Тарифы Услуги Сим-карты

Малошумящие низкочастотные усилители. Высокое усиление без проблем: малошумящий инструментальный усилитель с чувствительностью в единицы нановольт Диоды и стабилитроны

Всем привет.

При сборке малошумящих микрофонных усилков высокого качества радиолюбители чаще всего применяют схемные решения на основе дискретных биполярных либо полевых транзисторах, или же малошумящих операционных усилителях. Качественные усилки для микрофонов на транзисторах чаще всего довольно сложные и не дают гарантии на стабильную повторяемость параметров, а чтобы собрать усилитель на малошумящих ОУ может не быть под рукой нужных микросхем либо их цены окажутся больше приемлемых.

Усилитель высокого качества для стереомикрофона возможно изготовить не только на специальных малошумящих транзисторах (рис. 1,2), интегральных операционных усилителях (ОУ) либо специализированных ИМС, но и на том, что у радиолюбителей чаще всего лежит в избытке, но мало кто додумывается о потенциале некоторых «нераспространённых» микросхем. Имеются ввиду интегральные микросхемы - специализированные малошумящие усилители воспроизведения для кассетных, а также катушечных магнитофонов аналоговой записи звука. Бытовая магнитная запись звука быстро уходит в прошлое, уже отработали своё время множество импортных магнитол и автомагнитол, и при разборке их на запчасти микросхемы интегральных усилителей воспроизведения чаще всего остаются ненужными.

На основе одной из таких микросхем LA3161

вы можете изготовить простой стереоусилитель для микрофона с однополярным питанием, который не требует настройки, всего за два часа. Принципиальная схема этого усилка представлена ниже.

Данное устройство представляет собой малошумящий стереофонический усилок, который имеет коэффициент передачи по напряжению примерно 100. Номинальное напряжение для питания этого усилителя 9 Вольт, ток в покое приблизительно 6 мА, номинальное напряжение на входе 5 мВ, а номинальное напряжение на выходе 500 мВ при коэффициенте гармонических искажений 0,05%. Сопротивление на выходе примерно 100 кОм. Микросхема может работать при питании 2,5 - 16 Вольт. Но при питании меньше 7 Вольт её главные характеристики ухудшаются.

Микросхема питается от источника стабильного напряжения проходя через LC - фильтр C1L1C2C3. В частном случае в роли источника питания можно применить гальваническую батарею «Крона» либо её аналог.

Коэффициент передачи усилка зависит от соотношения сопротивления резисторов R5/R3 и R6/R4. Если есть необходимость в большом усилении по напряжению сопротивление резисторов R3 и R4 можете понизить в 10 - 20 раз. В роли микрофонов ВМ1 и ВМ2 можете использовать как динамические, так и конденсаторные микрофоны. Если отсутствует в конденсаторном либо электретном микрофоне истоковый повторитель, его можете ввести в усилитель, к примеру, поставив в каждом канале по микросхеме К513УЕ1. Конденсаторы С4 и С5 не дают проникать на вход различным радиопомехам. Резисторы R9 и R10 устраняют возможное появление «щелчка», когда происходит подключение микрофонного усилителя к аппаратуре звуковоспроизведения, а также нужны для правильной поляризации обкладок оксидных конденсаторов С10 и С11. Функциональная схема микросхемы LA3161 представлена на рисунке ниже. Если использовать только один из двух усилителей микросхемы соответствующий неинвертирующий вход (вывод 1 либо 8) нужно соединять с общим проводом.

Усилок можете собрать на плате размерами 70?27 мм (смотрите фото). В левой части платы нужно оставить свободное место, чтобы можно было установить дополнительные элементы, которые возможно потребуются, для того чтобы согласовать некоторые динамические микрофоны с входом усилителя.

