Тарифы Услуги Сим-карты

Персональные ЭВМ. Место в современном мире —. Доклад: Персональные ЭВМ. История создания. Место в современном мире

Безусловно, оценить роль, которую играет в жизни современного общества компьютер, невероятно сложно. Так как вычислительно-запоминающие устройства на сегодняшний день используются везде, на каждой фирме, представить себе крах налаженной системы попросту невозможно.

Например, вы когда-нибудь задумывались, что произойдет, если на каком-то крупном предприятии выйдет из строя компьютеризированное оборудование? Конечно же, в первую очередь, полностью остановятся все производственные процессы. Чем это грозит, думаю, понятно многим.

За последние два десятилетия компьютеры стали неотъемлемой частью общества, а с появлением Интернета человек получил такие возможности, о которых раньше не могло быть и речи. Например, как только современные технологии наводнили внутренний рынок, моментально исчезли видеомагнитофоны, кассеты и многое другое.

И действительно, какой в них толк, если каждый интернет-пользователь может бесплатно слушать любую музыку, смотреть фильмы в режиме «онлайн», качать книги в электронном формате, а после их распечатывать? И все это делается, не выходя их дома!

Какой современный call центр может обойтись без компьютеров, а также внедренных в него информационных технологий? Конечно, ни одно из предприятий не будет нормально функционировать без данного оборудования. В двадцать первом веке мы, люди, получили вместе с дополнительными возможностями высокую степень зависимости от компьютеризированных устройств, которые способны запоминать и обрабатывать любую информацию.

Все современные компьютеры (ПК, ноутбуки, нетбуки, планшеты и пр.) можно использовать как дома, так и брать с собой в поездку. Например, некоторые смартфоны последнего поколения имеют в своем функционале все необходимые человеку программы. Также, несмотря на свои небольшие размеры, вы можете смотреть какой-либо видеоролики, слушать музыку. В общем, современные технологии позволяют человеку всегда быть в курсе всех событий.

У него также существенно расширяется кругозор, потому что в Интернете он может почерпнуть для себя такое количество информации, которое получить каким-либо другим способом будет проблематично. Конечно, все должно быть в меру, поэтому компьютер – это не панацея развития вашего дитя.

Компьютеры прочно укоренились в нашем обществе, поэтому жить без них, наверное, было бы очень и очень сложно.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Информационные технологии в современном обществе. Приоритетные направления информатизации здравоохранения. Задачи, решаемые с помощью персонального компьютера. Классификация информационных технологий, применяемых в деятельности медицинского работника.

    презентация , добавлен 28.01.2016

    История создания компьютеров, их разновидности и применение в разных сферах деятельности человека. Назначение основных элементов компьютера: монитора, системного блока, клавиатуры, мыши, устройств ввода и вывода информации. Вред и польза компьютера.

    реферат , добавлен 04.05.2013

    Информационные технологии: понятие, история развития, классификация и структура. Направления развития информационных систем в маркетинге, внедрение и роль персональных компьютеров. Службы интернета и степень его влияния на деятельность организаций.

    курсовая работа , добавлен 09.06.2010

    Понятие информационных технологий, их роль и значение в обществе на современном этапе. Компьютеры как базовая техническая составляющая процесса информатизации общества. Возможности интернета для образования, бизнеса и распространения информации.

    презентация , добавлен 04.03.2012

    Использование современных информационных технологий в учебном процессе: интерактивной доски, интерактивного голосования, онлайн конференции. Применение компьютерных систем и промышленных компьютеров для контроля технического оборудования разной сложности.

    презентация , добавлен 25.09.2012

    Применения компьютеров в гостиницах расширяются от их признанной роли в системах бронирования до образования комплексных информационных систем управления, координации и мониторинга всего бизнеса. Основные информационные технологии в гостиничном бизнесе.

    реферат , добавлен 29.04.2008

    История создания и составляющие современного компьютера: процессор, материнская плата, винчестер. Выявление перспектив использования современных компьютеров в учреждениях культуры и искусств: в библиотеках, музеях, художественных галереях и выставках.

    курсовая работа , добавлен 29.05.2016

    Характеристики различных моделей портативных компьютеров. Возможности оперативных систем. ЭВМ и вычислительные системы. Порядок выбора портативных компьютеров и ОС. Выбор портативного компьютера для оснащения ими сотрудников консалтинговой фирмы.

    дипломная работа , добавлен 23.06.2012


Компьютеры в современном мире

Современную жизнь невозможно представить без компьютеров. Технологии пронизывают весь цивилизованный мир. Изобретение микропроцессорной техники стало третьей информационной революцией человечества после изобретения книгопечатания в середине XVI в. и электричества в конце XIX в. Эти явления коренным образом изменили жизнь людей, их мировоззрение, сферы производства, общения и досуга.

