15

    Топология сети……………………………………………….....16

    Общие характеристики локальных вычислительных сетей....22

    Ethernеt безопасность локальной сети………………………...26

    Мосты и коммутации……………………………………...........29

    Многообразия Ethernet…………………………………...32

    Стандартизации…………………………………………...33

    Заключение………………………………………………..34

    Список используемой литературы………………………35

ВВЕДЕНИЕ

Компьютерные сети, называемые также вычислительными сетями, или сетями передачи данных, являются логическим результатом эволюции двух важнейших научно-технических отраслей современной цивилизации - компьютерных и телекоммуникационных технологий. С одной стороны, сети представляют собой частный случай распределенных вычислительных систем, в которых группа компьютеров согласованно выполняет набор взаимосвязанных задач, обмениваясь данными в автоматическом режиме. С другой стороны, компьютерные сети мо-гут рассматриваться как средство передачи информации на большие расстояния, для чего в них применяются методы кодирования и мультиплексирования данных, получившие развитие в различных телекоммуникационных системах.

Конец 90-х гг. прошлого века выявил явного лидера среди технологий локальных сетей - семейство Ethernet, в которое вошли классическая технология Ethernet 10 Мбит/с, а также Fast Ethernet 100 Мбит/с и Gigabit Ethernet 1000 Мбит/с. Простые алго-ритмы работы предопределили низкую стоимость оборудования Ethernet. Широкий диапазон иерархии скоростей позволяет рационально строить локальную сеть, применяя ту технологию семейства, которая в наибольшей степени отвеча-ет задачам предприятия и потребностям пользователей. Важно также, что все технологии Ethernet очень близки друг к другу по принципам работы, что упрощает обслуживание и интеграцию этих сетей.

Актуальность данной работы обусловлена важностью изучения локальных компьютерных систем для студентов технических специальностей как одного из краеугольных понятий предмета «Сети ЭВМ».

Целью работы является изучение характеристик и особенностей локальной сети Ethernet.

В соответствии с целью работы, были поставлены следующие задачи: определение понятия «локальная вычислительная сеть», характеристика основных способов построения сетей (топология сетей), краткая характеристика основных протоколов сети, которые обеспечивают согласованное взаимодействие пользователей в сети, изучение таких технологий локальных сетей как Ethernet, Token Ring, FDDI, Fast и Gigabit Ethernet.

История ETHERNET

Технология Ethernet была разработана вместе со многими первыми проектами корпорации Xerox PARC. Общепринято считать, что Ethernet был изобретён 22 мая 1973 года, когда Роберт Меткалф (Robert Metcalfe ) составил докладную записку для главы PARC о потенциале технологии Ethernet. Но законное право на технологию Меткалф получил через несколько лет. В 1976 году он и его ассистент Дэвид Боггс (David Boggs) издали брошюру под названием «Ethernet: Distributed Packet-Switching For Local Computer Networks».

Меткалф ушёл из Xerox в 1979 году и основал компанию 3Com для продвижения компьютеров. Ему удалось убедить DEC, Intel и Xerox работать совместно и разработать стандарт Ethernet (DIX). Впервые этот стандарт был опубликован 30 сентября 1980 года. Он начал соперничество с двумя крупными запатентованными технологиями: token ring и ARCNET, - которые вскоре были похоронены под накатывающимися волнами продукции Ethernet. В процессе борьбы 3Com стала основной компанией в этой отрасли.

В стандарте первых версий (Ethernet v1.0 и Ethernet v2.0) указано, что в качестве передающей среды используется коаксиальный кабель, в дальнейшем появилась возможность использовать витую пару и оптический кабель.

Причинами перехода на витую пару были:

    возможность работы в дуплексном режиме;

    низкая стоимость кабеля «витой пары»;

    более высокая надёжность сетей при неисправности в кабеле;

    большая помехозащищенность при использовании дифференциального сигнала;

    возможность питания по кабелю маломощных узлов, например IP-телефонов (стандарт Power over Ethernet, POE);

    отсутствие гальванической связи (прохождения тока) между узлами сети. При использовании коаксиального кабеля в российских условиях, где, как правило, отсутствует заземление компьютеров, применение коаксиального кабеля часто сопровождалось пробоем сетевых карт, и иногда даже полным «выгоранием» системного блока.