Резисторы можете применить типа МЛТ, С2-23 либо их аналоги. При этом лучше учесть, то что чем выше мощность резисторов одного и того же типа, тем ниже будет их уровень собственных шумов. Если коэффициент усиления больше 500 резисторы R1 - R6 лучше поставить с мощностью 0,5 - 1 Ватт. Неполярные конденсаторы - импортные малогабаритные плёночные либо керамические. Оксидные конденсаторы С6, С7 должны иметь наименьший ток утечки. В случае если среди обыкновенных алюминиевых не удаётся найти высококачественные конденсаторы, то можете применить керамические либо плёночные конденсаторы с ёмкостью 4,7 мкФ. Дроссель L1 может быть любой малогабаритный маломощный с индуктивностью больше 100 мкГн. Если напряжение питания 12 Вольт и больше, то последовательно с ним лучше будет подключить резистор сопротивлением 1 кОм. Микросхему LA3161 можете поменять на LA3160.

Эти две микросхемы выпускает фирма Sanyo в корпусе SIP-8, у них одинаковые цоколевки выводов и похожие параметры.Микросхемы малошумящих усилков воспроизведения магнитной звукозаписи с отключенными цепями коррекции можете применять не только в роли микрофонных усилителей, но и также в узлах предварительных нормирующих усилителей, пассивных регуляторов тембра, громкости или в качестве усилителей сигналов с пьезодатчиков и пиродетекторов.

Всего вам доброго.

Усилители, основное предназначение которых - усиление слабых сигналов с минимальными собственными шумами на выходе устройства, называют малошумящими.

Такие усилители обычно используют во входных цепях - радиоприемников, звуковоспроизводящей радиоаппаратуры, например, в микрофонных усилителях, в – устройствах, воспринимающих сигналы от высокочувствительных датчиков, в измерительной и медицинской аппаратуре.

КР538УНЗ (близкий аналог микросхемы LM387N фирмы NSC, с иной цоколевкой) представляет собой сверхмалошумящий низкой частоты, рис. ЗОЛ, табл. 30.1 . Выпускается КР538УНЗ (К538УНЗ) в корпусах трех разновидностей. Ниже приведены примеры использования микросхемы, выполненной в корпусе DIP8.

Рис. ЗОЛ. Типовая включения микросхемы КР538УНЗ

Верхняя частотная граница усиливаемых сигналов при отключении потенциометра R1 (рис. 30.1) достигает 3 МГц. Коэффициент усиления в пределах от 100-350 до 3000 можно плавно регулировать подстройкой этого потенциометра. Одновременно в той же пропорции снижается верхняя граница полосы усиливаемых частот. Рекомендуемое напряжение питания - 6 В (5,0-7,5 В) при токе потребления до 5 мА. Работоспособность микросхемы сохраняется при снижении напряжения питания до 3 В. Максимальное выходное напряжение для разновидности микросхемы с литерой «А» достигает 0,5 В, для «Б» - 0,3 В при выходном токе до 3 мА; нагрузки - 2 кОм. Максимальное входное напряжение - менее 0,2 В. Нормированное напряжение шумов на частоте 1 кГц при сопротивлении источника сигнала до 500 Ом не превышает 2 нВ/Гц~ 0,5 . Коэффициент гармоник при выходном напряжении до 0, 1 В - менее 1,5%.

Рис. 30.2. Упрощенный вариант включения микросхемы КР538УНЗ

Рис. 30.3. Вариант на микросхеме КР538УНЗ

Характеристики на микросхеме КР538УНЗ при варьировании напряжения питания

Таблица 30.1

Параметр

Уровень шума, дБ

Рис. 30.4. малошумящего с цепями частотной коррекции

Рис. 30.5. малошумящего магнитофонного усилителя на микросхеме КР538УНЗ

Максима;1ьно упрощенный вариант включения микросхемы КР538УНЗ приведен на рис. 30.2, рис. 30.3 .

На микросхеме КР538УНЗ с дополнительно встроенными цепями частотной коррекции показана на рис. 30.4.

