Тарифы Услуги Сим-карты

Информация в таблице маршрутизации определяющая эффективность маршрута. Примеры использования команды ROUTE. Дополнительные возможности маршрутизации

Маршрутизация – это процесс определения пути следования информации в сетях связи. Маршрутизация служит для приема пакета от одного устройства и передаче его другому устройству через другие сети. Маршрутизатором или шлюзом называется узел сети с несколькими интерфейсами, каждый из которых имеет свой MAC-адрес и IP адрес.

Другим важным понятием является таблица маршрутизации. Таблица маршрутизации – это база данных, хранящаяся на маршрутизаторе, которая описывает соответствие между адресами назначения и интерфейсами, через которые следует отправить пакет данных до следующего узла. Таблица маршрутизации содержит: адрес узла назначения, маску сети назначения, адрес шлюза (обозначающий адрес маршрутизатора в сети на который необходимо отправить пакет, следующий до указанного адреса назначения), интерфейс (физический порт через который передается пакет), метрика (числовой показатель, задающий приоритет маршрута).

Размещение записей в таблице маршрутизации может производиться тремя различными способами. Первый способ предполагает применение прямого соединения при котором маршрутизатор сам определяет подключенную подсеть. Прямой маршрут – это маршрут, который является локальным по отношению к маршрутизатору. Если один из интерфейсов маршрутизатора соединен с какой-либо сетью напрямую, то при получении пакета, адресованного такой подсети, маршрутизатор сразу отправляет пакет на интерфейс, к которому она подключена. Прямое соединение является наиболее достоверным способом маршрутизации.

Второй способ предполагает занесение маршрутов вручную. В данном случае имеет место статическая маршрутизация. Статический маршрут определяет Ip-адрес следующего соседнего маршрутизатора или локальный выходной интерфейс, который используется для направления трафика к определенной подсети-получателю. Статические маршруты должны быть заданы на обеих концах канала связи между маршрутизаторами, иначе удаленный маршрутизатор не будет знать маршрута, по которому нужно отправлять ответные пакеты и будет организована лишь односторонняя связь.

И третий способ подразумевает автоматическое размещение записей с помощью протоколов маршрутизации. Данным способ называется динамической маршрутизацией. Протоколы динамической маршрутизации могут автоматически отслеживать изменения в топологии сети. Успешное функционирование динамической маршрутизации зависит от выполнения маршрутизатором двух основных функций:

  1. Поддержка своих таблиц маршрутизации в актуальном состоянии
  2. Своевременное распространение информации об известных им сетях и маршрутах среди остальных маршрутизаторов

В качестве параметров для расчет метрик могут выступать:

  1. Ширина полосы пропускания
  2. Задержка (время для перемещения пакета от источника к получателю)
  3. Загрузка (загруженность канала в ед. времени)
  4. Надежность (относительное количество ошибок в канале)
  5. Количество хопов (переходов между маршрутизаторами)

Если маршрутизатору известно более одного маршрута до сети получателя, то он сравнивает метрики этих маршрутов и передает в таблицу маршрутизации маршрут с наименьшей метрикой (стоимостью).

Существует достаточно много протоколов маршрутизации – все они делятся по следующим признакам:

  1. По используемому алгоритму (дистанционно-векторные протоколы, протоколы состояния каналов связи)
  2. По области применения (для внутридоменной маршрутизации, для междоменной маршрутизации)

Протокол состояния каналов основан на алгоритме Дейкстры, про него я уже . Про дистанционно-векторный алгоритм расскажу вкратце.

Итак, в дистанционно-векторных протоколах маршрутизаторы:

  • Определяют направление (вектор) и расстояние до нужного узла сети
  • Периодически пересылают таблицы маршрутизации друг другу
  • В регулярных обновлениях маршрутизаторы узнают об изменениях топологии сети

Если не вдаваться в подробности, то протокол маршрутизации по состоянию каналу лучше по нескольким причинам:

  • Точное понимание топологии сети. Протоколы маршрутизации состояния канала создают дерево кратчайших путей в сети. Таким образом, каждый маршрутизатор точно знает, где находится его “собрат”. В дистанционно-векторных протоколах такой топологии нет.
  • Быстрая сходимость. Получая пакет состояния канала LSP, маршрутизаторы сразу же лавиннообразно рассылают этот паке дальше. В дистанционно-векторных протоколах маршрутизатор должен сначала обновить свою таблицу маршрутизации, прежде чем разослать его лавинно на другие интерфейсы.
  • Управляемые событиями обновления. LSP отправляются только тогда, когда происходят изменения в топологии и только информацию, касающуюся этого изменения.
  • Разделение на зоны. Протоколы состояния канала используют понятие зона – область в пределах который распространяется маршрутная информация. Это разделение помогает снизить нагрузку на ЦП маршрутизатора и структурировать сеть.