Причиной перехода на оптический кабель была необходимость увеличить длину сегмента без повторителей.

Метод управления доступом (для сети на коаксиальном кабеле) - множественный доступ с контролем несущей и обнаружением коллизий (CSMA/CD, Carrier Sense Multiple Access with Collision Detection), скорость передачи данных 10 Мбит/с, размер пакета от 72 до 1526 байт, описаны методы кодирования данных. Режим работы полудуплексный, то есть узел не может одновременно передавать и принимать информацию. Количество узлов в одном разделяемом сегменте сети ограничено предельным значением в 1024 рабочих станции (спецификации физического уровня могут устанавливать более жёсткие ограничения, например, к сегменту тонкого коаксиала может подключаться не более 30 рабочих станций, а к сегменту толстого коаксиала - не более 100). Однако сеть, построенная на одном разделяемом сегменте, становится неэффективной задолго до достижения предельного значения количества узлов, в основном по причине полудуплексного режима работы.

В 1995 году принят стандарт IEEE 802.3u Fast Ethernet со скоростью 100 Мбит/с и появилась возможность работы в режиме полный дуплекс. В 1997 году был принят стандарт IEEE 802.3z Gigabit Ethernet со скоростью 1000 Мбит/с для передачи по оптическому волокну и ещё через два года для передачи по витой паре.

Ethernet является развивающейся технологии. Эволюция включили более высокой пропускной способности, улучшения доступа к среде методов, и изменения в физической среде. Ethernet превратилась в комплекс сетевых технологий, что сегодня лежит в основе большинства локальных сетей. Коаксиальный кабель был заменен с "точка-точка" связаны Ethernet ретрансляторов или переключателей, чтобы уменьшить затраты на установку, повысить надежность, и позволить "точка-точка управления и устранения неполадок. Есть много вариантов Ethernet в общем пользовании.

Ethernet станций общаются, посылая друг другу пакеты данных, блоки данных, которые индивидуально отправлено и доставлено. Как и в других IEEE 802 LAN, Ethernet каждой станции дается 48-битный MAC-адрес. MAC-адреса используются для определения и назначения и источника каждого пакета данных. Карты сетевого интерфейса (NIC) или фишки обычно не принимают пакеты, адресованные в другие места Ethernet. Адаптеры приходят запрограммированы глобально уникальный адрес. Несмотря на значительные изменения в Ethernet от толщины коаксиальный кабель шины работает в 10 Мбит / с для точка-точка " работает на 1 Гбит / с и за ее пределами, всех поколений Ethernet (за исключением ранней экспериментальной версии) использовать тот же формат кадра (и, следовательно, тот же интерфейс для высших слоев), и могут быть легко между собой через мост.

В связи с повсеместность Ethernet, постоянно сокращается стоимость оборудования, необходимого для ее поддержки, и ограниченном пространстве панели необходимой витая пара Ethernet , большинство производителей теперь строить функциональные Ethernet карту непосредственно в компьютер плат, исключая необходимость установка отдельной сетевой плате.

Ethernet

Ethernet (читается "эзернет") - локальная компьютерная сеть с выходом в интернет или без него.

Синонимы Ethernet - LAN или "локалка" . Сеть Ethernet используется для объединения компьютеров в проводную сеть. Яркий пример сети Ethernet - проводной интернет в жилых домах (например, "Корбина"), а также корпоративные сети в офисах. Чтобы организовать сеть Ethernet, используют кабель с разъемом RJ-45 , который подключают к порту сетевой карты компьютера. Существует беспроводной аналог Ethernet-сети под названием WLAN .

Что такое Ethernet и как он работает?

Ethernet — на нем основаны большинство сетей в наше время. Существует большое количество технологий, позволяю­щих соединить компьютеры в сеть. Каждая из них была раз­работана в разное время и предназначена для решения опре­деленной задачи.

Технология Ethernet охватывает сразу два нижних уровня модели OSI . Физический и канальный уровни. Далее будем говорить только о физическом уровне модели OSI, т.е. о том, как передаются биты данных между двумя соседними устройствами.