Малошумящего усилителя портативного магнитофона приведена на рис. 30.5 . Учитывая специфику работы устройств, вместо регулирующего коэффициент усиления потенциометра (R1, рис. 30.1) включен корректирующий (L1C2), настроенный на частоту 12,5 кГц.

Программируемый малошумящий ОУ, предназначенный для применения в бытовой радиоэлектронной аппара-

В. П. Матюшкин, г. Дрогобыч

Сравниваются особенности спектра нелинейных искажений в усилителях с различной частотой среза АЧХ. Показано, что устройства на операционных усилителях обогащают звуковой сигнал высшими гармониками, поэтому их применение в аудиокомплексах особо высокого качества нежелательно. Представлена конструкция малошумящего высоколинейного предварительного усилителя с большой частотой среза и блоками регулировок громкости и тембра.

При использовании пассивных регуляторов тембра (РТ) и достаточной чувствительности УМЗЧ назначением предварительного усилителя ЗЧ (ПУЗЧ) остается компенсация вносимого РТ ослабления усиливаемого сигнала и согласования входных и выходных сопротивлений различных звеньев тракта между собой. Эта функция принадлежит линейным малошумящим каскадам усиления с высоким (десятки-сотни кОм) входным и низким (не более 600 Ом) выходным сопротивлением. Такие значения необходимы, чтобы не вносились погрешности в характеристики регулирования РТ и регулятора громкости (РГ) и не оказывалось влияние на характеристики источников сигнала.

Известные автору конструкции ПУЗЧ не удовлетворяют возросшим к ним требованиям. Если ранее при воспроизведении граммофонной или магнитофонной записи было вполне достаточно, чтобы относительный уровень шума ПУЗЧ был около -80...-85 дБ, что не хуже, чем у источников сигнала, то при прослушивании компакт-дисков, когда "мертвая тишина" в паузах наполняется досадным шипением, такой шум уже становится назойливой помехой. Оставляют желать лучшего и другие параметры, особенно у ПУЗЧ, выполненных с использованием операционных усилителей (ОУ).

Низкая (десятки-сотни герц) собственная частота среза ОУ fc обусловливает не самую лучшую переходную характеристику, определяющую верность передачи фронта импульсных сигналов. Такая fc заставляет считаться с возможностью возникновения динамических искажений, а также приводит к уменьшению глубины ООС с ростом частоты, т.е. к росту нелинейных искажений (НИ). Ухудшение подавления искажений сигнала начинается в ОУ, охваченном ООС, с частоты его среза to и происходит приблизительно прямо пропорционально частоте. Например, если fc<500 Гц и при усилении сигнала с частотой fA=1 кГц получен уровень второй гармоники (на частоте 2 кГц) 0, 001%, то при усилении равного по амплитуде сигнала с частотой fB=8 кГц уровень второй гармоники (на частоте 16 кГц) будет примерно в fB/fA=8 раз больше, что дает уже не такие благополучные искажения (0, 008%). Однако это еще только полбеды.

Еще хуже то, что вместе с этим изменяется соотношение между гармониками одного и того же сигнала в пользу гармоник более высокого порядка. Это касается НИ, генерируемых теми каскадами ОУ (прежде всего, выходными, из-за значительности их вклада в общий уровень НИ), которые следуют за каскадом, формирующим излом АЧХ на частоте fc. Искажения этих каскадов и будем иметь в виду далее (в первых каскадах ОУ процессы имеют свои особенности).

На рис.1 показаны частотные зависимости отношения коэффициента НИ по гармонике n>2 Qn к коэффициенту НИ по второй гармонике Q2, приведенных к такому же отношению для ОУ без ООС Qn/Q2. Прямая 1 соответствует ОУ без ООС, прямая 2 - ОУ с замкнутой петлей ООС. Прямая 1 соответствует также усилителю, имеющему высокую частоту среза fc">>20 кГц, причем безразлично, включена ООС или нет. Как видно, УЗЧ на ОУ обогащает спектр НИ гармониками высших порядков. Наблюдаемую реально картину сглаживает лишь то, что исходные (без ООС) амплитуды гармоник сами обычно уменьшаются с ростом их номера n, поэтому регистрируемые при измерениях продукты искажений зависят не так сильно от частоты. Понятно, что картина, аналогичная рис.1, имеет место и для компонентов интермодуляционных искажений различных порядков.

