Тарифы Услуги Сим-карты

Основные компоненты компьютера. Что и для чего нужно? Устройство компьютера. Из чего состоит компьютер

Персональный компьютер (ПК) – это электронная вычислительна машина, с которой может работать пользователь, не являющийся профессиональным программистом. Характеризуется развитым («дружественным») человеко-машинным интерфейсом, малыми габаритами, массой, невысокой ценой и многофункциональностью применения.

Современные компьютеры строятся по принципу открытой архитектуры, который заключается в том, что при проектировании компьютера регламентируются и стандартизируются только принцип действия компьютера и его конфигурация (определенная совокупность аппаратных средств и способов соединений между ними). В результате появляется возможность сборки компьютеров из отдельных узлов и деталей, разработанных и изготовленных независимыми фирмами-производителями. Пользователь может модернизировать компьютер и расширять его возможности разнообразными устройствами в соответствии со своими личными предпочтениями.

Определения взяты из словаря компьютерных терминов А.Я. Фридланда.

Системная плата – печатная плата, выполненная из диэлектрического материала, которая управляет внутренними связями и взаимодействует через прерывания с другими внешними устройствами.

Процессор – интегральная микросхема, которая осуществляет обработку информации в ходе выполнения заданной программы, а также управляет всем вычислительным процессом и координирует действия других устройств вычислительной машины. В состав процессора входит устройство управления, арифметико-логическое устройство и кэш-память. (Характеристики процессора – степень интеграции, разрядность, тактовая частота, вид подключения, фирма производитель).

Арифметико-логическое устройство (АЛУ) выполняет основную работу по обработке информации, хранимой в оперативной памяти. В нем выполняются арифметические и логические операции. Кроме того, АЛУ вырабатывает управляющие сигналы, позволяющие компьютеру автоматически выбирать путь вычислительного процесса в зависимости от получаемых результатов. В АЛУ имеется набор программно-доступных быстродействующих ячеек памяти, которые называются регистрами процессора, составляющие основу архитектуры процессора. Регистр – устройство, предназначенное для промежуточного хранения двоичной информации в процессе выполнения вычислительных операций, а также для их преобразования.

Устройство управления - часть центрального процессора, вырабатывающая распределенную во времени и пространстве последовательность внутренних и внешних управляющих сигналов, обеспечивающих выборку и выполнение команд.

Система команд процессора

  1. Команды передачи данных
  2. Арифметические операции (основная – сложение: вычитание сводится к сложению, умножение и деление выполняются по специальным командам)
  3. Логические операции: сравнение, И, ИЛИ, НЕ; анализ отдельных битов кода, их сброс и установка
  4. Сдвиги двоичного кода влево и вправо
  5. Команды ввода и вывода для обмена с внешними устройствами
  6. Команды управления, реализующие нелинейные алгоритмы: условный переход, безусловный переход, обращение к подпрограмме (переход с возвратом), организация циклов.

Существует 2 направления построения системы команд: CISC (Complex Instruction Set Computer) – компьютер с полным набором команд; RISC (Reduced Instruction Set Computer) – компьютер с ограниченным набором команд.

Оперативная память (RAM, ОЗУ)– функциональный блок, хранящий информацию для устройства управления (УУ) – команды и для АЛУ – данные, выполняющейся в данный момент программы. Состоит память из ячеек, способных хранить информацию. Ячейка памяти – вместилище порции информации в памяти компьютера, доступной для обработки отдельной командой. Количество информации, записываемое или извлекаемое из памяти за одно обращение, называется машинным словом. Оперативная память является энергозависимой, т.е. может хранить информацию, только тогда когда компьютер включен. (Современные ОЗУ: DDR SDRAM, RDRAM)

Постоянная память (ROM, ПЗУ) – энергонезависимая память, используемая для хранения программ и данных, необходимых для внутреннего тестирования устройств после включения питания компьютера. Данные в ПЗУ заносятся при изготовлении компьютера и предназначены для постоянного использования процессором.

Чипсет – набор интегральных схем, устанавливаемых на системной плате для обеспечения работы центрального процессора с периферийными устройствами. В состав чипсета входят контроллеры основных подключаемых устройств мультимедийного компьютера (мышь, клавиатура, обработка звука, локальная сеть и др.).

Шина ­– совокупность электрических линий для обмена данными между частями компьютера. Виды шин: локальная (подключена к контактам процессора), системная (подключение контроллеров внешних устройств) и периферийная.

Объединение функциональных блоков в компьютере осуще­ствляется посредством следующей системы шин:

шина данных, по кото­рой осуществляется обмен информацией между блоками компьютера;

шина адреса, используется для передачи адресов (номеров ячеек памяти или портов ввода-вывода, к которым производится обращение);

шина управления используется для передачи управляющих сигналов.

Совокупность этих трех шин называют системной шиной, системной магистралью или системным интерфейсом. Физически шина находится непосредственно на материнской плате и связывает между собой процессор, оперативную память, контроллеры устройств компьютера, а также разъемы (слоты) расширения на материнской плате для подключения различных контроллеров устройств ввода/вывода. В эти разъемы вставляются платы (карты) расширения, которые либо сами представляют собой устройство, либо обеспечивают связь с другими устройствами (т.е. являются контроллерами).

Виды шин:

Системная шина (ISA, PCI, AGP, PCI-e)предназначена для обеспечения передачи данных между периферийными устройствами и центральным процессором, а также оперативной памятью.

Локальной шиной (FSB, BSB, DIB), как правило, называется шина, непосредственно подключенная к контактам микропроцессора, то есть шина процессора.

Периферийные шины (USB – Universal Serial Bus, Firewire 1394) предназначены для подключения периферийных устройств.

Характеристики шин : частота, разрядность, скорость передачи данных

Подключение внешних устройств осуществляется через порты ввода–вывода (последовательный, параллельный, игровой, клавиатурный), а также через выходы периферийных шин USB или 1394.

Контроллер – устройство для управления периферийным оборудованием и предварительной обработки данных процессора.

Дисплей – внешнее устройство ввода-вывода информации служащее для воспроизведение на экране находящейся в памяти ЭВМ информации в виде текстов и изображений. Дисплей может быть основан на следующих физических принципах: на основе электронно-лучевой трубки (монитор); газоплазменная матрица (PDP); жидкокристальный индикатор (LCD); электролюминесцентная панель (FED); светодиодные матрицы (LED); светящиеся полимерные полупроводники.

Видеоадаптер – устройство (контроллер), управляющее дисплеем и обеспечивающее вывод графических изображений. Определяет разрешающую способность дисплея, количество цветов. В своем составе может иметь видеопамять, преобразователь сигнала, графический акселератор.

Клавиатура – внешнее устройство ручного ввода данных, представленное в виде набора клавиш, которые делятся на буквенно–цифровые, командные, функциональные и управление курсором. За командными и функциональными клавишами могут быть запрограммированы определенные операции.

Модем (мод улятор-дем одулятор) – устройство, выполняющее преобразование двоичных данных в аналоговые сигналы, пригодные для передачи по некоторому аналоговому каналу связи, принимаемые аналоговые сигналы обратно в цифровую форму. Может быть внутренним и внешним.

Сетевая карта – устройство для высокоскоростного межкомпьютерного обмена цифровой информацией на небольших расстояниях. В современных компьютерах встроены в чипсет.

Сканер – устройство для ввода в компьютер графической информации. Бывает ручной и настольный.

Принтер – устройство для вывода текстовой или графической информации на бумагу. Бывают матричные, термические, струйные и лазерные.

Плоттер – устройство для вывода широкоформатной графической информации на бумагу (графопостроитель).

Диджитайзер – устройство для ввода графических данных в компьютер, контур изображения обводится специальным пером и в компьютер поступают координаты каждой точки этого изображения.

К системной шине через контроллеры подключены внешние устройства, которые обмениваются данными с оперативной памятью . Обмен данными между устройствами компьютера обусловлен ограничениями функций, выполняемых этими устройствами, и должен быть запрограммирован. Выполняемая программа хранится в оперативной памяти компьютера и через системную шину передает в процессор команды на выполнение определенных операций. Процессор на их основе формирует свои команды управления, которые по системной шине поступают на соответствующие устройства. Для выполнения операций обработки данных процессор передает в оперативную память адреса необходимых данных и получает их. Результаты обработки направляются в оперативную память. Данные из оперативной памяти могут быть переданы на хранение во внешние запоминающие устройства, отображены на дисплее , выведены на печать, переданы по вычислительной сети.

Компьютер является модульным прибором. Он состоит из различных устройств (модулей), каждое из которых выполняет свои задачи.

Поскольку компьютер предназначен для получения, обработки, хранения, передачи и использования информации, то у него должны быть блоки, предназначенные для каждой из этих задач.

Основные устройства

Устройства компьютера бывают основные и дополнительные. Основными являются:

  1. системный блок (это, собственно, и есть компьютер или его «мозг»);
  2. монитор (осуществляет вывод информации на экран);
  3. клавиатура (служит для ввода символов и команд);
  4. манипулятор типа «мышь» (предназначен для ввода команд).

Ноутбук отличается от стационарного компьютера тем, что:

  • системный блок и клавиатура совмещены (находятся «в одном флаконе»). Монитор, клавиатура и вся «начинка» собраны в общем корпусе.
  • у ноутбука есть собственный аккумулятор («батарейка»), поэтому некоторое время он может работать автономно, без подключения к электрической сети. Ноутбук работает и от электросети через внешний блок питания, который является одновременно «зарядкой» для батареи.

Рассмотрим основные устройства компьютера, о системном блоке поговорим в следующей статье.

Монитор

Монитор внешне напоминает телевизор. ЭЛТ-телевизоры выглядят так же, как и ЭЛТ-мониторы (с электронно-лучевой трубкой).

ЖК-телевизоры как близнецы-братья похожи на ЖК-мониторы (жидкокристаллические мониторы).