В настоящее время для построения локальных сетей ис­пользуют технологию Fast Ethernet , которая является новой реализацией технологии Ethernet .

Что такое Ethernet

Эта технология была разработана в 1970 г. исследователь­ским центром в Пало-Альто, который принадлежит корпора­ции Xerox, а в 1980 г. на ее основе была принята специфика­ция IEЕЕ 802.3.

Основной принцип работы, используемый в данной техно­логии, заключается в следующем. Для того чтобы начать пе­редачу данных в сети, сетевой адаптер компьютера «прослу­шивает» сеть на наличие какого-либо сигнала. Если его нет, то адаптер начинает передачу данных, если же сигнал есть, то передача откладывается на определенный интервал времени. Время монопольного использования разделяемой среды од­ним узлом ограничивается временем передачи одного кадра.

Кадр — это единица данных, которыми обмениваются ком­пьютеры в сети Ethernet. Кадр имеет фиксированный формат и наряду с полем данных содержит различную служебную ин­формацию, например адрес получателя и адрес отправителя. После того как адаптер отправителя поместил кадр в сеть, его начинают принимать все сетевые адаптеры. Каждый адаптер проводит анализ кадра, и если адрес совпадает с их собствен­ным адресом устройства (МАС-адрес), кадр помещается во внутренний буфер сетевого адаптера, если же не совпадает, то он игнорируется.

В том случае, если два или более адаптера, «прослушав» сеть, начинают передавать данные, возникает коллизия (collision ). Адаптеры, обнаружив коллизию, прекращают пе­редачу данных, а затем, повторно «прослушав» сеть, повто­ряют передачу данных через разные промежутки времени.

? ПРИМЕЧАНИЕ. Чтобы получить пакет данных, который предназначен для конкретного адаптера, он должен прини­мать все пакеты, которые появляются в сети.

Такой метод доступа к среде передачи данных получил на­звание CSMA / CD {carrier-sense multiple access/collision detect­ion) — множественный доступ с обнаружением несущей.

Что такое Ethernet — коллизии

Как следует из вышесказанного, при большом числе ком­пьютеров в сети. и при интенсивном обмене информацией очень быстро растет число коллизий. и как следствие, пропуск­ная способность сети падает. Не исключен случай, когда про­пускная способность может упасть до нуля. Но даже в сети где средняя нагрузка не превышает рекомендованную. Это 30-40% от общей полосы пропускания, скорость передачи со­ставляет 70-80% от номинальной.

Однако в настоящее время данную проблему почти решили. Поскольку разработали устройства, способные разде­лять потоки данных между теми компьютерами, для которых эти данные предназначаются. Другими словами, трафик между портами, подключенными к передающему и принимающему сетевым адаптерам, изолируется от других портов и адаптеров. Такие устройства называются коммутаторами (switch ).

Существуют различные реализации данной технологии -Ethernet, Fast Ethernet, Gigabit Ethernet. Например они могут обеспе­чивать скорость передачи данных 10, 100 и 1000 Мбит/с соот­ветственно.

Стандарт IЕЕЕ 802.3 содержит несколько спецификаций, отличающихся топологией и типом используемого кабеля. Например, 10 BASE-5 использует толстый коаксиальный ка­бель. 10 BASE-2 — тонкий кабель. А 10 BASE-F, 10 BASE-FB, 10 BASE-FL и FOIRL используют оптический кабель. Наибо­лее популярна спецификация IEЕЕ 802.3 100BASE-TX. В ко­торой для организации сети используется кабель на основе неэкранированных витых пар с разъемами RJ-45.

Реализации сети Ethernet

Перечисленные выше спецификации Ethernet можно опи­сать следующим образом. Первое число в имени спецификации, указывает максимальную скорость передачи данных. Например «10» обозначает скорость передачи сигнала 10 Мбит/с. «Base», означает использование в стандарте Baseband-технологии. Baseband — это узкополосная передача. При таком способе передачи данных по кабелю каждый бит данных кодируется. Он кодируется отдельным электрическим или световым импульсом. При этом весь кабель используется в качестве одного канала связи. Т.е. одновременная передача двух сигналов невозможна.