Как известно, качество звучания зависит не только от амплитуд гармоник различного порядка, но и от соотношения между ними: желательно, чтобы с ростом номера гармоники ее амплитуда достаточно быстро убывала, в противном случае звучание становится жестким, приобретает неприятный металлический оттенок. Из рис.1 видно, что УЗЧ на ОУ действует в прямо противоположном направлении, причем практически во всем звуковом диапазоне, исключая лишь самые низкие частоты (и это касается, конечно, не только ПУЗЧ, но и усилителей мощности). И если регулятор тембра НЧ, поднимая АЧХ тракта на частотах, ниже 1 кГц, в какой-то степени восстанавливает соотношение между гармониками в диапазоне наклона участка своей АЧХ, то подъем высоких частот регулятором тембра ВЧ еще более усугубляет нарушение соотношения между ними на частотах более 1 кГц.

Таким образом, пресловутое "транзисторное звучание" начинает зарождаться еще в ПУЗЧ, выполненных на ОУ. Поэтому увлечение такими схемами, несмотря на все удобства и упрощения при использовании ОУ, идет в ущерб качеству звуковоспроизведения. И нет ничего удивительного в том, что они звучат хуже ламповых усилителей, имеющих, как правило, достаточно высокую fc (что возможно благодаря относительно неглубокой ООС) и к тому же благоприятный спектр генерируемых лампами гармоник (не выше пятого порядка).

Для получения благоприятного спектра НИ транзисторный усилитель до охвата ООС должен иметь частоту среза fc">20 кГц (рис.2, кривая 1). Это требование удачно согласуется и с условием отсутствия динамических искажений. Любопытной вместе с этим выглядит возможность дополнительного улучшения спектра гармоник и приближения его характера к ламповому путем специфической коррекции, заключающейся в подъеме исходной (без ООС) АЧХ с ростом частоты в звуковом диапазоне или хотя бы на некотором его участке (рис.2, ломаная 3). Кривая 2 соответствует случаю 2 рис.1. Благодаря уменьшению относительной доли ВЧ компонентов в НИ, это позволило бы получить спектр искажений на рис.1, кривая 3, что должно, по-видимому, делать звучание более мягким. Однако этот вопрос требует еще своего изучения.

Особенно заметными недостатки известных ПУЗЧ становятся при совместной работе с современными высококачественными УМЗЧ, например .

При разработке предлагаемого ПУЗЧ учтены перечисленные соображения, вместе с этим желательно достичь максимальной простоты схемы.

Параметры усилителя (рис.3):
Частота среза fc 300 кГц
Коэффициент интермодуляционных НИ при 11вых < 5 В и Rh > 1 кОм в диапазоне 0, 02-20 кГц < 0, 001 %
Номинальное Iвх 0, 25 В
Максимальное I вых 9В
Уровень шума (R^0) -103 дБ
Взвешенное значение -109 дБА
Выходное сопротивление < 0, 1Ом
Фазовый угол при f=0, 1 ...200 кГц < 0, 1°
Минимальное сопротивление нагрузки R 300 Ом

Усилитель выполнен по симметричной схеме на комплементарных парах транзисторов, такая структура значительно повышает его исходную линейность еще до охвата ООС. Все транзисторы, включая выходные, работают в режиме класса "А", причем коллекторный ток покоя VT7, VT8 около 10 мА и позволяет им сохранять этот режим при сопротивлениях нагрузки Rh не менее 300 Ом.

Несмотря на то, что VT5 и VT6 включены по схеме с общим эмиттером, их передаточные характеристики достаточно линеаризированы значительными сопротивлениями в эмиттерных цепях (R15, R16).