Размеры мониторов, так же как и размеры экрана у телевизоров, определяются длиной диагонали экрана в дюймах – 14, 15, 17, 19, 21, 23, 27 дюйм. Один дюйм равен 2,54 сантиметра. Соответственно, монитор с диагональю 15 дюймов – это ничто иное, как монитор с диагональю 38 сантиметров (если 15 дюймов умножить на 2,54 сантиметра, получится 38 сантиметров).

ЖК-монитор

Монитор подключается к компьютеру через видеокарту. В настоящее время наиболее распространены 17-дюймовые мониторы. Для постоянной работы с графикой, чертежами, большими таблицами (в общем, везде, где много мелких деталей) лучше приобретать мониторы бОльших размеров.

Монитор (как с ЭЛТ, так и ЖК) может использоваться не только в составе компьютера, но и как телевизор при подключении к нему дополнительного устройства (ТВ-тюнера). Поэтому старый монитор можно использовать в качестве телевизора, например, на даче.

Клавиатура и мышка

Современная клавиатура является воплощением мечты любой машинистки. Мышка появилась значительно позднее клавиатуры.

Можно обойтись и без мышки, используя сочетания (комбинации) клавиш. Однако есть множество вещей, которые мышкой делать удобнее и быстрее.

Клавиатура и мышь

Сейчас очень много разных мышей: от простой двухкнопочной до пятикнопочной с колесом прокрутки. Мышки могут быть с проводкой или без нее. Иногда нужен специальный коврик для мышки, иногда нет. На спинке у мышки может быть колесо прокрутки (может его и не быть), а также есть две или больше кнопок.

Скоро появятся манипуляторы типа мышь, которые надеваются на руку как перчатки. С такой мышкой можно без лишних движений переключаться между использованием манипулятора и печатью на клавиатуре.

Кроме мышки к средствам манипулирования можно отнести различные джойстики, рули с педалями, штурвалы, но они предназначены в основном для управления игровым процессом.

Если основных устройств недостаточно, то для выполнения специальных задач к компьютеру подключают дополнительное оборудование.

Доброго времени суток, предлагаем вам наше виденье того, что необходимо знать об устройстве Персонального компьютера, надеюсь данная информация будет полезна вам. В конце темы мы предложим вам вопросы для тестирования.

В нынешних реалиях понятие персонального компьютера (ПК) весьма размыты и во много в частности современный телефон или планшет по сути является тем же компьютером с расширенным апартаным обеспечением и минимизированной конструкцией. Мы же с вами рассмотрим классическую конфигурацию которая наиболее актуальна для настольных персональных компьютеров, ноутбуков, нетбуков, моноблоков и минимизированных систем набазе ARM процессоров, так же данные конфигурации ни чем не отличаются от логической структуры понимания серверного оборудования по сути.

Материнская плата – это печатная плата, которая предназначена для подключения основных комплектующих компьютера. Часть из них, устанавливается непосредственно на саму материнскую плату в предназначенный для этого разъем, другая часть комплектующих подключается к материнской плате с помощью специальных кабелей, третья часть в зависимости от конфигурации является неотъемлемой частью самой материнской платы или имеет варианты как например видеокарта (может быть как встроенной в материнскую плату, так и устанавливаться в специально отведенный разъем) .

Пример изображения материнской платы в разных вариация с описанием разъемов.


Материнская плата (англ. – motherboard, mainboard, MB, разг. – мамка, мать, материнка) – это основная плата, к которой подсоединяются все части компьютера (процессор, видеокарта, ОЗУ и др.), устанавливается в системном блоке. Главная задача материнской платы – соединить и обеспечить совместную работу всех элементов компьютера.

Основой любой современной материнской платы является набор системной логики, который чаще называют чипсетом (от англ. chipset). Чипсет – это совокупность микросхем, обеспечивающих согласованную совместную работу составных частей компьютера и их взаимодействие между собой. Чипсет, как правило, состоит из двух основных микросхем, чаще всего называемых “северным” и “южным” мостами.

Северный мост (North bridge, системный контроллер) – это часть системной логики материнской платы, обеспечивающая работу основных узлов компьютера – центрального процессора, оперативной памяти, видеокарты. Именно он управляет работой шины процессора, контроллера ОЗУ и шины PCI Express, к которой подсоединяется видеокарта. В некоторых случаях северный мост может содержать интегрированный графический процессор.

Южный мост (Southbridge, ICH (I/O controller hub), периферийный контроллер, контроллер ввода-вывода) – обеспечивает подключение к системе менее скоростных устройств, не требующих высокой пропускной способности – жёсткого диска, сетевых плат, аудиоплаты и т.д., а также шин PCI, USB и др., в которые устанавливаются разного рода дополнительные устройства. Клавиатура и мышь также замыкаются на южный мост.

Наличие северного и южного мостов – классическая, общепринятая схема построения чипсета, на котором базируется системная плата. Но существуют также схемы, отличающиеся от традиционных. Это касается в первую очередь компьютеров на базе современных процессоров, содержащих в себе элементы, в большей или меньшей степени выполняющие функции северного моста (чаще всего – контроллер оперативной памяти, интегрированное графическое ядро). На системных платах для таких процессоров северный мост существенно упрощен.

Качеством и возможностями системной логики определяются производительность и стабильность работы компьютера. При выборе материнской платы нужно учитывать в первую очередь то, какой чипсет был взят за основу при ее изготовлении. Основными производителями чипсетов сейчас являются компании Intel, NVidia, ATI/AMD и др., в то время как материнские платы производятся ASUS, MSI, Gigabyte, ASRock, Zotac и др. Системные платы с одинаковым чипсетом у разных производителей называются по-разному. По цене они тоже могут существенно отличаться. При выборе как правило лучше отдать предпочтение материнской плате с более “продвинутым” чипсетом от менее известного производителя, чем наоборот.

Форм-фактор материнской платы

По размеру системные платы бывают разными. Существует несколько стандартов, которые принято называть форм-фактором материнской платы. Кроме размеров, форм-фактор подразумевает определенную схему расположения мест крепления платы, интерфейсов шин, портов ввода-вывода, сокета процессора, разъема для подключения блока питания и слотов установки модулей ОЗУ. Известны следующие форм-факторы материнских плат: Baby-AT, Mini-ATX, AT, LPX, АТХ, microATX, Flex-АТХ, NLX, WTX, CEB, Mini-ITX, Nano-ITX, Pico-ITX, BTX, MicroBTX, PicoBTX. Наиболее распространенными являются АТХ (305 x 244 мм.), microATX (244 x 244 мм.) и mini-ITX (150 x 150 мм.). Форм-фактор материнской платы нужно учитывать при выборе корпуса системного блока.

Описание портов (разъемов) размещенных на материнской плате (могут отличаться от года выпуска, модельного ряда материнской платы)

Процессор – это микросхема и одновременно «мозг» компьютера. Почему? Потому что он отвечает за выполнение всех операций. Чем лучше процессор тем быстрее он будет выполнять эти самые операции, соответственно компьютер будет работать быстрее. Процессор конечно влияет на скорость работы компьютера, и даже очень сильно, но от вашего жесткого диска, видеокарты и оперативной памяти также будет зависеть скорость работы ПК. Так что самый мощный процессор не гарантирует большую скорость работы компьютера, если остальные комплектующие уже давно устарели.

Из чего состоит процессор? Внешне – это небольшая четырехугольная пластина, с одной стороны оснащенная рядами “штырьков” или “ножек” – электрических контактов, которые вставляются в процессорный разъем (сокет) на материнской плате. Внутреннее устройство представляет собой миллионы микроскопических транзисторов, объединенных в единый комплекс – сложнейшую электрическую цепь. Именно они, подобно мозговым клеткам, и выполняют всю вычислительную работу. Транзисторы (переключатели электрического тока в микросхеме) размещаются на подложке из чистого кремния, и всю эту конструкцию иначе называют кристаллом или камнем процессора. Кажется удивительным, что число транзисторов на участке, площадью с булавочную головку, может достигать 200 миллионов – настолько они малы. Процессор – одно из самых сложных технических устройств, производимых человеком.

Как работает процессор? Говоря простым языком – последовательно выполняет арифметические операции с данными, загруженными из памяти, согласно определенному алгоритму. Алгоритм команд соответствует логике выполняемой программы.

Видов процессоров существует много, выпускаются они для различных целей и разными производителями, поэтому чтобы понимать, чем они между собой различаются, нужно знать их основные характеристики и показатели. Остановимся на характеристиках процессоров подробнее. Следует учесть, что о производительности процессоров не судят, сравнивая их между собой по какому-либо одному показателю (за исключением линейки изделий одного производителя). То есть, утверждение, что лучше тот процессор, у которого больше ядер, без учета остальных критериев будет не верным.

Итак, важнейшие характеристики процессора, на которые стоит обращать внимание при выборе.

Число ядер

Чем больше у процессора ядер, тем большее число операций он может выполнять одновременно без потери производительности. Одноядерные процессоры для персональных компьютеров сегодня уже не выпускаются – наступила эра многоядерности. Именно за счет увеличения числа ядер ведущие производители планируют наращивать мощность процессоров в дальнейшем. Сегодня на персональные рабочие станции устанавливаются, как правило, 2-8 ядерные CPU, а для серверных систем уже существуют и 16-ядерные. В экспериментальных условиях проходят апробирование процессоры, оснащенные более чем 20 ядрами.

Увеличение производительности за счет количества ядер особенно ощутимо при исполнении многозадачных программ, в логику которых заложено одновременное выполнение нескольких действий. В то время, как одноядерный процессор выполнял бы задачи последовательно – одну за другой, многоядерный – делает это параллельно.