Примеры протоколов состояния канала: OSPF , IS-IS .

Примеры дистанционно-векторных протоколов: RIP , IGRP .

Другое глобальное разделение протоколов по области применения: для внутредоменной маршрутизации IGP, для междоменной маршрутизации EGP. Пройдемся по определениям.

IGP (Interior Gateway Protocol) – протокол внутреннего шлюза. К ним относят любые протоколы маршрутизации, используемые внутри автономной системы (RIP, OSPF, IGRP, EIGRP, IS-IS). Каждый IGP-протокол представляет один домен маршрутизации внутри автономной системы.

EGP (Exterior Gateway Protocol) – протокол внутреннего шлюза. Обеспечивает маршрутизацию между различными автономными системами. Протоколы EGP обеспечивают соединение отдельных автономных систем и транзит передаваемых данных между этими автономными системами. Пример протокола: BGP .

Поясним также понятие автономной системы.

Автономная система (authonomous system, AS) – это набор сетей, которые находятся под единым административным управлением и в которых используется единая стратегия и правила маршрутизации.

Автономная система для внешних сетей выступает как единый объект.

Домен маршрутизации – это совокупность сетей и маршрутизаторов, использующих один и тот же протокол маршрутизации.

Напоследок картинка, поясняющая структуру протоколов динамической маршрутизации.


Подписывайтесь на нашу

Структура реальных таблиц маршрутизации стека TCP/IP в целом соответствует упрощенной структуре рассмотренных ранее таблиц. Отметим, однако, что вид таблицы IP-маршрутизации зависит от конкретной реализации стека TCP/IP. Приведем пример нескольких вариантов таблицы маршрутизации, с которыми мог бы работать маршрутизатор R1 в сети, представленной на рис. 1.

Начнем с «придуманного» предельно упрощенного варианта таблицы маршрутизации (табл. 1). Здесь имеются три маршрута к сетям (записи 56.0.0.0,116.0.0.0 и 129.13.0.0), две записи о непосредственно подсоединенных сетях (198.21.17.0 и 213.34.12.0), а также запись о маршруте по умолчанию.

Таблица 1. Упрощенная таблица маршрутизации маршрутизатора R1

Адрес сети назначения Адрес следующего маршрутизатора Адрес выходного интерфейса Расстояние до сети назначения
15
13
2
1 (подсоединена)
1
56.0.0.0 213.34.12.4 213.34.12.3 15
116.0.0.0 213.34.12.4 213.34.12.3 13
129.13.0.0 198.21.17.6 198.21.17.5 2
198.21.17.0 198.21.17.5 198.21.17.5 1(подсоединена)
213.34.12.0 213.34.12.3 213.34.12.3 1(подсоединена)
Маршрут по умолчанию 198.21.17.7 198.21.17.5 -

Более сложный вид имеют таблицы, которые генерируются в промышленно выпускаемом сетевом оборудовании.

Если представить, что в качестве маршрутизатора R1 в данной сети работает штатный программный маршрутизатор операционной системы Microsoft Windows ХР, то его таблица маршрутизации могла бы выглядеть так, как табл. 2.