Начиная с 1947г. с изобретения первого ЭВМ компьютеры постоянно совершенствуются, от поколения к поколению, и сейчас даже жутко представить каким огромным и медленным был привычный предок настолько привычной машины пару десятков лет назад. А в наше время даже компьютер 3‐х летней давности становится устаревшим. За несколько десятков веков усовершенствовались как состав и быстродействие ЭВМ, так и программное обеспечение, позволяющее в наше время существенно облегчить работу с компьютером. Причем при поднятии технологии на следующую ступеньку открывается сразу несколько путей усовершенствования. Создаются новые программы, заменяя собой старые, усовершенствуются наиболее используемые. Сейчас компьютерная техника принимает все более разнообразные очертания и способы применения, продолжает внедряться в новые сферы жизни.

Компьютеры, ноутбуки, компьютерные приставки, игровые устройства, мобильные телефоны, коммуникаторы, карманные компьютеры и пр. техника, постоянно совершенствуясь, имеет устойчивый спрос практически у всех слоев населения.
В наше время каждому человеку необходимо знать азы, как использования, так и устройства компьютера. Наличие знаний помогает правильно работать на устройстве и уменьшает риск поломки от неправильной эксплуатации. Но если все же компьютер вышел из строя, то обратитесь в сервисный цент, например в этот http://computerservis174.ru и вам помогут вернуть технику в работоспособное сотояние. Со знанием компьютера легче как устроиться на работу, так и более или менее самостоятельно им пользоваться без поломок и помощи специалистов. Программы позволяют упростить и ускорить выполнение подобной задачи, уменьшает вероятность вычислительных ошибок (но не устраняет, т. к. в любом деле немаловажным является человеческий фактор). Кроме того, интересно знать состав любимой игрушки, уставившись в которую можно сидеть часами день за днем и ночь за ночью, и способы ее усовершенствования. А основные типы ПК в наше время знает 90% современных подростков, если не для игр, то для учебы и работы они необходимы.

Таким образом, компьютерные технологии сейчас прочно вошли в нашу жизнь и в них чувствуются устойчивые тенденции к совершенствованию, что отражается на нашей жизни, независимо даже от того, будем мы изучать эти явления в учебных заведениях или будем интересоваться сами.
В наше время каждый человек более или менее часто, но сталкивается с компьютерными технологиями. А некоторые не могут представить жизнь и работу без мобильного телефона, компьютера и интернета. Это и учеба, и работа, и досуг. И вся компьютерная индустрия, прочно вошедшая в жизнь, заставляет нас изучать информатику и знать устройство и применение компьютеров.

Сахалинский областной институт переподготовки и повышения квалификации кадров

Кафедра Новых информационных технологий

Восточный лицей

Персональные ЭВМ. История создания. Место в современном мире.

Выполнила

Руководитель

Южно-Сахалинск

Введение.

1.1 Механические счетные машины.

1.2 Идеи Бэббиджа.

Глава II. Поколения ЭВМ.

2.1 Компьютеры первого поколения.

2.3 Компьютеры третьего поколения.

2.4 Компьютеры четвертого поколения.

2.5 Компьютеры пятого поколения.

2.6 Поколение суперкомпьютеров.

Глава III. Место в современно мире.

3.1 Эволюционный процесс.

3.2 Современные компьютеры.

3.3 Семейство компьютеров.

Заключение.

Приложение.

Приложение 1. Структура ЭВМ в первом, втором поколениях.

Приложение 2. Структура ЭВМ в третьем поколении.

Приложение 3. Структура ЭВМ в четвертом поколении.

Введение

Когда наш предок впервые взял палку, чтобы сбить плод с дерева, он удлинил свою руку. Когда человек придумал рычаг, чтобы сдвинуть тяжелый камень, он увеличил свою физическуую силу. Подзорная труба увеличилла зоркость человека, а велосипед увеличил его скорость. Но человек на этом не остановился. Рычаг сменил мощный подъемный кран, подзорную трубу заменил телескоп, на смену велосипеду пришел автомобиль. Появились самолеты, ракеты, телевидение.

Чтобы создавать, приходилось считать. Считать все больше и больше. Тогда человек придуумал компьютер. Правда, прежде чем его придумать, человек изобрел множество более простых устройств, облегчающих вычисление. И если все предыдущие изобретения увеличивали нашу физическую силу, быстроту, силу зрения, то компьютер увеличил наши умственные возможности.

ЭВМ прочно вошли в нашу производственную деятельность и в настоящее время нет необходимости доказывать целесообразность использования вычислительной техники в системах управления технологическими процессами, проектирования, научных исследований, административного управления, в учебном процессе, банковских расчетах, здравоохранении, сфере обслуживания и т.д.

При этом последние годы как за рубежом, так и в нашей стране характеризуются резким увеличением производства мини- и микро-ЭВМ (персональные ЭВМ)

На основе мини и персональных ЭВМ можно строить локальные сети ЭВМ, что позволяет решать сложные задачи по управлению производством.