Тактовая частота

Эта характеристика указывает на то, сколько операций выполняет процессор в единицу времени. Многие привыкли считать, что тактовая частота – это показатель производительности, и чем она выше, тем “шустрее” процессор. Утверждение справедливо, если сравнивать между собой поколения CPU одной марки, однако сопоставлять по этому показателю процессоры разных производителей нельзя – при одинаковой тактовой частоте они работают с различной скоростью, поскольку на нее влияют в не меньшей степени и другие характеристики. Например, процессоры марки AMD работают на более низких тактовых частотах, чем Intel, но за один такт производят больше действий.

Объем кэш-памяти

Кэш-память процессора – это сверхпроизводительная память, откуда процессор получает доступ к обрабатываемым данным. Объем ее очень мал и не позволяет вместить в себя исполняемую программу целиком, поэтому в кэш обычно загружены только часто используемые данные. Разумеется, чем кэш больше, тем к большему объему информации процессор может получить быстрый доступ. Поэтому от величины кэш-памяти зависит скорость исполнения программы.

Кэш процессора поделен на 3 уровня. Кэш-память первого уровня – самая быстрая, но имеет и самый малый объем. Кэш второго уровня – средний по скорости и объем его больше первого. Кэш третьего уровня – самый медленный и самый большой по объему. Понятие “медленный” здесь условно, и дается только для сравнения этих уровней между собой, поскольку относительно скорости работы оперативной памяти, кэш-память процессора несравнимо выше.

Объем кэша процессора значительно влияет на его стоимость.

Технология производства или техпроцесс CPU

Эта характеристика показывает размер наименьшего отдельного элемента базы транзистора, умещаемого на кристалле. Понятно, что чем элемент мельче, тем больше их можно разместить на единице площади, тем самым увеличив производительность. Единицей измерения техпроцесса служит нанометр – настолько малы частицы. Выпущенные в 2011- 2012 годах процессоры имеют величину техпроцесса всего 22 нм, в то время как, например, в 2005 году выпускались процессоры по 50-нанометровому технологическому процессу. Поэтому можно проследить тенденцию развития этой технологии в сторону еще большего уменьшения элементов кристалла, и производителям это хорошо удается.

Сокет, или процессорный разъем

Расположен на материнской плате – это непосредственно то место, куда вставляется процессор. Поскольку материнские платы производятся для определенных, не взаимозаменяемых видов процессоров, их сокеты (от англ. Socket) имеют разные параметры. Например, сокеты для процессоров марок Intel и AMD отличаются полностью, и по форме, и электрически.

Процессоры по типу сокета условно объединяют в классы, то есть, к одному классу относят CPU, одинаковые по форме разъема. Их можно, при условиях поддержки, устанавливать в одну и ту же материнскую плату. Поэтому при выборе комплектующих для компьютера следует подбирать матплату и процессор с одинаковым типом сокета.

Частота системной шины и множитель

Характеристика, показывающая скорость обмена данными между процессором и чипсетом материнской платы. Обозначается аббревиатурой FSB (Front side bus) и измеряется количеством переданных данных за единицу времени. Чем выше FSB, тем выше производительность компьютера. Больше относится к характеристикам материнской платы, но наряду с частотой системной шины учитывается коэффициент умножения (множитель) процессора – величина, на которую тактовая частота CPU превосходит частоту FSB. Изменение этих двух показателей в сторону увеличения называются разгоном процессора, поскольку это увеличивает его производительность. Однако при этом разгон сокращает срок службы устройств.

Поддержка 64-битных вычислений

Появилась в 2004 году и с тех пор стала важна при выборе процессора. Практически все современные CPU для персональных компьютеров поддерживают 64-разрядность, что позволяет им использовать оперативную память в размере больше, чем 4 Гб.

Защищенный режим

Еще одна характеристика CPU, позволяющая предотвращать выполнение в операционной системе вредоносного кода. Поддерживается системами Windows, начиная со 2 сервиспака Windows XP.

TDP (thermal design power)

Это величина, которую следует учитывать при выборе системы охлаждения процессора. То есть численный показатель TDP указывает на то, какое количество тепла (Вт) может отвести от процессора система охлаждения при неких “нормальных”, то есть приближенных к штатным условиям.

Архитектура APU

В процессорах последних поколений часто реализована архитектура, называемая APU (Accelerated Processing Unit), суть которой заключается в объединении в одном кристалле центрального процессора и графического ядра. Использование этой технологии в целом удешевляет системы на основе таких процессоров, поскольку отпадает потребность в отдельном видеочипе на материнской плате или видеокарте.

Чем отличаются процессоры разных типов между собой

При выборе CPU перед многими встает извечный вопрос – какой марки процессор лучше – Intel или AMD? Если говорить о сравнении производительности, то следует учитывать, для каких целей приобретается компьютер. Если сопоставлять одинаковые по цене процессоры, то при работе в ресурсоемких мультимедийных приложениях показатели Intel будут выше, чем у AMD, но в играх, зачастую, AMD обгоняют Intel.

Немаловажен и ценовой диапазон. Так, например, согласно исследованиям, производительность процессоров Intel высшего диапазона цен (то есть самых дорогих) больше, чем аналогичных по стоимости AMD. Среди средних по стоимости CPU показатели производительности у этих двух марок будут примерно равны. А в низшем, бюджетном диапазоне, лидирует AMD.

Если выбор остановлен на линейке Intel Core i3 – i7, следует определить перечень нужд, для которых будет использоваться компьютер. Например Intel Core i3 530 и 540 показали хороший прирост производительности в сравнении с их предшественниками Core 2 Duo, хотя ценовой уровень примерно схож. Модели Core i5 больше ориентированы на средние и высокие запросы пользователя, например, серия 600 со встроенной графикой подойдет для офисной работы, а 4-ядерник 750 серии – для домашнего мультимедийного центра и не самых ресурсоемких игр. Процессоры Core i7, например, 680 серии, удовлетворят и достаточно высокие запросы в плане работы мультимедийных приложений и требовательных игр. А если средства позволяют, можно приобрести и более дорогие и производительные модели, но тогда и покупка материнской платы выйдет значительно дороже.

Что касается марки AMD, допустим, если сравнивать топовые серии FX и Phenom II, тесты показали что новинка хоть и обошла по производительности более старую модель, но не очень значительно. Поэтому, останавливать выбор на AMD есть смысл, если вы не работаете в требовательных к ресурсам мультимедийных приложениях, а для средне- и малонагружаемых систем недорогие процессоры AMD подойдут как нельзя лучше.

Если говорить о корректности сравнения различных моделей процессоров, часто бывает так, что при схожих технических характеристиках одни показатели будут выше, другие – ниже, поэтому выбор следует основывать, исходя из своего бюджета и потребностей.

Видеокарта или по-другому графический плата, предназначена для вывода изображения на экран монитора (проектора иного устройства для вывода изображения посредством соответствующего порта видеокарты). Она устанавливается в материнскую плату, в специальный разъем PSI-Express или иной в зависимости от материнской платы или необходимости (PCI, AGP). Видеокарта стандартных потребительских качеств на данный момент встроена в саму материнскую плату, но её мощности чаще всего хватает только для офисных приложений и работы в интернете.

Характеристики видеокарты

Графический процессор (чип)

Первое на что следует обратить внимание при выборе видеокарты это графический процессор. От модели графического процессора зависят все остальные характеристики видеокарты.

Компания NVIDIA называет свои графические процессоры следующим образом: GeForce GTX 123.

Где 123 – это числовое обозначение, которое указывает на положение данного графического чипа в линейке видеокарт от NVIDIA. Первая цифра (1) указывает на поколение видеокарты. На данный момент последним поколением видеокарт является GeForce GTX 9xx. Вторая (2) и третья (3) цифры указывают на положение данного графического чипа в линейке видеокарт текущего поколения. Чем больше цифры 2 и 3 тем более высокого уровня данная видеокарта. Таким образом, видеокарта GeForce GTX 980 производительней GeForce GTX 970, а GeForce GTX 970 мощнее, чем GeForce GTX 960. (пример весьма упрощен и не принимает во внимае иные характеристики)

Компания AMD использует очень похожую схему обозначения своих графических чипов. Чипы от компании AMD обозначаются следующим образом: Radeon HD1234. Где цифра 1 указывает на поколение графического чипа, а цифры 2, 3 и 4 указывают на положение чипа внутри текущего поколения.

Рассмотрим реальные характеристики видеокарт.

Тактовая частота графического процессора

Тактовая частота графического процессора это одна из важнейших характеристик видеокарты. Как правило, тактовая частота графического процессора видеокарты указывается в мегагерцах (МГц), реже используются гигагерцы (ГГц). Чем выше тактовая частота, тем быстрее процессор обрабатывает информацию, а это непосредственно влияет на быстродействие видеокарты.

Необходимо отметить, что один и тот же графический процессор в различных видеокартах может работать на различных частотах.

Объем видеопамяти

Объем видеопамяти – это характеристика, на которую многие не опытные пользователи обращают слишком много внимания. Это происходит из-за не слишком честной рекламы, в которой делается упор в первую очередь на простую и всем понятную идею, о том, что чем больше памяти, тем быстрее работает устройство.

На самом деле, все совсем не так и на объем памяти в принципе можно даже не обращать внимания. Меньше чем нужно, для данной модели видеокарты, производитель не установит. А вот больше – устанавливают с удовольствием. Опять же, это делается для того чтобы привлечь внимание не опытных пользователей.

С другой стороны, если бюджет, выделенный на покупку видеокарты, позволяет, то можно спокойно покупать модель с большим объемом памяти. В любом случае, это точно не навредит.

Тип памяти

Тип памяти уже более весомая характеристика видеокарты. Сейчас в продаже можно найти видеокарты с такими типами видеопамяти: DDR3, GDDR3, GDDR4 и GDDR5. Что нужно знать о типах видеопамяти, так это то, что GDDR3 лучше, чем DDR3, GDDR4 лучше, чем GDDR3, а GDDR5 соответственно лучше, чем GDDR4.