Рис. 1 Пример маршрутизируемой сети

Таблица 2. Таблица программного маршрутизатора ОС Windows ХР

Сетевой адрес Маска Адрес шлюза Интерфейс Метрика
127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1
0.0.0.0 0.0.0.0 198.21.17.7 198.21.17.5 1
56.0.0.0 255.0.0.0 213.34.12.4 213.34.12.3 15
116.0.0.0 255.0.0.0 213.34.12.4 213.34.12.3 13
129.13.0.0 255.255.0.0 198.21.17.6 198.21.17.5 2
198.21.17.0 255.255.255.0 198.21.17.5 198.21.17.5 1
198.21.17.5 255.255.255.255 127.0.0.1 127.0.0.1 1
198.21.17.255 255.255.255.255 198.21.17.5 198.21.17.5 1
213.34.12.0 255.255.255.0 213.34.12.3 213.34.12.3 1
213.34.12.3 255.255.255.255 127.0.0.1 127.0.0.1 1
213.34.12.255 255.255.255.255 213.34.12.3 213.34.12.3 1
224.0.0.0 224.0.0.0 198.21.17.6 198.21.17.6 1
224.0.0.0 224.0.0.0 213.34.12.3 213.34.12.3 1
255.255.255.255 255.255.255.255 198.21.17.6 198.21.17.6 1

Если на месте маршрутизатора R1 установить один из популярных аппаратных маршрутизаторов, то его таблица маршрутизации для этой же сети может выглядеть совсем иначе (табл. 3).

Таблица 3. Таблица маршрутизации аппаратного маршрутизатора

И наконец табл. 4 представляет собой таблицу маршрутизации для того же маршрутизатора R1, реализованного в виде программного маршрутизатора одной из версий операционной системы Unix.

Таблица 4. Таблица маршрутизации Unix-маршрутизатора

Адрес назначения Шлюз Флаги Интерфейс
127.0.0.0 127.0.0.1 UH 1 154 1о0
Маршрут по умолчанию 198.21.17.7 UG 5 43270 1е0
198.21.17.0 198.21.17.5 U 35 246876 1е0
213.34.12.0 213.34.12.3 U 44 132435 le1
129.13.0.0 198.21.1.7.6 UG 6 16450 1е0
56.0.0.0 213.34.12.4 UG 12 5764 le1
116.0.0.0 213.34.12.4 UG 21 23544 le1

ПРИМЕЧАНИЕ
Заметим, что поскольку между структурой сети и таблицей маршрутизации нет однозначного соответствия, для каждого из приведенных вариантов таблицы можно предложить свои «подварианты», отличающиеся выбранным маршрутом к той или иной сети. В данном случае внимание концентрируется на существенных различиях в форме представления маршрутной информации разными реализациями маршрутизаторов.

Несмотря на достаточно заметные внешние различия, во всех трех «реальных» таблицах присутствуют все ключевые данные из рассмотренной упрощенной таблицы, без которых невозможна маршрутизация пакетов.

К таким данным, во-первых, относятся адреса сети назначения (столбцы «Адрес назначения» в аппаратном маршрутизаторе и маршрутизаторе Unix или столбец «Сетевой адрес» в маршрутизаторе ОС Windows ХР).

Вторым обязательным полем таблицы маршрутизации является адрес следующего маршрутизатора (столбцы «Шлюз» в аппаратном маршрутизаторе и маршрутизаторе Unix или столбец «Адрес шлюза» в маршрутизаторе ОС Windows ХР).

Третий ключевой параметр - адрес порта, на который нужно направить пакет, в некоторых таблицах указывается прямо (столбец «Интерфейс» в таблице маршрутизатора ОС Windows ХР), а в некоторых - косвенно. Так, в таблице маршрутизатора Unix вместо адреса порта задается его условное наименование - 1е0 для порта с адресом 198.21.17.5, lei для порта с адресом 213.34.12.3 и 1о0 для внутреннего порта с адресом 127.0.0.1. В адпаратном маршрутизаторе поле, обозначающее выходной порт в какой-либо форме, вообще отсутствует. Это объясняется тем, что адрес выходного порта всегда можно косвенно определить по адресу следующего маршрутизатора. Например, определим по табл. 3 адрес выходного порта для сети 56.0.0.0. Из таблицы следует, что следующим маршрутизатором для этой сети будет маршрутизатор с адресом 213.34.12.4. Адрес следующего маршрутизатора должен принадлежать одной из непосредственно присоединенных к маршрутизатору сетей, и в данном случае это сеть 213.34.12.0. Маршрутизатор имеет порт, присоединенный к этой сети, и адрес этого порта 213.34.12.3 мы находим в столбце «Шлюз» второй строки таблицы маршрутизации, которая описывает непосредственно присоединенную сеть 213.34.12.0. Для непосредственно присоединенных сетей адресом следующего маршрутизатора всегда является адрес собственного порта маршрутизатора. Таким образом, для сети 56.0.0 адресом выходного порта является 213.34.12.3.