Исследования показали, что из всей информации, образующейся в организации, 60-80% используется непосредственно в этой же организации, циркулируя между подразделениями и сотрудниками, и только оставшаяся часть в обобщенном виде поступает в министерства и ведомства. Это значит, что средства вычислительной техники, рассредоточенные по подразделениям и рабочим местам, должны функционировать в едином процессе, а сотрудникам организации должна быть поставлена возможность общения с помощью абонентских средств между собой, с единым или распределенным банком данных. Одновременно должна быть обеспечена высокая эффективность использования вычислительной техники.

Решению этой задачи в значительной степени способствовало появление микроэлектронных средств средней и большой степени интеграции, персональных ЭВМ, оборудования со встроенными микропроцессорами.

Об истории развития и возможностях ЭВМ будет сказано ниже.

Глава I. История создания ЭВМ.

1.1 Механические счетные машины

Часто лавры первого конструктора механического калькулятора ошибочно отдают известному математику Блезу Паскалю. На самом деле достоверно известно, что немецкий астроном и математик Вильгельм Шикард, который за двадцать лет до Паскаля в письме своему другу Иоганну Кеплеру в 1623 году писал о машине, которая способна вычитать, складывать, делить и умножать. Но и версия, что именно Шикард является пионером в этой области, не верна: в 1967 году были обнаружены неизвестные записные книжки Леонардо да Винчи, построившего то же самое, что и Шикард, но более чем за 120 лет до него.

Первым механическим счетным устройством, которое существовало не на бумаге, а работало, была счетная машина, построенная в 1642 году выдающимся французским ученым Блезом Паскалем. Механический «компьютер» Паскаля мог складывать и вычитать. «Паскалина» – так называли машину – состояла из набора вертикально установленных колес с нанесенными на них цифрами от 0 до 9. При полном обороте колеса оно сцеплялось с соседним колесом и поворачивало его на одно деление. Число колес определяло число разрядов – так, два колеса позволяли считать до 99, три – уже до 999, а пять колес делали машину «знающей» даже такие большие числа как 99999. Считать на «Паскалине» было очень просто.

В 1673 году немецкий математик и философ Готфрид Вильгельм Лейбниц создал механическое счетное устройство, которое не только складывало и вычитало, но и умножало и делило. Машина Лейбница была сложнее «Паскалины». Числовые колеса, теперь уже зубчатые, имели зубцы девяти различных длин, и вычисления производились за счет сцепления колес. Именно несколько видоизмененные колеса Лейбница стали основой массовых счетных приборов – арифмометров, которыми широко пользовались не только в ХIХ веке, но и сравнительно недавно наши дедушки и бабушки.

Арифмометры получили очень широкое применение. На них выполняли даже очень сложные расчеты, например, расчеты баллистических таблиц для ар­тиллерийских стрельб. Существовала и специальная профессия - счетчик - человек, работающий с арифмометром, быстро и точно со­блюдающий определенную последовательность инструкций (такую по­следовательность инструкций впоследствии стали называть програм­мой). Но многие расчеты производились очень медленно - даже десятки счетчиков должны были работать по несколько недель и меся­цев. Причина проста - при таких расчетах выбор выполняемых дей­ствий и запись результатов производились человеком, а скорость его работы весьма ограничена.

1.2 Идеи Бэббиджа.

Из всех изобретателей прошлых столетий, внесших вклад в развитие вычислительной техники, наиболее близко к созданию компьютера в современном представлении подошел англичанин Чарльз Бэббидж.

Желание механизировать вычисления возникло у Бэббиджа в связи с недовольством, которое он испытывал, сталкиваясь с ошибками в математических таблицах, используемых в самых различных областях.

В 1822 г. Бэббидж построил пробную модель вычислительного устройства, назвав ее "Разностной машиной": работа модели основывалась на принципе, известном в математике как "метод конечных разностей". Данный метод позволяет вычислять значения многочленов, употребляя только операцию сложения и не выполнять умножение и деление, которые значительно труднее поддаются автоматизации. При этом предусматривалось применение десятичной системы счисления (а не двоичной, как в современных компьютерах).

Однако "Разностная машина" имела довольно ограниченные возможности. Репутация Бэббиджа как первооткрывателя в области автоматических вычислений завоевана в основном благодаря другому, более совершенному устройству Аналитической машине (к идее создания которой он пришел в 1834 г.), имеющей удивительно много общего с современными компьютерами.

Предполагалось, что это будет вычислительная машина для решения широкого круга задач, способная выполнять основные операции: сложение, вычитание, умножение, деление. Предусматривалось наличие в машине "склада" и "мельницы" (в современных компьютерах им соответствуют память и процессор). Причем планировалось, что работать она будет по программе, задаваемой с помощью перфокарт, а результаты можно будет выдавать на печать (и даже представлять их в графическом виде) или на перфокарты. Но Бэббидж не смог довести до конца работу по созданию Аналитической машины, она оказалась слишком сложной для техники того времени.