Уровень НИ оказался настолько мал, что решено было не применять предусматривавшиеся петли ЕПОС , которые значительно усложнили бы схему.

Входной каскад с целью получения низкого уровня шума выполнен на полевых транзисторах с р-п-переходом. Входное сопротивление усилителя, равное около 350 кОм, определяется только сопротивлениями резисторов R3, R6 (при этом следует не забыть о соответствующем изменении емкостей С1, С2, чтобы постоянные времени ФВЧ R3C1 и R6C2 оставались прежними). Делители напряжения R1R2 и R4R5R7 задают рабочие точки VT1 и VT2, резистор R4 служит для начальной установки нулевого напряжения на выходе усилителя и после настройки его можно заменить постоянным резистором нужного сопротивления, причем значение постоянной составляющей на выходе усилителя не столь критично и может находиться в пределах ±200 мВ.

Для получения большого коэффициента усиления входного каскада и малого шума применена динамическая нагрузка на полевых транзисторах VT3, VT4. Поскольку оба плеча входного каскада (VT1-VT3 и VT2-VT4) в конечном итоге работают на общую нагрузку, это дает выигрыш в уровне шума 3 дБ. В результате шум усилителя оказался примерно втрое (на 10 дБ) меньше, чем у усилителей, входной каскад которых выполнен на ОУ К157УД2.

Сигнал ООС с выхода подается в точку соединения R13R14. Коэффициент передачи цепи ООС определяется цепочками R10R13C3 и R11R1404 вместе с регулятором усиления R12, которым устанавливают коэффициент усиления устройства в пределах 2-5. При желании диапазон регулировки усиления можно расширить уменьшением R10 и R11.

Конденсаторы С5-С7 корректируют АЧХ усилителя с целью получения наилучшей переходной характеристики, но его работоспособность сохраняется и без них, однако фронт прямоугольного импульса в их отсутствие приобретает небольшой выброс, а на "полке" появляется рябь.

Резисторы R19, R20 предохраняют VT7, VT8 от перегрузки при коротком замыкании на выходе.

Режимы усилителя по постоянному току стабилизированы как местной (R13, R14, R8, R9, R15, R16), так и глубокой (около 66 дБ) общей ООС, благодаря чему температурные колебания и дрейф параметров элементов мало сказываются на его работе.

Полевые транзисторы следует подобрать в пары по начальному току стока. У транзисторов VT1, VT2 он должен быть около 0, 8-1, 8 мА, у VT3, VT4 - не менее 5-6 мА. VT1 можно взять с индексами Б, А, VT2 - с индексами И, Е, Ж, К, VT3, VT4 - с индексами Д, Г, Е, КТ3107 - с индексами Б или И, КТ3102 - соответственно А или Б, В, Д, VT5-VT8 можно не подбирать

Конденсаторы С5, С7 - типов КТ, КД, С1-С4 - К73-16, К73-17, К71-4, К76-5 и т.п. В качестве С3, С4 можно использовать электролитические конденсаторы, например, К50-16, К50-6 либо импортные.

Питание усилителя - от любого стабилизированного двуполярного источника напряжения ±15 В.

Налаживание собранного из исправных деталей усилителя несложно. Подбором R8 и R9 устанавливают указанные на схеме напряжения на стоках VT1 и VT2 (12± 0, 5 В), а подбором R17, R18 - напряжения на эмиттерах VT7, VT8 (0, 8-1, 2 В). Параллельно этому подстройкой R4 устанавливают близким к нулю выходное напряжение.

Если же нужные режимы транзисторов сразу установить не удается, следует вначале наладить отдельно входной каскад. Для этого выход усилителя соединяют с общим проводом (чтобы отключить общую ООС) и отключают базы VT5 и VT6 от стоков VT1 и VT2, закорачивая затем эти базы со своими эмиттерами. После этого добиваются во входном каскаде режимов, как указано выше. Если это удается, то восстанавливают соединения схемы и окончательно подбирают R17, R18 и R4.