Стандартным решением сегодня является использование поля маски в каждой записи таблицы, как это сделано в таблицах маршрутизатора ОС Windows ХР и аппаратного маршрутизатора (столбцы «Маска»). Механизм обработки масок при принятии решения маршрутизаторами рассматривается далее. Отсутствие поля маски говорит о том, что либо маршрутизатор рассчитан на работу только с тремя стандартными классами адресов, либо для всех записей используется одна и та же маска, что снижает гибкость маршрутизации.
Поскольку в таблице маршрутизации маршрутизатора Unix каждая сеть назначения упомянута только один раз, а значит, возможность выбора маршрута отсутствует, то поле метрики является необязательным параметром. В остальных двух таблицах поле метрики используется только для указания на то, что сеть подключена непосредственно. Метрика 0 для аппаратного маршрутизатора или 1 для маршрутизатора ОС Windows ХР говорит маршрутизатору, что эта сеть непосредственно подключена к его порту, а другое значение метрики соответствует удаленной сети. Выбор метрики для непосредственно подключенной сети (1 или 0) является произвольным, главное, чтобы метрика удаленной сети отсчитывалась с учетом этого выбранного начального значения. В маршрутизаторе Unix используется поле признаков, где флаг G (Gateway - шлюз) отмечает удаленную сеть, а его отсутствие - непосредственно подключенную.

Признак непосредственно подключенной сети говорит маршрутизатору, что пакет уже достиг своей сети, поэтому протокол IP активизирует ARP-запрос относительно IP-адреса узла назначения, а не следующего маршрутизатора.

Однако существуют ситуации, когда маршрутизатор Должен обязательно хранить значение метрики для записи о каждой удаленной сети. Эти ситуации возникают, когда записи в таблице маршрутизации являются результатом работы некоторых протоколов маршрутизации, например протокола RIP. В таких протоколах новая информация о какой-либо удаленной сети сравнивается с информацией, содержащейся в таблице в данный момент, и если значение новой метрики лучше текущей, то новая запись вытесняет имеющуюся. В таблице маршрутизатора Unix поле метрики отсутствует, и это значит, что он не использует протокол RIP.

Флаги записей присутствуют только в таблице маршрутизатора Unix.

  • U - маршрут активен и работоспособен. Аналогичный смысл имеет поле статуса в аппаратном маршрутизаторе.
  • Н - признак специфического маршрута к определенному хосту.
  • G - означает, что маршрут пакета проходит через промежуточный маршрутизатор (шлюз). Отсутствие этого флага отмечает непосредственно подключенную сеть.
  • D - означает, что маршрут получен из перенаправленного сообщения протокола ICMP. Этот признак может присутствовать только в таблице маршрутизации конечного узла. Признак означает, что конечный узел при какой-то предыдущей передаче пакета выбрал не самый рациональный следующий маршрутизатор на пути к данной сети, и этот маршрутизатор с помощью протокола ICMP сообщил конечному узлу, что все последующие пакеты к данной сети нужно отправлять через другой маршрутизатор.

В таблице маршрутизатора Unix используются еще два поля, имеющих справочное значение. Поле числа ссылок показывает, сколько раз на данный маршрут ссылались при продвижении пакетов. Поле загрузки отражает количество байтов, переданных по данному маршруту.

В записях таблиц аппаратного маршрутизатора также имеются два справочных поля. Поле времени жизни записи (TTL) в данном случае никак не связано со временем жизни пакета. Здесь оно показывает время, в течение которого значение данной записи еще действительно. Поле источника говорит об источнике появления записи в таблице маршрутизации.

· Комментариев нет

Поразительно, как быстро бежит время. Люди думаю, что настоящие компьютеры очень высокотехнологичны, но протокол TCP/IP существует в той или иной форме уже более трех десятилетий. У него было достаточно времени, чтобы созреть и стать стабильным и надежным. Но если дело касается компьютеров, то ничего не может быть надежным. При указании маршрутов для пакетов в сети иногда случаются неприятности. В таких ситуациях следует быть знакомым с таблицами маршрутизации Windows. Они определяют поток пакетов из необходимой машины. В статье я расскажу о том, как просматривать таблицы и как их понять.