Первоначально последняя секция в названии специфика­ции предназначалась для отображения максимальной длины. Длины кабельного сегмента в сотнях метров. Это без концентраторов и коммутаторов. Однако для удобства и более полного опреде­ления сути стандарта все упростили. И теперь его названии цифры заменили буквами Т и F. Где Т обозначает twisted pair — витую пару, a F обозначает оптоволокно.

Таким образом, в настоящее время можно встретить сети, основанные на следующих спецификациях:

  • 10Base-2 — 10 МГц Ethernet на коаксиальном кабеле с со­противлением 50 Ом, baseband. 10Base-2 известен как «тонкий Ethernet»;
  • 10Base-5 — 10MHzEthernetна стандартном (толстом) коак­сиальном кабеле с сопротивлением 50 Ом, baseband;
  • 10Base-T — 10MHz Ethernet по кабелю витая пара;
  • 100 Base-TX — 100MHz Ethernet по кабелю витая пара.

Весьма существенным преимуществом различных вариан­тов Ethernet является обоюдная совместимость. Такая, которая по­зволяет использовать их совместно в одной сети. И в ряде слу­чаев даже не изменяя существующую кабельную систему.

ПОЛНОДУПЛЕКСНЫЙ РЕЖИМ

Стандарт технологии Fast Ethernet также включает в себя рекомендации. Рекомендации относительно обеспечения возможности полно-дуплексной работы (full duplex mode ) при подключении сете­вого адаптера к коммутатору. Или же при непосредственном соединении коммутаторов между собой.

Суть полно-дуплексного режима заключается в возможно­сти одновременной передачи и приема данных по двум каналам. Тх (канал от передатчика к приемнику) и Rx(канал от приемника к передатчику). И при этом скорость передачи возрастает вдвое и достигает 200 Мбит/с.

На данный момент практически все производители сетевого оборудования заявляют следующее. Что их устрой­ства обеспечивают работу в полно-дуплексном режиме. Однако из-за разного толкования стандарта, в частности способов правления потоком кадров. Не всегда удается добиться кор­ректной работы этих устройств. И так же хороших скоростных пока­зателей.

Нашли помощь - поддержите проект!

Сделать это легко:

Поделись ссылкой с друзьями в соц.сетях!

Вконтакте

Ethernet (читается эзернет , от лат. aether - эфир) - пакетная технология передачи данных преимущественно локальных
.

Стандарты Ethernet определяют проводные соединения и электрические сигналы на физическом уровне, формат
кадров и протоколы управления доступом к среде - на канальном уровне модели OSI. Ethernet в основном
описывается стандартами IEEE группы 802.3. Ethernet стал самой распространённой технологией ЛВС в середине
90-х годов прошлого века, вытеснив такие устаревшие технологии, как Arcnet, FDDI и Token ring.

История создания

Технология Ethernet была разработана вместе со многими первыми проектами корпорации Xerox PARC.
Общепринято считать, что Ethernet был изобретён 22 мая 1973 года, когда Роберт Меткалф (Robert Metcalfe)
составил докладную записку для главы PARC о потенциале технологии Ethernet. Но законное право на
технологию Меткалф получил через несколько лет. В 1976 году он и его ассистент Дэвид Боггс (David Boggs)
издали брошюру под названием «Ethernet: Distributed Packet-Switching For Local Computer Networks».

Меткалф ушёл из Xerox в 1979 году и основал компанию 3Com для продвижения компьютеров и локальных
вычислительных сетей (ЛВС). Ему удалось убедить DEC, Intel и Xerox работать совместно и разработать
стандарт Ethernet (DIX). Впервые этот стандарт был опубликован 30 сентября 1980 года. Он начал
соперничество с двумя крупными запатентованными технологиями: token ring и ARCNET, - которые вскоре были похоронены под накатывающимися волнами продукции Ethernet. В процессе борьбы 3Com стала основной компанией в этой отрасли.

Технология

В стандарте первых версий (Ethernet v1.0 и Ethernet v2.0) указано, что в качестве передающей среды
используется коаксиальный кабель, в дальнейшем появилась возможность использовать витую пару и оптический
кабель.