Историки утверждают, что первым человеком, сформулировавшим идею о машине, которая может производить вычисления автоматически (т.е. без непосредственного участия человека благодаря заложенной программе) был Чарльз Бэббидж 1 . Он не просто провозгласил неочевидную в то время идею автоматической вычислительной машины, но и посвятил всю свою жизнь ее разработке. Одна из его заслуг состояла в том, что он предвосхитил функциональное устройство вычислительных устройств. По замыслу Бэббиджа, его аналитическая машина имела следующие функциональные узлы :

ü "склад" для хранения чисел (по современной терминологии память);

ü "мельница" (арифметическое устройство);

ü устройство, управляющее последовательностью операций в машине (Бэббидж не дал ему названия, сейчас используется термин устройство управления);

ü устройства ввода и вывода данных.

Идеи Бэббиджа на десятилетия опередили появление пригодной для практической реализации вычислительных машин элементной базы – реально работающие конструкции появились лишь в середине XX века. Фундаментальные принципы архитектуры ЭВМ были обобщены и систематическим образом изложены в 1946 в классической статье А. Беркса, Г. Голдстейна и Дж. Неймана "Предварительное рассмотрение логической конструкции электронного вычислительного устройства" . В ней, в частности, четко и логично обосновывалась структура ЭВМ.

все функциональные блоки ЭВМ имеют вполне естественное назначение и образуют простую и логически обоснованную структуру. Последняя оказалась настолько удачной, что во многом сохранилась вплоть до наших дней. Для нее даже используется общепринятое название фон-неймановская архитектура.

Таким образом, любая вычислительная машина содержит в себе следующие функциональные блоки:

ü арифметико-логическое устройство АЛУ;

ü устройство управления УУ;

ü различные виды памяти;

ü устройства ввода информации и

ü устройства вывода информации.

В связи с огромными успехами в миниатюризации электронных компонентов, в современных компьютерах АЛУ и УУ удалось конструктивно объединить в единый узел – микропроцессор. Вообще термин процессор почти повсеместно, за исключением детальной литературы, вытеснил упоминания о своих составляющих АЛУ и УУ.

Если сам перечень функциональных блоков более чем за полвека практически не изменился, то способы их соединения и взаимодействия претерпели некоторое эволюционное развитие.


Глава II. Поколения ЭВМ.

2.1 Компьютеры первого поколения.

Первое поколение.(1945-1954) - компьютеры на электронных лампах (вроде тех, что были в старых телевизорах). Это доисторические времена, эпоха становления вычислительной техники. Большинство машин первого поколения были экспериментальными устройствами и строились с целью проверки тех или иных теоретических положений. Вес и размеры этих компьютерных динозавров, которые нередко требовали для себя отдельных зданий, давно стали легендой.

Основоположниками компьютерной науки по праву считаются Клод Шеннон - создатель теории информации, Алан Тьюринг - математик, разработавший теорию программ и алгоритмов, и Джон фон Нейман - автор конструкции вычислительных устройств, которая до сих пор лежит в основе большинства компьютеров. В те же годы возникла еще одна новая наука, связанная с информатикой, - кибернетика, наука об управлении как одном из основных информационных процессов. Основателем кибернетики является американский математик Норберт Винер.

2.2 Компьютеры второго поколения.

Во втором поколении компьютеров (1955-1964) вместо электронных ламп использовались транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и магнитные барабаны - далекие предки современных жестких дисков. Все это позволило резко уменьшить габариты и стоимость компьютеров, которые тогда впервые стали строиться на продажу.

Но главные достижения этой эпохи принадлежат к области программ. На втором поколении компьютеров впервые появилось то, что сегодня называется операционной системой. Тогда же были разработаны первые языки высокого уровня - Фортран, Алгол, Кобол. Эти два важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров; программирование, оставаясь наукой, приобретает черты ремесла.

Соответственно расширялась и сфера применения компьютеров. Теперь уже не только ученые могли рассчитывать на доступ к вычислительной технике; компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже компьютеризовали свою бухгалтерию, предвосхищая моду на двадцать лет.

2.3 Компьютеры третьего поколения.

В третьем поколении ЭВМ (1965-1974) впервые стали использоваться интегральные схемы - целые устройства и узлы из десятков и сотен транзисторов, выполненные на одном кристалле полупроводника (то, что сейчас называют микросхемами). В это же время появляется полупроводниковая память, которая и по всей день используется в персональных компьютерах в качестве оперативной.

В эти годы производство компьютеров приобретает промышленный размах. Пробившаяся в лидеры фирма IBM первой реализовала семейство ЭВМ - серию полностью совместимых друг с другом компьютеров от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных и дорогих моделей. Наиболее распространенным в те годы было семейство System/360 фирмы IBM, на основе которого в СССР была разработана серия ЕС ЭВМ.

Еще в начале 60-х появляются первые миникомпьютеры - небольшие маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям. Миникомпьютеры представляли собой первый шаг на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 70-х годов. Известное семейство миникомпьютеров PDP фирмы Digital Equipment послужило прототипом для советской серии машин СМ.