Просмотр таблиц маршрутизации

Таблицы маршрутизации – важная часть протокола TCP/IP в Windows, но операционная система не показывает их обычному пользователю. Если хочется их увидеть, то необходимо открыть командную строку и ввести команду ROUTE PRINT. После этого можно будет увидеть окно, похожее на представленное на рисунке А.

Рисунок A: Так выглядят таблицы маршрутизации.

Прежде чем я подробнее остановлюсь на таблицах, я советую ввести в командную строку другую команду:

Это показывает установку протокола TCP/IP на компьютере. Вы также можете посмотреть раздел TCP/IP в свойствах сетевого адаптера, но первый способ предпочтительнее. Я часто сталкивался с ситуацией, когда команда IPCONFIG выводила совершенно иные данные, нежели данные, введенные в свойства TCP/IP. Это случается нечасто, но ошибки происходят из-за этого разногласия. Другими словами, данные, введенные в свойства TCP/IP, определяют установку протокола для выбранной сети. А команда IPCONFIG показывает, как Windows в действительности настроил протокол.

Даже при отсутствии ошибок, будет полезно проверить настройку через команду IPCONFIG. Если на компьютере стоят несколько сетевых адаптеров, то сложно запомнить, какие настройки относятся к какому адаптеру. Команда IPCONFIG показывает список разных настроек в легко читаемом формате на основе сетевого адаптера, как показано на рисунке В:

Рисунок B: Команда IPCONFIG /ALL показывает все настройки TCP/IP на основе сетевого адаптера

Проверка таблиц маршрутизации

Вас, наверное, заинтересовало, почему я попросил ввести команду TCP/IP, если статья касается таблиц маршрутизации? Да потому что, никто не смотрит таблицы, если не возникла проблема с компьютером. А если проблема есть, то лучше всего начать процесс диагностики со сравнения информации, предоставленной командой IPCONFIG, с информацией в таблицах маршрутизации.

Как видно из рисунка В, команда IPCONFIG /ALL показывает основную информацию по протоколу TCP/IP: IP адрес, шлюз по умолчанию и т. д. А вот таблицы маршрутизации прочитать не так легко. Именно поэтому я хотел бы обсудить вопрос считывания данных из таблиц.

Для понимания информации, содержащейся в таблицах, необходимо понять принцип работы маршрутизатора. Работа маршрутизатора состоит в том, чтобы направлять трафик из одной сети в другую. Поэтому маршрутизатор может состоять из нескольких сетевых адаптеров, каждый из которых подключен к различным сетевым сегментам.

Когда пользователь отправляет пакет в другой сетевой сегмент, чем тот, к которому подключен компьютер, то пакет направляется в маршрутизатор. Тогда маршрутизатор определяет сегмент, в который необходимо направить данный пакет. Не имеет значения, подключен ли маршрутизатор к двум сетевым сегментам или десятку. Процесс принятия маршрутизатором решения одинаков, и основывается он на таблицах маршрутизации.

Взглянув на экран, появившийся после введения команды Route Print, можно увидеть, что таблицы разделены на 5 колонок. Первой идет колонка сетей. В ней представлены все сетевые сегменты, к которым подключен маршрутизатор. Колонка Netmask показывает маску подсети, но не сетевого интерфейса, к которому подключен сегмент, а самого сегмента. Это позволяет маршрутизатору определить класс адреса для сети места назначения.

Третьей является колонка шлюза. После того как маршрутизатор определил сеть назначения, в которую необходимо отправить пакет, он сверяется со списком шлюза. Данный список «говорит» маршрутизатору, через какой IP адрес необходимо отправлять пакет в сеть назначения.

Колонка интерфейса предоставляет информацию о сетевом адаптере, подключенном к сети назначения. Точнее будет сказать, что данная колонка предоставляет информацию о IP адресе сетевого адаптера, который соединяет маршрутизатор с сетью назначения. Но маршрутизатор достаточно «умен», чтобы понять, чему присвоен адрес.