На данный момент, в большинство современных видеокарт устанавливается память типа GDDR3 или GDDR5. Память GDDR3 используется в дешевых видеокартах, тогда как GDDR5 в видеокартах среднего и высокого уровня.

Частота видеопамяти памяти

Частота видеопамяти – это характеристика, которая влияет на скорость обмена данными между процессором и памятью. Естественно скорость обмена данными между процессором и памятью влияет на общую производительность устройства. Поэтому чем выше частота видеопамяти, тем лучше.

Разрядность шины памяти

Разрядность шины памяти – это еще одна характеристика, влияющая на скорость обмена данными между процессором и памятью. Сейчас в продаже можно найти видеокарты с разрядностью шины памяти: 32, 64, 128, 196, 256, 384, 512 и 768 бит и т.д.

Видеокарты с разрядностью шины памяти меньше 128 бит – это дешевые устройства для офисного использования. Видеокарты среднего уровня и выше оснащаются шиной с разрядностью от 128 бит.

Разъемы для подключения к монитору

Немаловажным параметром являются разъемы на задней панели видеокарты, предназначенные для подключения к монитору. В большинстве случаев для подключения к монитору используется разъем DVI. Такой тип подключения поддерживают большинство видеокарт и мониторов.

Но, если вы планируете подключать к компьютеру телевизор с помощью порта HDMI или проектор с помощью порта VGA, то необходимо убедиться, что выбранная видеокарта оснащена нужным вам портом.

Система охлаждения – устройство, осуществляющее отвод и рассеивание тепла от видеопроцессора, видеопамяти и других компонентов графической платы с целью обеспечения нормального температурного режима их работы.

Оперативная память – это такая прямоугольная планка, похожа на картридж от старых игровых приставок. Она предназначена для временного хранения данных. К примеру, она хранит буфер обмена. Копировали мы какой-то текст на сайте, и тут же он попал в оперативку. Информация о запущенных программах, спящий режим компьютера и другие временные данные хранятся в оперативной памяти. Особенностью оперативки является то, что данные из неё после выключения компьютера полностью удаляются.

Оперативная память (ОЗУ – Оперативное Запоминающее Устройство, или RAM – Random Access Memory). Этот компонент относится к классу Энергозависимой памяти (при отключении питания все данные удаляются). В процессе работы ОЗУ выступает в качестве буфера между дисковыми накопителями и процессором, благодаря значительно большей скорости чтения и записи данных. Далее мы рассмотрим основные характеристики оперативной памяти…

Главными факторами при выборе оперативной памяти для настольного компьютера выступают Производительность и Цена, которые напрямую зависят друг от друга. Давайте рассмотрим, какие характеристики на них влияют и попробуем выбрать оптимальное соотношение. Основные параметры – Тип, Объем, Частота, Тайминги, Напряжение, Производитель.

– Типы оперативной памяти. В процессе эволюции ОЗУ, менялась ее форма, а также положение и принципы взаимодействия чипов. Фактически, каждая такая конфигурация и есть отдельный тип. Я не буду описывать устаревшие SIMM, DIMM, DDR и даже популярный до сих пор DDR2, поскольку они уже практически никем не производятся и было бы глупо собирать новый компьютер, используя значительно устаревшие ключевые компоненты. К тому-же, более старые типы ОЗУ стоят дороже, чем современные благодаря своей “раритетности” 🙂 Единственный актуальный сегодня тип – это DDR3 (Третье поколение Double Data Rate). В сравнении с предыдущим, вторым поколением (DDR2), все планки DDR3 имеют лучшую производительность при значительно уменьшенном энергопотреблении. На данный момент на рынке уже присутвует DDR 4, но пока, что восстребованность не высока из за малого количества поддерживающих устройств.

– Объем оперативной памяти. Описать его востребованность можно следующим образом: Во время Вашей работы за компьютером, большое количество данных (файлы операционной системы, запускаемых приложений и игр) перемещаются из дисковых накопителей в оперативную память для последующей обработки процессором и хранятся там до тех пор, пока Вы не завершите работу этих приложений (вернее не просто хранятся, часть из них постоянно мигрирует между кэшем процессора и ОЗУ с огромной скоростью). Сам объем оперативной памяти не дает нам никакого ускорения. Он всего лишь показывает, какое максимальное количество данных может в ней храниться. При переполнении ОЗУ (например, если запущено много больших приложений + игрушка + браузер и т.д.) происходит переброс более старых данных в специальное место на диске (Файл подкачки). Вот именно в этот момент можно почувствовать, как компьютер начинает “тормозить, лагать, подвисать” и т.д. Из этого можно сделать следующий вывод – объем оперативной памяти не должен быть меньше, чем максимальный суммарный объем Возможных активных приложений. Общий объем оперативной памяти равняется сумме объемов каждой отдельной ее планки. То есть, если Вы установите две планки ОЗУ по 1 Гб., то общий доступный объем станет 2 Гб. Для бюджетного (Например, офисного) компьютера будет более, чем достаточно 2 Гб. Для домашнего (многоцелевого) ПК оптимальным будет 4-6 Гб. (в зависимости от количества планок – 2 шт, или 3 шт. по 2 Гб. каждая). Для современной игровой машины я бы советовал покупать не меньше 6-8 Гб. (Так сказать, “На перспективу”, поскольку разработчики игр постоянно “утяжеляют” свои детища). (все примеры не предусматривают исключения из правил – например компьютер дизайнера или архитектора)

– Частота оперативной памяти. Если коротко, то это пропускная способность каналов, по которым данные передаются на материнскую плату, а оттуда – в процессор. Чем больше – тем лучше и дороже. Желательно, чтоб этот параметр совпадал с допустимой частотой мат.платы. Если у оперативной памяти, допустим, частота 1600 МГц, а у системной платы – 1066, тогда Ваша ОЗУ не сможет полностью раскрыть свой потенциал и будет работать на более низкой частоте в 1066 МГц. Учтите этот параметр при выборе материнской платы.

– Тайминги оперативной памяти. Другими словами – задержи или латентность (Latency) ОЗУ. Характеризуется этот параметр временем задержки данных при переходе между разными модулями микросхемы ОЗУ. Этих параметров много, но в спецификациях и описаних указываются только 4 основные:

2. RAS to CAS Delay

3. RAS Precharge Time

4. DRAM Cycle Time

Меньшие значения означают более высокое быстродействие. Но есть одна проблемка: Чем больше частота оперативной памяти – тем выше ее тайминги. Поэтому, следует выбирать оптимальное соотношение этих двух параметров, исходя из бюджета. Есть, например, специальные модели у разных производителей, в примечании к котороым указано “Low Latency”. Это означает, что данная модель при более высокой рабочей частоте имеет меньшее время задержек. Но стоят они значительно дороже, поэтому обратят на них внимание только геймеры и оверклокеры, для которых каждая лишняя капля производительности – дороже любых денег.

– Напряжение. Означает требуемое напряжение для стабильной работы оперативной памяти при стандартных частоте и таймингах. Чем меньше – тем лучше, но этот параметр важен только при оверклокинге (разгоне), поскольку при значительном завышении частоты, или занижении таймингов, требуется дополнительно пропорционально повышать напряжение… Что в свою очередь сопровождается дополнительным повышением температуры определенных модулей материнской платы и ухудшением стабильности такой системы. В этих целях выпускаются специальные модели оперативной памяти с маркировкой “LV” – Low Voltage.

– Производитель ОЗУ. Как и при выборе остальных комплектующих для компьютера, стоит отдавать предпочтение известным производителям и моделям, с большим количеством положительных отзывов. В этом случае будет наименьшей вероятность покупки бракованного экземпляра и больше срок гарантии.

Дополнительное внимание следует уделить вопросу желаемого количества модулей оперативной памяти. Дело в том, что в зависимости от модели материнской платы и количества на ней разъемов для ОЗУ, планки оперативной памяти могут работать в разных скоростных режимах (Single, Dual, Triple – Одиночный, Двойной, Тройной). Чтоб долго не описывать каждый из них – перейду сразу к выводу. Посчитайте общее количество слотов для подключения ОЗУ на Вашей материнской плате. В стандартных настольных моделях их может быть: 4, 6, 8. Разделите эти цифры на 2 и получите минимальное количество требуемых планок для оптимальной скорости работы. Например, если у Вас 4 слоты – значит для задействования оптимального режима Вам потребуется 2 или 4 планки оперативной памяти Одного производителя и модели. То есть вы активируете один или 2 режимы “Dual”. Для работы в определенном режиме, Вы должны подключить модули в разъемы одинакового цвета (как правило, через один).

В завершение, давайте расшифруем стандартную маркировку оперативной памяти на любом примере:

“DDR3 RAM 2Гб Goodram (1600МГц CL9 (9-11-11-29) 1.5V)”

DDR3 – тип ОЗУ

RAM 2Гб. – обьем оперативной памяти

Goodram – производитель

1600 МГц. – частота

CL9 (9-11-11-29) – тайминги (задержки)

1.5 V – рабочее напряжение

Жесткий диск, в отличие от оперативной памяти, предназначен для длительного хранения файлов. По-другому его называют винчестер. Он хранит данные на специальных пластинах. Также в последнее время распространились SSD и Flash диски.

К их особенности можно отнести высокую скорость работы, но тут же есть сразу минус – они дорого стоят. SSD диск на 64 гигабайта обойдется вам в цене также как винчестер на 750 гигабайт. Представляете сколько будет стоить SSD на несколько сотен гигабайт. Во, во! Но не стоит расстраиваться, можно купить SSD диск на 64 ГБ и использовать его в виде системного диска, то есть установить на него Windows. Говорят, что скорость работы увеличивается в несколько раз. Система стартует очень быстро, программы летают. Я планирую перейти на SSD, а обычные файлы хранить на традиционном жестком диске.