Между тем количество элементов и соединений между ними, умещающихся в одной микросхеме, постоянно росло, и в 70-е годы интегральные схемы содержали уже тысячи транзисторов. Это позволило объединить в единственной маленькой детальке большинство компонентов компьютера - что и сделала в 1971 г. фирма Intel, выпустив первый микропроцессор, который предназначался для только-только появившихся настольных калькуляторов. Этому изобретению суждено было произвести в следующем десятилетии настоящую революцию - ведь микропроцессор является сердцем и душой нашего с вами персонального компьютера.

Но и это еще не все - поистине, рубеж 60-х и 70-х годов был судьбоносным временем. В 1969 г. зародилась первая глобальная компьютерная сеть - зародыш того, что мы сейчас называем Интернетом. И в том же 1969 г. одновременно появились операционная система Unix и язык программирования С ("Си"), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение.

2.4 Компьютеры четвертого поколения.

К сожалению, дальше стройная картина смены поколений нарушается. Обычно считается, что период с 1975 по 1985 гг. принадлежит компьютерам четвертого поколения. Однако есть и другое мнение - многие полагают, что достижения этого периода не настолько велики, чтобы считать его равноправным поколением. Сторонники такой точки зрения называют это десятилетие принадлежащим "третьему-с половиной" поколению компьютеров, и только с 1985 г., по их мнению, следует отсчитывать годы жизни собственно четвертого поколения, здравствующего и по сей день.

Так или иначе, очевидно, что начиная с середины 70-х все меньше становится принципиальных новаций в компьютерной науке. Прогресс идет в основном по пути развития того, что уже изобретено и придумано, - прежде всего за счет повышения мощности и миниатюризации элементной базы и самих компьютеров.

И, конечно же, самое главное - что с начала 80-х, благодаря появлению персональных компьютеров, вычислительная техника становится по-настоящему массовой и общедоступной. Складывается парадоксальная ситуация: несмотря на то, что персональные и миникомпьютеры по-прежнему во всех отношениях отстают от больших машин, львиная доля новшеств последнего десятилетия - графический пользовательский интерфейс, новые периферийные устройства, глобальные сети - обязаны своим появлением и развитием именно этой "несерьезной" технике. Большие компьютеры и суперкомпьютеры, конечно же, отнюдь не вымерли и продолжают развиваться. Но теперь они уже не доминируют на компьютерной арене, как было раньше.

2.5 Компьютеры пятого поколения.

Основные требования к компьютерам 5-го поколения: Создание развитого человеко-машинного интерфейса (распознавание речи, образов); Развитие логического программирования для создания баз знаний и систем искусственного интеллекта; Создание новых технологий в производстве вычислительной техники; Создание новых архитектур компьютеров и вычислительных комплексов.

Новые технические возможности вычислительной техники должны были расширить круг решаемых задач и позволить перейти к задачам создания искусственного интеллекта. В качестве одной из необходимых для создания искусственного интеллекта составляющих являются базы знаний (базы данных) по различным направлениям науки и техники. Для создания и использования баз данных требуется высокое быстродействие вычислительной системы и большой объем памяти. Универсальные компьютеры способны производить высокоскоростные вычисления, но не пригодны для выполнения с высокой скоростью операций сравнения и сортировки больших объемов записей, хранящихся обычно на магнитных дисках. Для создания программ, обеспечивающих заполнение, обновление баз данных и работу с ними, были созданы специальные объектно ориентированные и логические языки программирования, обеспечивающие наибольшие возможности по сравнению с обычными процедурными языками. Структура этих языков требует перехода от традиционной фон-неймановской архитектуры компьютера к архитектурам, учитывающим требования задач создания искусственного интеллекта.

2.6 Поколения суперкомпьютеров.

К классу суперкомпьютеров относят компьютеры, которые имеют максимальную на время их выпуска производительность, или так называемые компьютеры 5-го поколения.

Первые суперкомпьютеры появились уже среди компьютеров второго поколения (1955 - 1964, см. компьютеры второго поколения), они были предназначены для решения сложных задач, требовавших высокой скорости вычислений. Это LARC фирмы UNIVAC, Stretch фирмы IBM и "CDC-6600" (семейство CYBER) фирмы Control Data Corporation, в них были применены методы параллельной обработки (увеличивающие число операций, выполняемых в единицу времени), конвейеризация команд (когда во время выполнения одной команды вторая считывается из памяти и готовится к выполнению) и параллельная обработка при помощи процессора сложной структуры, состоящего из матрицы процессоров обработки данных и специального управляющего процессора, который распределяет задачи и управляет потоком данных в системе. Компьютеры, выполняющие параллельно несколько программ при помощи нескольких микропроцессоров, получили название мультипроцессорных систем.

Отличительной особенностью суперкомпьютеров являются векторные процессоры, оснащенные аппаратурой для параллельного выполнения операций с многомерными цифровыми объектами - векторами и матрицами. В них встроены векторные регистры и параллельный конвейерный механизм обработки. Если на обычном процессоре программист выполняет операции над каждым компонентом вектора по очереди, то на векторном - выдаёт сразу векторные команды

До середины 80-х годов в списке крупнейших производителей суперкомпьютеров в мире были фирмы Sperry Univac и Burroughs. Первая известна, в частности, своими мэйнфреймами UNIVAC-1108 и UNIVAC-1110, которые широко использовались в университетах и государственных организациях.