Последней идет метрическая колонка. Метрики – это довольно сложная тема, тем не менее, я попытаюсь объяснить, что они из себя представляют. Лучше всего это можно сделать на примере аэропорта. Представьте, что необходимо перелететь из Шарлоты, штат Северная Каролина, в Майами, штат Флорида. Аэропорт в Шарлоте очень большой, и существует несколько способов попасть на пляж в Майами. Можно воспользоваться рейсом компании Северо-западные авиалинии. Он доставит меня в Детройт, штат Мичиган, а затем в Майами (Детройт находится несколько в стороне). Можно воспользоваться рейсом Континентальный авиалиний через Хьюстон, штат Техас, а затем в Майами. А можно просто воспользоваться Американскими авиалиниями и попасть в Майами без промежуточных приземлений. Так каким же рейсом воспользоваться?

В действительности на выбор могут повлиять несколько факторов: цена билета, время вылета и т. д. Но предположим, что все одинаково. Если нет разницы кроме маршрута, то, конечно же, лучше воспользоваться рейсом без промежуточных приземлений. Этот маршрут самый быстрый, кроме того, он позволит избежать проблем со связью, потерянным багажом и т. д.

Маршрутизация работает по такому же принципу. Существует несколько маршрутов отправки пакетов. В этом случае имеет смысл отправить его по самому короткому пути. Вот когда вступают в игру метрики. Windows не задействует метрики, пока есть только один маршрут достижения места назначения. В противном случае Windows проверяет метрики для определения кратчайшего пути. Это упрощенное объяснение, но оно позволяет понять принцип работы.

Дополнительные возможности маршрутизации

Я уже упоминал команду Route Print, но существует множество вариантов использования команды ROUTE. Ее синтаксис следующий:

ROUTE [-f] [-p]

Переключатель –f является необязательным. Он указывает Windows на необходимость очистить таблицы маршрутизации от пунктов шлюза. Если данный переключатель используется совместно с другими командами, то пункты шлюза будут удалены перед выполнением других инструкций, содержащихся в команде.

Переключатель –р делает определенный маршрут постоянным. Обычно при перезагрузке сервера, любые определенные через команду ROUTE маршруты удаляются. Переключатель –р указывает на необходимость сохранять данный маршрут даже при перезагрузке системы.

Командная часть в синтаксисе ROUTE проста. Она может состоять из 4 вариантов: PRINT, ADD, DELETE, и CHANGE. Я уже говорил о команде ROUTE PRINT, но и у нее могут быть варианты. Например можно использовать специальные символы в команде. Если нужно напечатать маршруты для подсети 192.x.x.x, можно воспользоваться командой ROUTE PRINT 192*.

Команда ROUTE DELETE работает также как и ROUTE Print. Просто введите ROUTE DELETE, а следом место назначения или шлюз, который необходимо удалить из таблицы маршрутизации. Например, при желании удалить шлюз 192.0.0.0 введите ROUTE DELETE 192.0.0.0.

Все выше сказанное касается и команд ROUTE CHANGE и ROUTE ADD. При введении данной команды следует определить место назначения, маску подсети и шлюз. Также можно указать метрики и интерфейс. Например, добавить место назначения с простым синтаксисом можно следующим образом:

ROUTE ADD 147.0.0.0 255.0.0.0 148.100.100.100

В данной команде 147.0.0.0 является местом назначения, 255.0.0.0 – маской подсети для места назначения, а 148.100.100.100 – адресом шлюза. Можно расширить команду с помощью параметров METRIC и IF:

ROUTE ADD 147.0.0.0 255.0.0.0 148.100.100.100 METRIC 1 IF 1

Параметр metric необязателен, но он определяет метрику и количество отрезков для маршрута. Параметр IF указывает Windows, какой адаптер использовать. В нашем случае Windows использует сетевой адаптер, который связан с ним в качестве интерфейса 1. При отсутствии данного параметра используется лучший интерфейс.

Заключение

В статье я рассказал о том, как использовать команду ROUTE для вывода таблиц маршрутизации и внесения в них изменений. Если нужна дополнительная помощь, можно получить дополнительные примеры, введя команду ROUTE /? Command.

www.windowsnetworking.com


Смотрите также:

Exchange 2007

Если вы хотите прочитать предыдущие части этой серии статей, перейдите по ссылкам: Проведение мониторинга Exchange 2007 с помощью диспетчера System ...

Введение В этой статье из нескольких частей я хочу показать вам процесс, который недавно использовал для перехода с существующей среды Exchange 2003 ...

Если вы пропустили первую часть этой серии, пожалуйста, прочтите ее по ссылке Использование инструмента Exchange Server Remote Connectivity Analyzer Tool (Часть...