Описание и назначение

Несмотря на то, что винчестер обычно устанавливается внутри системного блока (хотя существуют и такое устройство, как внешний жесткий диск), как правило, его принято относить к системе внешней памяти компьютера. Предназначение HDD – долговременное хранение больших объемов данных, использующихся компьютером, файлов операционной системы и программ.

Винчестер является одним из самых сложных устройств компьютера и единственным из важнейших компонентов компьютера, в котором одновременно используются как механические, так и электронные элементы.

Винчестер подключается к системной плате при помощи специального кабеля данных, а также кабеля питания. Существует несколько стандартов интерфейсов для подключения HDD и среди них можно отметить такие интерфейсы как IDE (Parallel ATA), Serial ATA (SATA) и SCSI. Кроме того, такая разновидность винчестера, как внешний жесткий диск, может подключаться к персональному компьютеру при помощи шины USB.

Устройство

Теперь стоит подробнее рассмотреть устройство жесткого диска, и изучить, какие основные элементы его составляют. Прежде всего, следует прояснить вопрос о том, почему данный тип накопителя называется жестким диском или накопителем на жестких дисках, и в чем состоит его отличие от накопителя для гибких дисков (флоппи-дисковода). Данный термин подчеркивает основную особенность HDD – то, что информация в этом устройстве размещается на достаточно толстых негнущихся пластинах (платтерах), на которые нанесен магнитный слой. Эта особенность выгодно отличает винчестер от гибкого диска, поскольку значительно облегчает точное позиционирование магнитных головок, а также гарантирует большую степень сохранности информации.

Из самого названия устройства ­- накопитель на жестких дисках, следует тот факт, что подобных пластин в накопителе не одна, а несколько. И действительно, в НЖМД может присутствовать несколько магнитных пластин. Однако это обстоятельство справедливо, в основном, для старых дисков, в современных же накопителях, часто используется всего одна пластина, причем иногда лишь одна ее сторона.

Основа пластин HDD изготавливается из алюминиевого сплава или специального стекла. На нее наносится особый слой из ферромагнитного материала - диоксида хрома. Современный винчестер имеет чрезвычайно высокую плотность записи информации – до 1 Тбит на квадратный дюйм. Полный же объем жесткого диска на сегодняшнее время составляет значительную величину – до 8 ТБайт для 3,5-дюймовых серверных накопителей топ-уровня.

После включения HDD пластины раскручиваются и вращаются с большой и постоянной скоростью в течение всей работы устройства. Эта скорость у разных винчестеров может иметь разные значения (например, 5400 или 7200 об/мин), причем от данного параметра во многом зависит скорость считывания данных с диска.

Для считывания информации с диска и одновременно для записи на него информации служат магнитные головки, которые способны поворачиваться при помощи специального соленоидного привода таким образом, что могут получить быстрый доступ к любой точке диска, которая может быть расположена как на его внешнем крае, так и на внутреннем. Время, которое требуется головкам для позиционирования к любой части диска, называется временем произвольного доступа и тоже является одним из важнейших параметров накопителя. Как правило, для современных HDD время произвольного доступа составляет от 2,5 до 16 мс.

Магнитная головка жесткого диска

Для того, чтобы избежать повреждения пластины и головок во время возможных соударений, поверхность диска тщательно обрабатывается с целью удаления мельчайших неровностей и полируется. При работе диска головки плотно прилегают к поверхности пластины, однако, все-таки не соприкасаются с ней, а отделены от нее небольшим воздушным зазором. При выключении диска, чтобы избежать нежелательного падения головок на поверхность диска, предусмотрена процедура парковки головок, то есть отвод их за пределы поверхности магнитной пластины.

Пластина жесткого диска представляет собой неплохое зеркало

Работой накопителя на жестких дисках управляет контроллер, или блок электроники, который встроен в корпус самого диска. Кроме микросхем, управляющих работой механики и электроники диска, в блоке электроники расположена также кэш-память, которая необходима для ускорения операций чтения-записи.

Плата контроллера жесткого диска

Корпус HDD может изготавливаться в нескольких форм-факторах. Внутренние диски форм-фактора 3,5 дюйма, как правило, используются в настольных компьютерах, а накопители форм-фактора 2,5 дюйма – в ноутбуках.

Логическая структура данных на винчестере

Устройство жесткого диска во многом определяет такое важное понятие, как структура размещения информации на HDD или геометрия диска. Геометрия диска включает такие координатные элементы, как головки, цилиндры и сектора. Под головкой в данном случае подразумевается не собственно магнитная головка, а та сторона магнитной пластины, к которой эта головка относится. Цилиндр представляет собой набор дорожек на пластинах, расположенных на одинаковом расстоянии от края диска, а сектор, являющийся самой младшей координатой жесткого диска – это часть окружности, на которой расположен цилиндр. Сектор жесткого диска, как правило, имеет объем в 512 байт.

Процедура нанесения на поверхность диска границ цилиндров и секторов носит название низкоуровневого форматирования. Однако стоит иметь в виду, что у современных дисков логическая геометрия, т.е. геометрия, доступная пользователю, например, в опциях BIOS, не соответствует физической, т.е. реальной геометрии. Информация о физической геометрии диска обычно скрыта от пользователя и доступна лишь контроллеру накопителя.

Разновидности

По способу размещения относительно корпуса компьютера жесткие диски делятся на такие типы, как внутренний жесткий диск и внешний жесткий диск (также известный, как съемный жесткий диск). О последнем типе жестких дисков стоит, пожалуй, рассказать более подробно.

Внешний жесткий диск является сравнительно недавним изобретением, которое стало доступно после появления технологий, которые повысили степень надежности хранения информации на жестком диске, считавшемся ранее довольно хрупким устройством. Внешний жесткий диск не находится постоянно в корпусе персонального компьютера, а подключается к нему извне, как правило, при помощи порта USB. Съемный жесткий диск обычно не требует дополнительного источника питания, хотя бывают и исключения. Как правило, внешний жесткий диск имеет один из тех форм-факторов, которые характерны и для внутренних накопителей – это форм-факторы 3,5 и 2,5 дюйма.

В последнее время внешний жесткий диск является незаменимым устройством для тех пользователей, которые желают обладать объемным и относительно компактным переносным носителем информации. Внешний жесткий диск можно использовать для увеличения объема информации, доступного на компьютере. Кроме того, внешний жесткий диск представляет собой удобное средство для создания резервных копий информации, содержащейся на основном жестком диске.

Если еще несколько лет назад внешний жесткий диск стоил намного дороже внутреннего, то теперь разница в стоимости между этими типами дисков составляет всего несколько процентов, что делает съемный жесткий диск неплохим выбором для устройства хранения информации.

Винчестер – одно из сложнейших устройств персонального компьютера, совмещающее многие лучшие достижения современной науки и технологии в области физики, механики и электроники.

Основными характеристиками жестких дисков являются:

Интерфейс (interface) – совокупность линий связи, сигналов, посылаемых по этим линиям, технических средств, поддерживающих эти линии, и правил (протокола) обмена. Серийно выпускаемые жесткие диски могут использовать интерфейсы ATA (он же IDE), SATA, SCSI, SAS, FireWire, USB, SDIO и Fibre Channel.

Ёмкость (capacity) – количество данных, которые могут храниться накопителем. Ёмкость современных устройств достигает 2000 ГБ (2 ТБ). В отличие от принятой в информатике системе приставок, обозначающих кратную 1024 величину, производителями при обозначении ёмкости жёстких дисков используются величины, кратные 1000. Так, ёмкость жёсткого диска, маркированного как «200 ГБ, составляет 186,2 ГиБ.

Физический размер (форм-фактор) (dimension). Почти все современные (2001-2008 года) накопители для персональных компьютеров и серверов имеют ширину либо 3,5, либо 2,5 дюйма – под размер стандартных креплений для них соответственно в настольных компьютерах и ноутбуках. Также получили распространение форматы 1,8 дюйма, 1,3 дюйма, 1 дюйм и 0,85 дюйма. Прекращено производство накопителей в форм-факторах 8 и 5,25 дюймов.

Время произвольного доступа (random access time) – время, за которое винчестер гарантированно выполнит операцию чтения или записи на любом участке магнитного диска. Диапазон этого параметра невелик – от 2,5 до 16 мс. Как правило, минимальным временем обладают серверные диски (например, у Hitachi Ultrastar 15K147 – 3,7 мс), самым большим из актуальных – диски для портативных устройств (Seagate Momentus 5400.3 – 12,5).

Скорость вращения шпинделя (англ. spindle speed) – количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и средняя скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки), 5400, 7200 и 10 000 (персональные компьютеры), 10 000 и 15 000 об/мин (серверы и высокопроизводительные рабочие станции).

Надёжность (reliability) – определяется как среднее время наработки на отказ (MTBF). Также подавляющее большинство современных дисков поддерживают технологию S.M.A.R.T..

Количество операций ввода-вывода в секунду – у современных дисков это около 50 оп./с при произвольном доступе к накопителю и около 100 оп./сек при последовательном доступе.

Потребление энергии – важный фактор для мобильных устройств.

Уровень шума – шум, который производит механика накопителя при его работе. Указывается в децибелах. Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже. Шум состоит из шума вращения шпинделя (в том числе аэродинамического) и шума позиционирования.

Сопротивляемость ударам (G-shock rating) – сопротивляемость накопителя резким скачкам давления или ударам, измеряется в единицах допустимой перегрузки во включённом и выключенном состоянии.

Скорость передачи данных (Transfer Rate) при последовательном доступе:

внутренняя зона диска: от 44,2 до 74,5 МБ/с;

внешняя зона диска: от 60,0 до 111,4 МБ/с.

Объём буфера – буфером называется промежуточная память, предназначенная для сглаживания различий скорости чтения/записи и передачи по интерфейсу. В современных HDD он обычно варьируется от 8 до 128 МБ.