После слияния Sperry Univac и Burroughs объединенная фирма UNISYS продолжала поддерживать обе линии мэйнфреймов с сохранением совместимости снизу вверх в каждой. Это является ярким свидетельством непреложного правила, поддерживавшего развитие мэйнфреймов - сохранение работоспособности ранее разработанного программного обеспечения.

В мире суперкомпьютеров известна и компания Intel. Многопроцессорные компьютеры Paragon фирмы Intel в семействе многопроцессорных структур с распределенной памятью стали такой же классикой, как компьютеры фирмы Cray Research в области векторно-конвейерных суперкомпьютеров.

В наше время, время всеобщей компьютеризации, во всем мире неуклонно происходит увеличение доли людей, работающих в информационной сфере в сравнении с производственной. Так, например, в США сто лет назад, в информационной сфере было занято 5% работающих и в производственной - 95%, а на сегодняшний день это соотношение приближается к 50 на 50, причем подобное перераспределение людей продолжается. Автоматизация и компьютеризация информационной сферы, в общем отстает от автоматизации производственной сферы. Теперь для человека уже недостаточно того, что ЭВМ быстро и точно решает самые сложные расчетные задачи, сегодня человеку становится необходимой помощь ЭВМ для быстрой интерпретации, семантического анализа огромного объема информации. Эти задачи мог бы решить так называемый “искусственный интеллект”. Вопрос о создании искусственного интеллекта возник почти одновременно с началом компьютерной революции. Но на пути его создания встает много вопросов: принципиальная возможность создания искусственного интеллекта на основе компьютерных систем; будет ли искусственный интеллект ЭВМ, если его удастся создать, подобен человеческому по форме восприятия и осмысления реального мира или это будет интеллект совершенно иного качества; возможность представления знаний в компьютерных системах и много других. Многие проблемы не решены, и среди этих проблем не последнее место принадлежит проблемам, которые могла бы помочь разрешить философия.

Глава III. Место в современном мире.

3.1 Эволюционный процесс.

Эволюционный процесс, который привел к современным микрокомпьютерам, был чрезвычайно быстрым. Хотя при создании машины, известной как "персональный компьютер", было использовано большое число открытий и изобретений, следует упомянуть несколько событий, ставших важными вехами в истории науки, чтобы представить себе полную картину в ее перспективе.

Еще не так давно, всего три десятка лет назад, ЭВМ представляла собой целый комплекс огромных шкафов, занимавших несколько больших помещений. А всего и делала-то, что довольно быстро считала. Нужна была буйная фантазия журналистов, чтобы увидеть в этих гигантских арифмометрах «думающие агрегаты, и даже пугать людей тем, что ЭВМ вот-вот станут разумнее человека.

Тогдашняя переоценка возможностей человека объяснима. Представьте себе: на железных дорогах ещё пыхтели паровозы, ещё только-только появлялись вертолеты, и на них смотрели как на диковинку; ещё редко кто видел телевизор; ещё об ЭВМ знали только узкие специалисты... и вдруг сенсация - машина переводит с языка на язык! Пусть всего пару коротеньких предложений, но ведь переводит сама! Было от чего прийти в изумление. К тому же ЭВМ стремительно совершенствовалась: резко сокращались её размеры, она работала все быстрее и быстрее, обрастала все новыми приспособлениями, с помощью которых стала печатать текст, чертить чертежи и даже рисовать картинки. Неудивительно, что люди верили всяким вымыслам относительно нового технического чуда. И когда один язвительный кибернетик сам сочинил туманно-загадочные стихи, а потом выдал их за сочинение машины, то ему поверили.

3.2 Современные компьютеры.

Что же говорить о современных компьютерах, компактных, быстродействующих, оснащённых руками - манипуляторами, экранами дисплеев, печатающими, рисующими и чертящими устройствами, анализаторами образов, звуков, синтезаторами речи и другими «органами»! На всемирной выставке в Осаке компьютеризированные роботы уже ходили по лестнице, перенося вещи с этажа на этаж, играли с листа на фортепьяно, беседовали с посетителями. Так и кажется, что они вот-вот сравняются по своим способностям с человеком, а то и превзойдут его.

Да компьютеры многое могут. Но, конечно, далеко не всё. Прежде всего, «умные» машины способны эффективно помочь школьнику в учебе. Почему-то считается, что компьютеры нужны прежде всего на уроках математики, физики, химии, т.е. при изучении тех наук, которые вроде бы поближе к технике, а на уроках русского языка достаточно, мол, традиционных «технических» средств - доски, мела и тряпки.

Конечно, язык неизмеримо сложнее любой математической, химической или физической системы условных знаков. Язык охватывает все без исключения области человеческих знаний, и сами эти знания без него невозможны. Язык - оформитель и выразитель нашего мышления, а мышление - самое сложное из всего, что только известно нам, во всяком случае до сегодняшнего дня. Однако компьютеры все шире вторгаются в гуманитарные области, и процесс этот будет идти нарастающими темпами.