Причинами перехода на были:

  • возможность работы в дуплексном режиме;
  • низкая стоимость кабеля «витой пары»;
  • более высокая надёжность сетей при неисправности в кабеле;
  • большая помехозащищенность при использовании дифференциального сигнала;
  • возможность питания по кабелю маломощных узлов, например IP-телефонов (стандарт Power over Ethernet, POE);
  • отсутствие гальванической связи (прохождения тока) между узлами сети. При использовании коаксиального кабеля в российских условиях, где, как правило, отсутствует заземление компьютеров, применение коаксиального кабеля часто сопровождалось пробоем сетевых карт, и иногда даже полным «выгоранием» системного блока.

Причиной перехода на оптический кабель была необходимость увеличить длину сегмента без повторителей.

Метод управления доступом (для сети на ) - множественный доступ с контролем несущей и
обнаружением коллизий (CSMA/CD, Carrier Sense Multiple Access with Collision Detection), скорость передачи
данных 10 Мбит/с, размер пакета от 72 до 1526 байт, описаны методы кодирования данных. Режим работы
полудуплексный, то есть узел не может одновременно передавать и принимать информацию. Количество узлов в
одном разделяемом сегменте сети ограничено предельным значением в 1024 рабочих станции (спецификации
физического уровня могут устанавливать более жёсткие ограничения, например, к сегменту тонкого коаксиала
может подключаться не более 30 рабочих станций, а к сегменту толстого коаксиала - не более 100). Однако
сеть, построенная на одном разделяемом сегменте, становится неэффективной задолго до достижения
предельного значения количества узлов, в основном по причине полудуплексного режима работы.

В 1995 году принят стандарт IEEE 802.3u Fast Ethernet со скоростью 100 Мбит/с и появилась возможность
работы в режиме полный дуплекс. В 1997 году был принят стандарт IEEE 802.3z Gigabit Ethernet со скоростью
1000 Мбит/с для передачи по оптическому волокну и ещё через два года для передачи по витой паре.

Разновидности Ethernet

В зависимости от скорости передачи данных и передающей среды существует несколько вариантов технологии.
Независимо от способа передачи стек сетевого протокола и программы работают одинаково практически во
всех ниже перечисленных вариантах.

Большинство Ethernet-карт и других устройств имеет поддержку нескольких скоростей передачи данных,
используя автоопределение (autonegotiation) скорости и дуплексности, для достижения наилучшего
соединения между двумя устройствами. Если автоопределение не срабатывает, скорость подстраивается под
партнёра, и включается режим полудуплексной передачи. Например, наличие в устройстве порта Ethernet
10/100 говорит о том, что через него можно работать по технологиям 10BASE-T и 100BASE-TX, а порт
Ethernet 10/100/1000 - поддерживает стандарты 10BASE-T, 100BASE-TX и 1000BASE-T.
Ранние модификации Ethernet

  • Xerox Ethernet - оригинальная технология, скорость 3Мбит/с, существовала в двух вариантах Version 1 и Version 2, формат кадра последней версии до сих пор имеет широкое применение.
  • 10BROAD36 - широкого распространения не получил. Один из первых стандартов, позволяющий работать на больших расстояниях. Использовал технологию широкополосной модуляции, похожей на ту, что используется
    в кабельных модемах. В качестве среды передачи данных использовался коаксиальный кабель.
  • 1BASE5 - также известный, как StarLAN, стал первой модификацией Ethernet-технологии, использующей витую пару. Работал на скорости 1 Мбит/с, но не нашёл коммерческого применения.

10 Мбит/с Ethernet

  • 10BASE5, IEEE 802.3 (называемый также «Толстый Ethernet») - первоначальная разработка технологии со скоростью передачи данных 10 Мбит/с. Следуя раннему стандарту IEEE использует коаксиальный кабель с волновым сопротивлением 50 Ом (RG-8), с максимальной длиной сегмента 500 метров.
  • 10BASE2, IEEE 802.3a (называемый «Тонкий Ethernet») - используется кабель RG-58, с максимальной длиной сегмента 185 метров, компьютеры присоединялись один к другому, для подключения кабеля к сетевой
    карте нужен T-коннектор, а на кабеле должен быть BNC-коннектор. Требуется наличие терминаторов на каждом
    конце. Многие годы этот стандарт был основным для технологии Ethernet.
  • StarLAN 10 - Первая разработка, использующая витую пару для передачи данных на скорости 10 Мбит/с.