Система охлаждения – это вентиляторы, которые охлаждают комплектующие. Обычно установлено три и более кулеров. Обязательно один на процессоре, один на видеокарте, и один на блоке питания, а далее уже по желанию. Если будет что-то тепленьким, то желательно охлаждать. Устанавливаются также вентиляторы на жесткие диски и в самом корпусе. Если кулер в корпусе установлен на передней панели, то он забирает тепло, а кулеры установленные на заднем отсеке подают в системних холодный воздух.

Оптимальный тепловой режим компьютера устанавливается благодаря такому устройству как кулер. Он занимает очень важную роль в ПК, так как благодаря ему обеспечивается продуктивность и стабильность работы всей системы. Кулер (еще носит название охладитель) – устройство, которое состоит из вентилятора и радиатора, главной задачей которого является охлаждение комплектующих ПК.

Кулер (система охлаждения для процессора)

Для повышения эффективности теплоотвода, из-за возможных неровностей на поверхностях, наноситься слой термопасты (термоинтерфейс) на стык между кулером и комплектующим ПК, который характеризуется высокой термонагрузкой (более 0,5 мВт/см?).

Когда вентилятор один в устройстве, он нагнетает воздух к радиатору кулера. В шлейф вентилятора встроен тахометр, который обеспечивает обратную связь, и возможность регулировать скорость вращения изменяя напряжение. Рассмотрим на примере простейший механизм работы охладительной системы с наличием двух вентиляторов одновременно. Расположенный на нижней передней панели вентилятор кулера вдувает воздух внутрь корпуса ПК, вверху задней панели второй вентилятор выдувает нагретый комплектующими ПК воздух.

Классификация кулеров в зависимости от их мощности:

Активные кулеры (имеют встроенные вентиляторы, которые способны к эффективному отводу тепла, которые выделяются мощными видеоадаптерами, процессорами и жесткими дисками с высокой скоростью вращения шпинделя);

– пассивные кулеры (имеют в основе только радиатор, который способен отрегулировать температуру комплектующих ПК, которые выделяют мало тепла: чипсеты материнских плат, некоторые виды видеокарты, моделей памяти).

Также кулеры могут быть:

– воздушными (радиатор и вентилятор, которые производят теплоотвод);

– водяными (имеют более сложную структуру: радиатор для процессора и для охлаждения жидкости, вентилятор, водяные помпы, соединительные трубы).

Основные характеристики кулера:

1. диаметр радиатора;

2. размер и вес (большой вес кулера на процессоре способен деформировать под своим весом материнскую плату ПК);

3. скорость вращения;

4. материал (медь, алюминий);

5. уровень теплоотвода.

6. Разъем подключения (должен быть такой же как сокет или универсальное крепление)

Бывают кулеры с встроенным регулятором скорости рабочих оборотов на которые также стоит обратить свое внимание. Еще один важный момент по выбору кулера: считается более надежным кулер выполненный из меди, нежели из алюминия, который демонстрирует сравнительно меньшие теплоотводные характеристики. Однако кулеры из алюминия имеют два неоспоримых преимущества: меньшую стоимость и вес, нежели аналогичные устройства из меди.

Звуковая карта выводит звук на колонки. Обычно она встроена в материнскую плату. Но бывает, что она либо ломается (или нужна более профессиональна для обработки музыки), и поэтому покупается отдельно.

Блок питания нужен для того, чтобы все вышеописанные устройства компьютера заработали. Он обеспечивает все комплектующие необходимым количеством электроэнергии.

Компьютерный блок питания (БП) – это вторичный источник электропитания, то есть устройство преобразующее электричество, поставляемое сетью, в приемлемое для снабжения энергией различных узлов компьютера.

Качественные блоки питания также выполняют функцию стабилизации и защиты от помех питающего напряжения.

Как правило, берется переменный ток из сети с напряжением 170-240В (обычная электросеть), и преобразуется в постоянный ток с напряжением до 12В.

Основные характеристики блока питания:¬ мощность, КПД, наличие необходимых разъемов, нагрузка, форм-фактор, охлаждение.

Устройство и производители блоков питания

Существует два вида блоков питания: импульсные и линейные.

Линейные БП имеют малую мощность при сравнительно большом размере и весе, а также их работа сопровождается трансформаторным шумом, посему в современных компьютерах практически не используются.

Все современные блоки питания имеют импульсный принцип действия. Такие БП работают как высокочастотные преобразователи.

Чтобы наглядно разобраться с принципом действия обоих приборов проведем аналогию: представим, что нам нужно забить гвоздь; импульсное преобразование здесь сравнимо с ударами, а линейное – с надавливанием. Не зря мы говорим «забить гвоздь», а не «вдавить гвоздь». Ведь если бить молотком по гвоздю (по сути, создавать импульсы) результата мы достигнем, затратив минимальное количество сил и времени.

Подобно этому, импульсный принцип действий блока питания, позволяет существенно уменьшить вес и размер БП без потерь мощности.

На сегодняшний день на рынке представлено множество блоков питания с одинаковыми характеристиками, однако существенно отличающимися по цене. Разница может быть в 300-400%. Это явление объясняется тем, что для достижения стабильности в работе импульсного БП требуются более дорогие детали. Однако не все производители считают стабильность необходимой. Действительно, в некоторых случаях дешевые БП работают также хорошо, как их дорогие собратья. Так какие же выбрать?

Помните: «Скупой платит дважды». Блок питания соединен практически со всеми комплектующими. И как хватит всего нескольких неточных ударов для того чтобы вышеупомянутый гвоздь согнулся, так хватит и нескольких перебоев в работе блока питания для выхода из строя не только его самого, но и одного, нескольких, а то и всех комплектующих, с которыми он связан. Сэкономив на блоке питания, вы рискуете потерять весь системный блок!

Среди производителей блоков питания хорошо себя зарекомендовали: Enermax, Tagan, FSP Groop, Thermaltake, CoolerMaster, также можно воспользоваться блоками питания от: Chieftec, Corsair, OCZ, ZALMAN. Покупая блоки питания других фирм – вы опять-же рискуете.

Основные разъемы блока питания

Подходя к выбору блока питания, вы уже должны приблизительно знать, какие комплектующие будут стоять у вас на компьютере. Исходя из этого, можно будет отобрать блоки питания с подходящими разъемами.

Существует восемь основных типов разъемов питания:

1) – ATX. Имеет 24 контакта (в большинстве случаев 20 + 4 для совместимости с 20-ти контактным входом). Используется для подачи питания на разные части материнской платы.

2) – CPU. Имеет 4 контакта. Используется для подачи питания на процессор (подсоединяется к материнской плате).

3) и 4) – PCI Express. Имеют соответственно 6 и 8 контактов. Используются для подачи питания на карты расширения (к примеру, видеокарты).

5) и 6) – Molex и SATA. Имеют 4 и 15 контактов соответственно. Используются для подачи питания на различные устройства (приводы, жесткие диски…) Ранее использовался только Molex, однако с появлением SATA порта появилось и SATA питание.

7) – Floppy. Имеет 4 контакта. Разработан для подачи питания на CD-приводы и дисководы. Сейчас используется для подачи питания на различные устройства (приводы, дополнительные контроллеры).

8) – AUX. Имеет 6 контактов. Используется как дополнительный канал питания для различных устройств.

Мощность блока питания

Мощность. Данная характеристика является ключевой при выборе блока питания. Мощность определяет насколько «сильным» будет ваш БП, то есть как много и насколько производительных комплектующих можно будет установить на вашем компьютере. Характеристика измеряется в Ваттах.

При выборе БП следует учитывать, что максимально допустимой мощности для компьютера не существует, то есть, если для вашего компьютера подходит блок питания мощностью 400Вт, то ему подойдет БП и на 500Вт, и на 550Вт, и на 600Вт… Однако установка БП с меньшей мощностью приведет к сбоям и произвольной перезагрузке компьютера.

Мощность рассчитывается исходя из характеристик каждого комплектующего подключаемого к данному блоку питания. Информацию о потреблении энергии можно найти на упаковке или в инструкции по эксплуатации к устройству (в характеристиках товара обычно ее не указывают), но в большинстве случаев комплектующие выбирают через Интернет, и возможности увидеть инструкцию \ коробку нет.

Для облегчения процесса подсчета мощности существует несколько однотипных программ. Возьмем, к примеру, программу для расчета мощности блока питания Power Watts PC. Для расчета мощности с помощью этой программы необходимо поочередно выбрать из списка комплектующие, которые вы хотите установить себе на компьютер и программа сама покажет, блок питания какой мощности вам нужен. Может случиться так, что в программе нет конкретно вашей модели комплектующего (база данных программы велика и постоянно обновляется, но все же такое иногда встречается), тогда выберите модель, наиболее похожую на вашу – это существенно не повлияет на мощность.

Логотип КПД

На качественных блоках питания присутствует логотип, показывающий коэффициент полезного действия (КПД) данного БП. Чем он выше – тем лучше. Не следует покупать блок питания с КПД ниже 80%. Так как отклонение в мощности в этом случае может официально составлять выше 20% (чтобы узнать процент отклонение нужно отнять величину КПД от ста). То есть, купив блок питания на 500Вт вы получите БП на 400Вт.

Лучше ставить блок питания с заведомо завышенной мощностью на 20% и более. Такой ход защитит ваш компьютер от неточностей, допущенных производителями при производстве БП, а также у вас появится возможность дальнейшей модернизации вашего компьютера без покупки нового блока питания.

Зачастую, для выбора блока питания информации, описанной выше достаточно. Однако есть еще несколько характеристик, пользуясь которыми вы можете подстраховать себя при выборе БП.