3.3 Семейство компьютеров.

Семейство компьютеров - электронных технических приспособлений для переработки информации - довольно велико и разнообразно. Есть маленькие счетные устройства - микрокалькуляторы, которые помещаются в наручных часах, шариковых ручках: крохотные кнопки-числа, которые нужно нажимать иголкой или остриём карандаша, и несколько операций - четыре действия арифметики, вычисление процентов, возведение в степень, извлечение корня. Вот и все - для работы с языком возможности маловаты.

Компьютеры побольше - размером с карточку - календарь и такие же плоские. На них и кнопок никаких нет, и вообще нет никаких движущихся деталей. Все просто напечатано, а цифры индикатора - на жидких кристаллах. Дотрагиваешься до печатных цифр - они выстраиваются на индикаторе из кристаллов; энергия - от напечатанной полоски - фотоэлемента. Такую «машинку» ни сломать, ни разбить нельзя, разве что порвать.

Есть калькуляторы величиной с записную книжку, с книгу среднего формата. Увеличиваются их возможности: аппарат выполняет целый набор сложных алгебраических операций, у него появляется оперативная память, так что работу уже можно легко программировать.

Есть даже модели карманных калькуляторов с внешней памятью - целый набор ферромагнитных пластинок, на которых можно записать довольно сложную программу с большим количеством исходных данных. По мере необходимости пластинки вводятся в приемник машинки, она «глотает» их и перерабатывает информацию не хуже, чем первые вычислительные шкафы- мастодонты. А ведь кроха - в кармане помещается!

Так незаметно из простого электронного счетчика вырастает настоящий компьютер с широкими возможностями. И вот уже появляется настольная ЭВМ с солидной внешней памятью, экраном дисплея и алфавитной клавиатурой. Это уже персональный, индивидуальный компьютер, возможностей которого вполне достаточно для работы с языком. А удобства - лучше не придумаешь: программа записана на небольшой пластинке- дискетке, информация вводится прямо с клавиатуры, где есть цифры и алфавит (русский или латинский), все, что вам нужно, высвечивается здесь же на экране дисплея. Никакой мороки ни с перфокартами, ни с перфолентами, никаких забот о машинном времени, никаких ожиданий, когда заработает именно ваша программа и будут получены результаты - всё здесь, всё под рукой, всё на глазах.

Есть индивидуальные компьютеры с памятью на компакт-диске. Это небольшой радужно отсвечивающий диск размером с маленькую пластинку для проигрывателя, только «проигрывается» он не с помощью иглы, а с помощью лазерного луча. На одном таком диске умещается столько информации, что если её напечатать в книге, то понадобятся целые тома. Но если возможностей индивидуального компьютера все же не хватает, приходится обращаться к большим ЭВМ.

Заключение.

ЭВМ- электронно-вычислительные машины. Компьютер рассчитывает конструкцию космического корабля, управляет его полетом. Компьютер предсказывает погоду. Для этого ему приходится обрабатывать массу информации, получаемой как на Земле, так и из космоса- с искусственных спутников Земли. Компьютер помогает проектировать новые автомобили, самолеты, заводы. Компьютер на животноводческой ферме помогает выбрать наилучший состав корма и определить его порции, управляет температурой, влажностью и освещением теплиц. Компьютер рассчитывает заработную плату, которую получают родители. Компьютер используется даже в кино. С его помощью можно нарисовать что угодно, потом заснять, и зритель никогда не догадается о том, что этого на самом деле нет.

Конечно, возможности компьютера не безграничны. Больше того, он делает только то, чему его научил человек. А научен компьютер уже многому. Во всяком случае человек, вооруженный компьютером, может творить такие чудеса, которые и не снились Аладдину с его волшебной лампой или старику Хоттабычу с его чудесной бородой. С компьютером можно просто поиграть. Он заменяет целый зал игровых автоматов, так как позволяет играть не в одну, а во множество разных игр. Компьютер помогает историкам восстанавливать и расшифровывать древние рукописи, написанные на пергаменте, бересте или глиняных табличках.

Компьютеры продают авиационные и железнодорожные билеты, мгновенно сообщая кассирам в разных частях города и даже в разных городах, на какой самолёт или поезд есть свободные места.

Компьютеру нашлось место и в школе. Он может заменить химическую лабораторию, наглядно показав на экране, что будет, если соединить какие-нибудь вещества. С его помощью легко продемонстрировать, как работает паровой двигатель или как взлетает ракета. Он облегчит изучение иностранного языка. Компьютер поможет составить список всех книг в библиотеке (такой список называется каталогом) и мгновенно отыскать в нём все книги любого автора или на любую тему.

Использование ЭВМ позволило в последние годы создать новый метод получения изображения внутренних частей непрозрачных тел. Этот метод называется томографией. Он позволяет получать изображение гораздо лучшего качества, чем рентгеноскопия.