В дальнейшем эволюционировал в стандарт 10BASE-T.

Несмотря на то, что теоретически возможно подключение к одному кабелю (сегменту) витой пары более чем
двух устройств, работающих в симплексном режиме, такая схема никогда не применяется для Ethernet, в
отличие от работы с . Поэтому, все сети на витой паре используют топологию «звезда»,
в то время как, сети на коаксиальном кабеле построены на топологии «шина». Терминаторы для работы по
витой паре встроены в каждое устройство, и применять дополнительные внешние терминаторы в линии не нужно.

  • 10BASE-T, IEEE 802.3i - для передачи данных используется 4 провода кабеля витой пары (две скрученные пары) категории-3 или категории-5. Максимальная длина сегмента 100 метров.
  • FOIRL - (акроним от англ. Fiber-optic inter-repeater link). Базовый стандарт для технологии Ethernet, использующий для передачи данных оптический кабель. Максимальное расстояние передачи данных без повторителя 1 км.
  • 10BASE-F, IEEE 802.3j - Основной термин для обозначения семейства 10 Мбит/с ethernet-стандартов, использующих оптический кабель на расстоянии до 2 километров: 10BASE-FL, 10BASE-FB и 10BASE-FP. Из перечисленного только 10BASE-FL получил широкое распространение.
  • 10BASE-FL (Fiber Link) - Улучшенная версия стандарта FOIRL. Улучшение коснулось увеличения длины сегмента до 2 км.
  • 10BASE-FB (Fiber Backbone) - Сейчас неиспользуемый стандарт, предназначался для объединения повторителей в магистраль.
  • 10BASE-FP (Fiber Passive)- Топология «пассивная звезда», в которой не нужны повторители - никогдане применялся.

Быстрый Ethernet (Fast Ethernet, 100 Мбит/с)

  • 100BASE-T - общий термин для обозначения стандартов, использующих в качестве среды передачи данных . Длина сегмента до 100 метров. Включает в себя стандарты 100BASE-TX, 100BASE-T4 и 100BASE-T2.
  • 100BASE-TX, IEEE 802.3u - развитие стандарта 10BASE-T для использования в сетях топологии «звезда». Задействована витая пара категории 5, фактически используются только две неэкранированные пары проводников, поддерживается дуплексная передача данных, расстояние до 100 м.
  • 100BASE-T4 - стандарт, использующий витую пару категории 3. Задействованы все четыре пары проводников, передача данных идёт в полудуплексе. Практически не используется.
  • 100BASE-T2 - стандарт, использующий витую пару категории 3. Задействованы только две пары проводников. Поддерживается полный дуплекс, когда сигналы распространяются в противоположных направлениях по каждой паре. Скорость передачи в одном направлении - 50 Мбит/с. Практически не используется.
  • 100BASE-SX - стандарт, использующий многомодовое волокно. Максимальная длина сегмента 400 метров в полудуплексе (для гарантированного обнаружения коллизий) или 2 километра в полном дуплексе.
  • 100BASE-FX - стандарт, использующий одномодовое волокно. Максимальная длина ограничена только
    величиной затухания в оптическом кабеле и мощностью передатчиков, по разным материалам от 2х до 10
    километров
  • 100BASE-FX WDM - стандарт, использующий одномодовое волокно. Максимальная длина ограничена только
    величиной затухания в волоконно-оптическом кабеле и мощностью передатчиков. Интерфейсы бывают двух
    видов, отличаются длиной волны передатчика и маркируются либо цифрами (длина волны) либо одной латинской
    буквой A(1310) или B(1550). В паре могут работать только парные интерфейсы: с одной стороны передатчик
    на 1310 нм, а с другой - на 1550 нм.
Гигабитный Ethernet (Gigabit Ethernet, 1 Гбит/с)
  • 1000BASE-T, IEEE 802.3ab - стандарт, использующий витую пару категорий 5e. В передаче данных участвуют 4 пары. Скорость передачи данных - 250 Мбит/с по одной паре. Используется метод кодирования PAM5, частота основной гармоники 62,5 МГц. Расстояние до 100 метров
  • 1000BASE-TX был создан Ассоциацией Телекоммуникационной Промышленности (англ. Telecommunications
    Industry Association, TIA) и опубликован в марте 2001 года как «Спецификация физического уровня
    дуплексного Ethernet 1000 Мб/с (1000BASE-TX) симметричных кабельных систем категории 6
    (ANSI/TIA/EIA-854-2001)» (англ. «A Full Duplex Ethernet Specification for 1000 Mbis/s (1000BASE-TX)
    Operating Over Category 6 Balanced Twisted-Pair Cabling (ANSI/TIA/EIA-854-2001)»). Стандарт, использует
    раздельную приёмо-передачу (по одной паре в каждом направлении), что существенно упрощает конструкцию
    приёмопередающих устройств. Ещё одним существенным отличием 1000BASE-TX является отсутствие схемы
    цифровой компенсации наводок и возвратных помех, в результате чего сложность, уровень энергопотребления
    и цена процессоров становится ниже, чем у процессоров стандарта 1000BASE-T. Но, как следствие, для
    стабильной работы по такой технологии требуется кабельная система высокого качества, поэтому 1000BASE-TX
    может использовать только кабель 6 категории. На основе данного стандарта практически не было создано
    продуктов, хотя 1000BASE-TX использует более простой протокол, чем стандарт 1000BASE-T, и поэтому может
    использовать более простую электронику.
  • 1000BASE-X - общий термин для обозначения стандартов со сменными приёмопередатчиками GBIC или SFP.
  • 1000BASE-SX, IEEE 802.3z - стандарт, использующий многомодовое волокно. Дальность прохождения
    сигнала без повторителя до 550 метров.
  • 1000BASE-LX, IEEE 802.3z - стандарт, использующий одномодовое волокно. Дальность прохождения
    сигнала без повторителя до 5 километров.