Схема регулятора громкости и тембра с использованием показанного на рис.3 усилителя представлена на рис.4, где А1, А2 - два таких усилителя; ФРТ - физиологический регулятор тембра ; ТКРГ -тонкомпенсированный регулятор громкости, выход которого подключается к УМЗЧ. Инфразвуковые частоты срезаются в каждом из усилителей А1 и А2 как на входе (ФВЧ R1-R3C1 и R4-R5-R6-C2, рис.3), так и в цепи ООС (R10-R13-C3 и R11-R14-C4), что дает в итоге ФВЧ 4-го порядка (а вместе с входным ФВЧ УМЗЧ - 5-го порядка), этого достаточно для эффективного подавления низкочастотных помех с частотой меньше 20 Гц, таких, например, как от коробленных грампластинок.

В обходе ФРТ нет острой необходимости, так как его органами регулировки легко получить строго горизонтальную АЧХ. Однако эту функцию несложно осуществить, как показано на рис.4, с помощью переключателя S1 и делителя R1R2.

В качестве R12 (рис.3) использован сдвоенный переменный резистор, "половинки" которого включают в разные каналы стереотракта. В каскадах А1 они включены "синфазно" (сопротивление реостата R12 в обоих каналах изменяется в одну сторону при перемещении движка регулятора) и выполняют роль дополнительного регулятора уровня, повышая тем самым перегрузочную способность ПУЗЧ до 26 дБ и обеспечивая согласование АЧХ ТКРГ с уровнем сигнала. В каскадах А2 они включены "противофазно" (сопротивление R12 в одном канале увеличивается, в другом уменьшается) и играют роль регулятора стереобаланса.

На рис.5 изображена принципиальная схема ТКРГ, выполненного на сдвоенном переменном резисторе с двумя отводами типа СП3-30В. Часто в схемах ТКРГ применяется подключение цепей частотной коррекции к движку потенциометра. Движущиеся контакты движка не могут быть идеальными, и при регулировании громкости их сопротивления изменяются от почти нулевого до весьма заметного, особенно после продолжительной эксплуатации. В простом (не тонкомпенсированном) регуляторе это почти не ощущается, особенно если последующий каскад имеет достаточно большое входное сопротивление, и может проявляться незначительными шорохами при регулировании.

В ТКРГ с подключением цепей коррекции к движку дела обстоят значительно хуже, АЧХ при ухудшениях контакта может искажаться очень сильно и становиться полностью неприемлемой, временами оглушая слушателя резким звуком неестественной окраски. Искажениями АЧХ страдают и ТКРГ, цепи коррекции которых подключают как к отводам, так и к движку. В таких ТКРГ даже при идеальном постоянном контакте движка хорошо заметны на слух раздражающие изменения АЧХ при проходе движка мимо отвода.

Предлагаемый ТКРГ лишен этих недостатков, так как в нем к движку потенциометра цепи частотной коррекции не подключаются. Его АЧХ представлены на рис.6. Они являются хорошим приближением к требуемым, благодаря детальной проработке частотно-зависимых звеньев.

В схеме ТКРГ (и в ФРТ) нельзя использовать электролитические конденсаторы, так как постоянная составляющая напряжения на их обкладках при работе данных схем равна нулю. Следует использовать те же типы неэлектролитических конденсаторов, какие указаны в схеме усилителя. Описанный предварительный усилитель и блок регулировки громкости и тембра при работе вместе с УМЗЧ , укомплектованым хорошими акустическими системами, обеспечивают превосходное звучание.

Литература

1. Матюшкин В.П. Сверхлинейный УМЗЧ класса Hgh-End на транзисторах//Радюаматор.-1998.-№8.-С.10-11; №9.-С. 10-11.