Поручая компьютерам механическую, рутинную работу, мы освобождаем человека для творческой деятельности. Для того чтобы ЭВМ могли решать нужные задачи, люди должны постоянно передавать компьютерам свои знания в виде точной информации, строгих правил, безошибочных алгоритмов и эффективных программ. Вот почему знание основ информатики и вычислительной техники, понимание их роли в жизни общества, деятельности людей становятся элементом человеческой культуры, составной частью общего образования, учебным предметом.


Приложение.

Приложение 1. Структура ЭВМ в первом, втором поколениях.


Приложение 2. Структура ЭВМ в третьем поколении.

Приложение 3. Структура ЭВМ в четвертом поколении.

Сахалинский областной институт переподготовки и повышения квалификации кадров Кафедра Новых информационных технологий Восточный лицей Реферат Персональные ЭВМ. История
  • Основные устройства компьютера
  • Разновидности персональных компьютеров
  • Состав системного блока ПК
  • Структура программного обеспечения компьютера
  • Системы программирования и прикладное ПО
  • Компьютерные вирусы
  • Вопросы и упражнения
  • Роль ЭВМ в современном мире

    Электронно-вычислительные машины (ЭВМ) проникли во многие сферы человеческой деятельности. Использование ЭВМ позволяет переложить обработку информации на автоматические устройства, способные достаточно долго работать без участия человека и со скоростью, в несколько миллионов раз превышающей скорость обработки информации человеком.
    Универсальность ЭВМ, её способность к целенаправленной переработке различных видов информации и объясняют происходящий сейчас стремительный процесс внедрения компьютеров в самые разные сферы деятельности человека в современном обществе. Область применений компьютеров чрезвычайно широка. Они применяются везде, где можно создать математические модели для каких-нибудь явлений.
    Компьютеры используются в медицине для установки диагноза. Пациент вводит с клавиатуры ответы на вопросы, а ЭВМ анализирует их и подобно опытному врачу ставит диагноз. На экран выводятся способы лечения. Компьютер следит за состоянием недоношенных детей с затруднённым дыханием и управляет работой искусственных лёгких. Избыток воздуха, поступившего в лёгкие ребёнка, может повредить их, а недостаток - привести к заболеванию мозга. ЭВМ устанавливает оптимальный режим подачи воздуха.
    Использование компьютера позволяет получать изображение внутренних частей непрозрачных тел. Это называется томография. Во многом благодаря обработке данных изображение получается лучшего качества, чем рентгеноскопия. Томография позволяет обнаружить признаки заболевания, скрытые в тканях человеческого организма. Можно «анатомировать» кролика на экране ЭВМ с помощью светового пера, избежав тем самым процедуры вскрытия настоящего животного.
    С помощью ЭВМ решается задача по прогнозу погоды. Она собирает и анализирует информацию, получаемую со спутников и метеостанций, выполняет огромный объём вычислений, необходимых для решения уравнений, возникающих при математическом моделировании процессов в атмосфере и океане, и, наконец, представляет полученные результаты.
    ЭВМ часто используются для анализа данных. Они хранят наборы данных и сравнивают их с вводимой информацией.

    Компьютеры обрабатывают счета и накладные для фирм и организаций, а их графические возможности используются архитекторами и проектировщиками. ЭВМ может выводить трёхмерное изображение объектов и вращать их с тем, чтобы конструктор мог рассмотреть эти объекты под разными углами.
    ЭВМ применяются в транспортных системах. Компьютер используется в кассах аэрокомпаний и железнодорожного транспорта.
    Сейчас никого не удивит сообщение: «Проведённый с помощью ЭВМ анализ показал, что такое-то стихотворение не принадлежит Шекспиру» или «Учёные, обработав два художественных полотна, утверждают, что это работы одного автора». ЭВМ может отличить подлинник от копии.
    Домашний компьютер может оказать неоценимую пользу, стать источником новых знаний, а нередко и доходов. Он помогает в изучении иностранных языков, становится полезным инструментом для будущих композиторов и исполнителей музыки, незаменим для школьников, увлечённых математикой и информатикой, разгружает студентов от утомительной расчётной работы. Умение работать на ПК (персональном компьютере) ценится работодателями, и прежде всего солидными и преуспевающими фирмами.
    Современный компьютер успешно заменяет пишущую машинку, обеспечивает хранение и быстрый поиск многих тысяч документов, позволяет освоить навыки работы художника-дизайнера.
    Особенно заманчивы и увлекательны мультимедиа приложения компьютера, благодаря чему его можно объединить с телевизором, видеомагнитофоном и видеокамерой, и попробовать свои силы в создании систем управления голосом, музицировании и аранжировке музыкальных произведений, обработке изображений и создании своих собственных видеоклипов.
    Биотехнология, атомная, энергетическая, технология новых материалов, безотходных производств и изготовления лекарственных препаратов невозможны без использования компьютеризированных информационных систем. Компьютеры объединяют системы связи (телефон, телевидение, телефакс, спутниковую связь), а также ведомственные, бытовые и научные базы данных и знаний.