  • используется.
  • 1000BASE-CX - стандарт для коротких расстояний (до 25 метров), использующий твинаксиальный кабель
    с волновым сопротивлением 75 Ом (каждый из двух волноводов). Заменён стандартом 1000BASE-T и сейчас не
    используется.
  • 1000BASE-LH (Long Haul) - стандарт, использующий одномодовое волокно. Дальность прохождения
    сигнала без повторителя до 100 километров.

10-гигабитный Ethernet

Новый стандарт 10-гигабитного Ethernet включает в себя семь стандартов физической среды для LAN, MAN и
WAN. В настоящее время он описывается поправкой IEEE 802.3ae и должен войти в следующую ревизию
стандарта IEEE 802.3.

  • 10GBASE-CX4 - Технология 10-гигабитного Ethernet для коротких расстояний (до 15 метров), используется медный кабель CX4 и коннекторы InfiniBand.
  • 10GBASE-SR - Технология 10-гигабитного Ethernet для коротких расстояний (до 26 или 82 метров, в
    зависимости от типа кабеля), используется многомодовое волокно. Он также поддерживает расстояния до 300
    метров с использованием нового многомодового волокна (2000 МГц/км).
  • 10GBASE-LX4 - использует уплотнение по длине волны для поддержки расстояний от 240 до 300 метров по многомодовому волокну. Также поддерживает расстояния до 10 километров при использовании одномодового
    волокна.
  • 10GBASE-LR и 10GBASE-ER - эти стандарты поддерживают расстояния до 10 и 40 километров
    соответственно.
  • 10GBASE-SW, 10GBASE-LW и 10GBASE-EW - Эти стандарты используют физический интерфейс, совместимый
    по скорости и формату данных с интерфейсом OC-192 / STM-64 SONET/SDH. Они подобны стандартам 10GBASE-SR,
    10GBASE-LR и 10GBASE-ER соответственно, так как используют те же самые типы кабелей и расстояния передачи.
  • 10GBASE-T, IEEE 802.3an-2006 - принят в июне 2006 года после 4 лет разработки. Использует
    экранированную витую пару. Расстояния - до 100 метров.