Максимальные нагрузки. В описании товара вы можете встретить, к примеру такую конструкцию: +3.3ВDC – 24A, +5ВDC – 24A, +12В1 – 16A, +12В2 – 16A, +12В3 – 16A, +12В4 – 16A, +5ВSB – 2.5A, -12В – 0.5A. Такая конструкция показывает, как можно распределить нагрузку на БП. Разберемся с обозначением:

Распределение нагрузки на блок питания

Напряжение зависит от разъема, оно стационарно. Сила тока зависит от количества подключенных устройств и их мощности; может варьироваться от нуля и до указанной величины. Дополнительная информация в первом случае показывает, что ток постоянен, во втором – линию нагрузки (вторая в данном случае). Нет необходимости углубляться в эти физические величины. Для простоты можно перевести все это в мощность. А она равна произведению напряжения на силу тока.

Формула расчета мощности на блоке питания

Комбинированные нагрузки. Конструкция выглядит так: +3.3ВDC & +5ВDC – 155 Вт; +12В1 & +12В2 & +12В3 & +12В4 – 504 Вт. По сути это то же самое что и максимальные нагрузки, но тут производитель тут указывает не силу тока, а мощность, причем сразу нескольких линий.

Существование таких характеристик как комбинированные и максимальные нагрузки, а также существование линий нагрузки указывает на то, что необходимо распределение питания по линиям и разъемам на них. То есть нельзя подключать много устройств к одному разъему (к одной линии нагрузки), иначе будет нехватка мощности. Учитывайте, что потребляемая нагрузка зависит от устройства, а не от разъема. То есть конкретное устройство может брать напряжение только с одного контакта на разъеме, несмотря на то, что подключены все – остальные не будут потреблять энергию.

Также следует сказать, что некоторые люди при модернизации компьютера, в целях экономии, докупают маломощный блок питания к своему старому. То есть на компьютере стоит, к примеру, БП на 500Вт, а необходима мощность в 750Вт. И чтобы не покупать блок питания на 750Вт, они покупают БП на 250 и часть комплектующих подключают к одному блоку, а часть – к другому. Можно однозначно заявить – такая конструкция работать не будет! Блок питания не сможет выдать все 250Вт на одну или пару линий нагрузки – на это и указывают вышеприведенные характеристики. Но нужно заметить, что работа компьютера от двух блоков питания возможна, при условии, что суммарная мощность блоков питания будет превышать необходимую, и нагрузка будет грамотно распределена. То есть, чтобы обеспечить питание компьютеру, который работал бы от блока питания на 750Вт, необходимо к БП на 500Вт докупить БП на 350-450Вт.

Охлаждение, помехи, форм-фактор

Блок питания нуждается в постоянном охлаждении, для этого достаточно куллера, установленного внутри БП. Однако необходимо отметить, что качественные блоки питания охлаждают не только себя, но и другие комплектующие. В таких БП куллер установлен снизу\сверху корпуса, а не по бокам. Комплектация блока питания куллером подразумевает наличие шума от вентилятора, поэтому обратите внимание и на эту характеристику.

Импульсные блоки питания могут создавать высокочастотные помехи в сети, к которой они подключены, тем самым уменьшая мощность других устройств. Лучше чтобы выбранный вами блок питания был укомплектован модулем PFC – устройством, защищающим сеть от помех.

Что касается форм-фактора (габаритов блока питания), то этот параметр следует выбирать исходя из габаритов корпуса. Для обычного компьютерного корпуса подойдет блок питания форм-фактора ATX.

Итог. При выборе блока питание обратите особое внимание на мощность, разъемы и производителя БП. Учитывайте КПД и наличие PFC. Пользуйтесь показателями нагрузки для расчета мощности в конкретной ситуации. Также посмотрите на форм-фактор и охлаждение.

Периферийные устройства.

Чтобы полноценно начать работать на компьютере нам понадобятся периферийные устройства. К ним относятся те компоненты компьютера, которые за пределами системного блока.

1. Монитор.

Монитор само собой нужен, чтобы видеть то, с чем мы работаем. Видеокарта передает изображение на монитор. Между собой они подключены кабелем VGA, DVI, S-Video или HDMI. (в большинстве случаев)

2. Клавиатура.

Клавиатура предназначена для ввода информации, ну само собой какая работа без полноценной клавиатуры. Текст напечатать, в игры поиграть, в интернете посидеть и везде нужна клавиатура.

Мышь нужна чтобы управлять курсором на экране. Водить его в разные стороны, кликать, открывать файлы и папки, вызывать различные функции и много другое. Также, как и без клавиатуры, без мыши никуда.

4. Колонки.

Колонки нужны в основном чтобы слушать музыку, смотреть фильмы и играть в игры. Кто еще сегодня использует колонки больше, чем ежедневно их воспроизводят обычные пользователи в этих задачах.

5. Принтер, сканер, плотер или МФУ.

Принтер и сканер нужен чтобы печатать и сканировать документы и всё, всё необходимое в области печатанья. Или МФУ, многофункциональное устройство. Пригодится всем тем, кто часто что-то печатает, сканирует, делает ксерокопии и совершает много других задач с этим устройством.

В этой статье мы лишь кратко рассмотрели основные устройства компьютера, а в других, ссылки на которые вы видите ниже, мы подробно рассмотрим все наиболее популярные периферийные устройства, а также компоненты, которые входят в состав системного блока, то есть комплектующие.

Если вы считаете, что какой то информации не хвататет или необходимо исправить – происим писать нам – мы всегда за совершенствование курса.

Что вы, уважаемый читатель, знаете о компьютере? Безусловно, полнота и глубина вашего ответа будут зависеть от многих факторов. Некоторые из вас невольно обратятся к поверхностным знаниям из школьной программы, полученным на уроках информатики. Да и вряд ли рядовой пользователь задумывался о том, что скрывается под защитным кожухом системного блока. Как правило, познания домохозяйки основываются на визуальном понимании предмета нашего обсуждения: железный или пластиковый ящик, монитор, клавиатура и мышь. И с этим стоит согласиться, так как объективность такого мнения действительно характеризует ПК стандартной конфигурации в общих чертах. Однако составные части компьютера — это нечто большее, чем простота и ограниченность видимых корпусных деталей системного блока и некоторых подключенных к нему Чтение обещает быть увлекательным, а материал статьи гарантировано станет отправной точкой для вашей любознательности.

Основные составные части компьютера: о том, что видит домохозяйка

Как бы этого не хотелось, но без компьютерной терминологии нам просто не обойтись. Поэтому будьте готовы познакомиться с некоторыми специализированными словами. Между прочим, это существенно сэкономит вам время в будущем. Теперь перейдем непосредственно к увлекательной теории и рассмотрим в качестве вводного списка базовую конфигурацию стационарного ПК.

  • Системный блок — корпус, в котором находится аппаратная начинка компьютера.
  • Монитор — устройство отображения графической и символьной информации.
  • Клавиатура — клавишное средство управления компьютером, посредством которого осуществляется ввод данных и команд.
  • Мышка — ручной манипулятор, преобразующий механические движения в управляющий сигнал.

Конструкционные особенности вычислительных устройств

Упомянутые составные части компьютера являются неотъемлемыми элементами десктопных модификаций. Ноутбуки, планшеты и карманные электронные девайсы относятся к портативному типу вычислительной техники. Такие устройства имеют компактный корпус. Все базовые аппаратные компоненты объединены в единое устройство, в результате чего и достигается максимальная практичность девайса. Неоспоримым преимуществом портативных компьютеров является эксплуатационная автономность и мобильность при использовании. Существует еще один тип компьютерной техники — моноблоки. Данный вид вычислительных устройств - нечто среднее между настольными и мобильными системами. Позаимствованная у ноутбуков миниатюрность аппаратной части и стационарная «привязанность» к рабочему месту традиционных ПК обособляют данный вид техники в отдельно представленный тип вычислительных девайсов.

Внутри защитного корпуса расположены , что в конечном итоге является аппаратной конфигурацией ПК. Основной деталью компьютера принято считать материнскую плату устройства, так как данный элемент является своеобразным позвоночником электронной системы, на который, помимо обязательных комплектующих - центрального процессора и планок оперативной памяти - могут быть установлены дополнительные модули расширения. Особое место в системном блоке отводится под устройство хранения информации — жесткий диск. Такие составляющие части компьютера, как система охлаждения и блок питания, также располагаются внутри корпуса ПК. Однако портативные девайсы получают электропитание от внешних устройств энергообеспечения. Как правило, персональный компьютер оснащается оптическим приводом для считывания и записи данных. Основная интерфейс-панель выводится наружу.

Важные части компьютера: процессор — «сердце» ПК

Данная микросхема выполняет функцию вычислительного центра. Без CPU компьютер просто не будет работать. Мощность CPU характеризуется тактовой частотой, которая измеряется в МГц. Вместе с тем именно от уровня примененной технологии зависит конечный показатель производительности процессора. При выполнении многопоточных операций (работа двух и более одновременно используемых приложений) безусловным преимуществом обладают CPU, имеющие многоядерную архитектуру строения. Данная техническая часть компьютера — процессор — состоит из ядра и сопряженных с ним составных элементов: шины ввода/вывода и адресной шины. Скорость обработки данных между указанными компонентами CPU выражается в разрядности. Чем выше упомянутый показатель, тем больше шины центрального процессора.

Оперативная память: быстродействующий помощник CPU

Это энергозависимый компонент системы, который является своеобразным посредником между центральным процессором и жестким диском. Однако обмен данными может происходить и напрямую между CPU и ОЗУ компьютера. Модуль оперативной памяти устанавливается в специальный bank-слот материнской платы. От объема оперативки, который измеряется в единицах информации (МБ), а также пропускной способности системной шины устройства, зависит быстродействие ОС. На сегодняшний день существует несколько типов такой памяти:

  • Устаревший вид ОЗУ — SIMM и DIMM.
  • Самые распространённые — DDR, DDR2, DDR3.
  • Новый тип ОЗУ — DDR4.

Как вы понимаете, составные части компьютера должны соответствовать некому единому стандарту. Приобретая дополнительный необходимо точно знать, какой именно тип ОЗУ поддерживает ваша системная плата.