2. Матюшкин В.П. Параллельные петли обратной связи и их применение в УЗЧ//Рад1оаматор.-2000.-№12.-2001; №1-3.®

Some cookies are required for secure log-ins but others are optional for functional activities. Our data collection is used to improve our products and services. We recommend you accept our cookies to ensure you’re receiving the best performance and functionality our site can provide. For additional information you may view the . Read more about our .

The cookies we use can be categorized as follows:

Strictly Necessary Cookies: These are cookies that are required for the operation of analog.com or specific functionality offered. They either serve the sole purpose of carrying out network transmissions or are strictly necessary to provide an online service explicitly requested by you. Analytics/Performance Cookies: These cookies allow us to carry out web analytics or other forms of audience measuring such as recognizing and counting the number of visitors and seeing how visitors move around our website. This helps us to improve the way the website works, for example, by ensuring that users are easily finding what they are looking for. Functionality Cookies: These cookies are used to recognize you when you return to our website. This enables us to personalize our content for you, greet you by name and remember your preferences (for example, your choice of language or region). Loss of the information in these cookies may make our services less functional, but would not prevent the website from working. Targeting/Profiling Cookies: These cookies record your visit to our website and/or your use of the services, the pages you have visited and the links you have followed. We will use this information to make the website and the advertising displayed on it more relevant to your interests. We may also share this information with third parties for this purpose.

Как говорится - все гениальное просто. Данный усилитель состоит из минимума деталей, обеспечивая сигналу прохождение через минимум элементов, и тем самым оберегая его от искажений, которые эти элементы могут внести.

Усилитель имеет мощность 500мВт. Расчетный уровень искажений, при применении микросхемы на подобии OPA2134 - 0.001%. Сопротивление нагрузки 32-300 Ом.

На R1 и R2 собран регулятор громкости, точнее это один сдвоенный резистор. По входу стоит бутерброд из конденсаторов 4.7 и 0.47мкФ, позволяющий добиться максимальной линейности. На IC1.1 и IC1.2 собраны инвертирующие усилители с коэффициентом усиления равным 4. Далее Следуют повторители на транзисторах. ООС образуют R6 и R5. R11 и R12 ограничивают ток поступающий с ОУ на базы повторителей, от этого ОУ проще живется, и искажений чуть меньше. R7, R8, R9, R10 ограничивают ток транзисторов повторителя и защищают их от сквозных токов. Схема питается от двухполярного напряжения и имеет встроенные цепочки фильтрации на микросхемах-стабилизаторах 7812 и 7912. На выходе стоят конденсаторы предотвращающие попадание постоянного напряжения на выход.

В качестве IC1 можно использовать LM358 как самый доступный вариант, но для качественного звука советую поставить аналог подороже.

Печатная плата включает все элементы, кроме разъемов. Ее размеры составляют всего 50х50мм. Такой размер был выбран с целью в дальнейшем заказать платы у китайцев, уложившись в самый дешевый лот размером 5х5см. Вообще первоначально данный проект планировалось использовать как коммерческую разработку, но я все-же решил выложить его в открытый доступ.

Первая плата изготовлена методом плоттерной аппликации:

Пала небольшая, поэтому крепление осуществляется посредством штатной гайки переменного резистора. В сборе устройство выглядит так:

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 Операционный усилитель

OPA2134

1 LM358 В блокнот
Линейный регулятор

LM79L12

1 В блокнот
Линейный регулятор

LM78L12

1 В блокнот
VT1, VT3 Биполярный транзистор

BC547

2 В блокнот
VT2, VT4 Биполярный транзистор

BC557

2 В блокнот
R1, R2 Переменный резистор 50 кОм 2 В блокнот
R3, R4 Резистор

47 кОм

2 В блокнот
R5, R6 Резистор

200 кОм

2 В блокнот
R7-R12 Резистор

10 Ом

6 В блокнот
1000 мкФ 4 В блокнот
Электролитический конденсатор 100 мкФ 2 В блокнот
Электролитический конденсатор 10 мкФ 2