Жесткий диск: «железная» память

В отличие от оперативки записываемые на HDD данные могут храниться достаточно долго. Работа винчестера основывается на принципе изменения магнитного поля вблизи записывающей головки. Накопитель данного типа является механическим устройством, эффективность работы которого зависит от присущих ему характеристик:

  • Номинальная емкость — количество данных, которые могут храниться на HDD.
  • Время произвольного доступа — выполнение операции позиционирования на произвольном участке дискового пространства.
  • Скорость вращения центрального шпинделя — параметр измеряется количеством оборотов в минуту.
  • Объем буфера — промежуточная память, которая исчисляется в МБ.
  • Скорость передачи данных — способность устройства считать определенное количество информации за секунду. Учитывается последовательный доступ к определенной (имеется в виду внешняя и внутренняя зоны) дисковой части персонального компьютера.

Апгрейд ПК, компактного вычислительного девайса и сервисного оборудования часто связан с наращиванием быстродействия операционной системы. И появившиеся совсем недавно твердотельные накопители как нельзя лучше могут разрешить скоростные проблемы любой вычислительной техники. Однако относительно малый объем дискового пространства при высокой цене SSD-устройства для многих пользователей является, мягко говоря, неприемлемым решением.

Видеокарта: визуальное представление

Какие составные части компьютера отвечают за графику? Ответ на этот вопрос довольно прост. Прежде всего — это видеокарта, затем — центральный процессор, а уж после — оперативная память ПК. Стоит отметить, что графические адаптеры бывают дискретными и интегрированными. Поэтому следует более детально рассмотреть вопрос различности такого рода оборудования.

Встроенный в материнскую плату графический чип

Как правило, компьютеры низшей ценовой категории оснащаются интегрированными видеоконтроллерами. Как вы понимаете, особой производительностью такие чипы не обладают. Однако для решения офисных задач, просмотра мультимедийного материала и даже запуска не ресурсоемкого игрового приложения такой вариант вполне приемлем. Обратите внимание: встроенный в чипсет видеоадаптер физически не может считаться обособленным элементом комплектации.

Дискретный тип видеокарт

На сегодняшний день это наиболее эффективный метод повысить графические возможности ПК. Данный графический модуль вставляется в специальный PCI-слот расширения материнской платы. Посредством интерфейс-разъема, который расположен на самой видеокарте и выведен наружу системного блока, подключается монитор. Объем видеопамяти и пропускная способность ее шин, а также частота ядра, текстурная и пиксельная скорость заполнения являются основными показателями графической производительности оговариваемой комплектующей ПК. Теперь, если вас кто-либо попросит: «Перечисли составные части компьютера», вы должны учитывать, что в отличие от интегрированного графического чипа — это отдельно представленный модуль.

Конфигурация ПК: расширение функционала и модернизация

После того как вы узнали или освежили прежде полученную информацию о том, что находится внутри системного блока ПК, давайте коснемся вопроса о том, и как он связан с темой представленной статьи.

Итак, дополнительные части компьютера - это не только периферийные устройства: принтеры, сканеры, веб камеры и т. д., подключаемые к какому-либо интерфейс-разъему или же соединенные посредством беспроводной технологии с ПК, но и некоторые компоненты системы, которые принято называть базовыми. Например, пользователь всегда может добавить оперативных ресурсов своему компьютеру, установив в свободные bank-слоты системной платы добавочные модули оперативки. Заядлые геймеры часто ставят на свои компьютеры две мощнейшие видеокарты. Аудио-возможности можно значительно расширить, если подключить навороченный звуковой адаптер. Сетевые и DVB-карты, различные ридеры и TV-тюнеры, а также масса другого оборудования — все это может стать элементами модернизации, то есть апгрейдом ПК. Единственным ограничением для полета пользовательской фантазии может являться недостаточный уровень технологичности материнской платы.

Прежде чем закончить

Теперь вы не будете застигнуты врасплох, если вас попросят: «Перечисли составные части компьютера». Тем не менее для полноты знаний об устройстве ПК следует еще кое в чем разобраться. Ведь в предыдущих абзацах лишь вскользь было упомянуто о коммуникационных возможностях компьютера. Между тем системная плата ПК оснащена различными интерфейс-разъемами, среди которых можно выделить основные:

  • PS/2 — для подключения мышки и клавиатуры.
  • USB — универсальный порт для соединения с периферийными устройствами.
  • VGA — разъем для монитора.
  • RJ45 — для подключения сетевого коннектора.

На сегодняшний день современная комплектуется различными беспроводными модулями. Разработчики наделяют ПК новыми коммуникационными свойствами. Производители внедряют еще вчера казавшиеся фантастичными революционные технологии. Электроника стремительно расширяет границы своего влияния. Однако процесс мышления человека всегда будет являться основой для компьютерной техники. Поскольку так, как думает человек, никто и ничто в мире не умеет мыслить.

Технический эпилог

С уверенностью можете считать, что теперь вы знаете, как называются части компьютера. Однако представленная информация - лишь капля из океана информации по затронутой теме, поскольку рассказать об устройстве компьютера в общих чертах — значит не сказать ничего! Поэтому, как и говорилось ранее, необходимо проявить любознательность и подойти к вопросу изучения устройства компьютера серьезнее. Будьте уверены, такие знания сделают вас намного богаче. Ведь за компьютером будущее!

Персональный компьютер представляет собой сложное электронное устройство, предназначенное для выполнения широкого круга задач. Это могут быть различные вычисления, расчеты, прослушивание музыки, просмотр видео, различные офисные задачи, игры и многое другое.

Персональный компьютер может быть стационарным или мобильным. К мобильным компьютерам относят ноутбуки, нетбуки и планшеты.

Стационарный компьютер также в последнее время претерпел изменения, но в большинстве случаев представляет собой системный блок, монитор, устройства ввода (клавиатура и мышь), аудиоустройства (колонки, наушники и микрофон), а также другие периферийные устройства (принтер, сканер и т.п.).

Для нормального функционирования персонального компьютера необходим лишь системный блок, монитор, клавиатура и мышь.

Так же необходима операционная система, в большинстве случаев используют Windows, но так же можно скачать Linux .
Далее мы рассмотрим подробнее каждое из этих устройств.

Системный блок

Основным узлом персонального компьютера является системный блок. Он представляет собой корпус , чаще всего металлический вертикальный коробок, на передней панели которого расположены кнопки включения и дисководы. На заднюю стенку выведены все необходимые разъемы и кабели. Системный блок состоит из блока питания, материнской платы (она же системная плата или «материнка»), жесткого диска (HDD), видеокарты, процессора (CPU), оперативной памяти (ОЗУ), дисководов (CD/DVD), звуковой платы и сетевой платы. Зачастую сетевая и звуковая платы выполняются интегрированными в материнскую плату, то есть радиоэлементы платы распаяны прямо на материнской плате.

Блок питания

Блок питания выполнен в виде отдельного коробка, который расположен вверху сзади системного блока и имеет несколько кабелей питания всех элементов системного блока.

Блок питания

Материнская плата

Материнская плата является самой большой в системном блоке печатной платой, на которую устанавливаются все основные узлы компьютера (CPU, ОЗУ, видеокарта), также она имеет разъемы для подключения жесткого диска и дисководов, а также шлейфов портов USB и разъемы, выходящие на заднюю панель корпуса. Материнская плата выполняет согласование работы всех устройств компьютера.

Материнская плата

Процессор

Процессор представляет собой микросхему, предназначенную для выполнения основных вычислительных операций. Процессоры выпускаются двумя фирмами AMD и Intel. В зависимости от производителя процессора отличается и разъем (место его установки), поэтому при выборе материнской платы следует это не забывать. Вы просто не вставите процессор AMD в материнскую плату для процессоров Intel.

Процессор

Видеокарта

Видеокарта представляет собой отдельную печатную плату, установленную в разъем PCI Express материнской платы и предназначена для вывода изображения на экран монитора. Она обрабатывает полученную информацию и преобразует в аналоговый и цифровой видеосигнал, который через разъем по кабелю поступает на монитор. На видеокарте, как правило, установлен процессор (GPU) и оперативная видеопамять.

Видеокарта

Оперативная память

Оперативная память представляет собой одну или несколько небольших плат, установленных в специальные разъемы на материнской плате (DDR). Оперативная память обеспечивает временное хранение промежуточных данных при работе компьютера. Оперативная память характеризуется скоростью доступа и объемом памяти. На сегодняшний день наиболее быстрая память имеет стандарт DDR3.

Оперативная память

Жесткий диск

Жесткий диск является постоянным хранилищем данных, это могут быть как пользовательские данные, так и системные или временные. На жестком диске хранится операционная система, без которой нормальная работа компьютера будет невозможна. Также операционная система может использовать жесткий диск для сохранения содержимого оперативной памяти (например, в режиме гибернации). Представляет собой жесткий диск закрытый металлический параллелепипед, который через разъем (SATA) подключается к материнской плате.

Жесткий диск

Дисковод

Дисковод оптических дисков внешне напоминает жесткий диск, но имеет на передней панели выдвигающийся лоток для установки оптических дисков. Служит дисковод для чтения и записи оптических дисков.

На системной плате могут устанавливаться и другие дополнительные устройства, например модуль Wi-Fi или ТВ-тюнер.

Монитор

Монитор компьютера служит для графического представления информации, которая безусловно понятно пользователю ПК. В последнее время выпускаются исключительно жидкокристаллические дисплеи (ЖК). Мониторы могут быть оснащены цифровым и/или аналоговым видео разъемами (DVI, HDMI).

Клавиатура

Клавиатура является неотъемлемым устройством ввода любого компьютера. Клавиатура представляет собой группы клавиш для ввода символьной информации. Также многие современные клавиатуры оснащаются дополнительными клавишами, например, для управления медиаплеерами и различными программами.