Если вы пропустили предыдущую часть этой серии статей, перейдите по ссылке Мониторинг Exchange 2007 с помощью диспетчера System Center Operations ...

Структура таблицы маршрутизации стека TCP/IP, соответствуя общим принципам построения таблиц маршрутизации (см. предыдущий выпуск рубрики), зависит от конкретной реализации стека TCP/IP. В качестве примера рассмотрим несколько вариантов таблицы маршрутизации, с которыми мог бы работать маршрутизатор М1 в сети, представленной на Рисунке 1.

Рисунок 1. Пример маршрутизируемой сети.

Если в качестве маршрутизатора М1 в данной сети применяется программный маршрутизатор MPR операционной системы Microsoft Windows NT, то его таблица маршрутизации могла бы иметь такой же вид, как в Таблице 1. Если на месте маршрутизатора М1 установить аппаратный маршрутизатор NetBuil-der II компании 3Com, то его таблица маршрутизации для этой же сети может выглядеть так, как показано в Таблице 2. В Таблице 3 помещена таблица маршрутизации для маршрутизатора М1, реализованного в виде программного маршрутизатора одной из версий операционной системы UNIX.

Заметим, что поскольку между структурой сети и таблицей маршрутизации в принципе нет однозначного соответствия, то и для каждого из приведенных вариантов таблицы можно предложить свои «подварианты», отличающиеся выбранным маршрутом к той или иной сети. Поэтому наше внимание будет сосредоточено главным образом на существенных различиях в форме представления маршрутной информации разными реализациями маршрутизаторов.

ОСНОВНЫЕ ПАРАМЕТРЫ ТАБЛИЦ МАРШРУТИЗАЦИИ

Несмотря на достаточно заметные внешние различия, во всех трех таблицах присутствуют все ключевые параметры, необходимые для работы маршрутизатора, которые мы рассмотрели ранее при обсуждении концепции маршрутизации. К таким параметрам, безусловно, относятся адрес сети назначения (столбцы Destination в маршрутизаторах NetBuilder и UNIX или Network Address в маршрутизаторе MPR) и адрес следующего маршрутизатора (столбцы Gateway в маршрутизаторах NetBuilder и UNIX или Gateway Address в маршрутизаторе MPR). Третий ключевой параметр - адрес порта, на который нужно направить пакет, в одних таблицах указывается прямо (поле Interface в таблице Windows NT), а в других - косвенно. Так, в таблице UNIX-маршрутизатора вместо адреса порта задается его условное наименование - le0 для порта с адресом 198.21.17.5, le1 для порта с адресом 213.34.12.3 и lo0 для внутреннего порта с адресом 127.0.0.1.

В маршрутизаторе NetBuilder II поле, указывающее выходной порт в какой-либо форме, вообще отсутствует. Это объясняется тем, что адрес выходного порта всегда можно косвенно определить по адресу следующего маршрутизатора. Например, попробуем определить по Таблице 2 адрес выходного порта для сети 56.0.0.0. Из таблицы видно, что следующим маршрутизатором для этой сети будет маршрутизатор с адресом 213.34.12.4. Адрес следующего маршрутизатора должен принадлежать одной из непосредственно присоединенных к маршрутизатору сетей, и в данном случае это сеть 213.34.12.0. Один из портов маршрутизатора подключен к этой сети, а его адрес 213.34.12.3 мы находим в поле Gateway второй строки таблицы маршрутизации, где указывается непосредственно присоединенная сеть 213.34.12.0. Для таких сетей адресом следующего маршрутизатора всегда будет адрес собственного порта маршрутизатора. Таким образом, адрес выходного порта для сети 56.0.0 - это 213.34.12.3.

Остальные параметры, которые можно найти в представленных версиях таблицы маршрутизации, являются необязательными для принятия решения о пути следования пакета.

Наличие или отсутствие поля маски в таблице говорит о том, насколько современен данный маршрутизатор. Стандартным решением сегодня является использование поля маски в каждой записи таблицы, как это сделано в таблицах маршрутизаторов MPR Windows NT (поле Netmask) и NetBuilder (поле Mask). Отсутствие поля маски говорит о том, что либо маршрутизатор рассчитан на работу только с тремя стандартными классами адресов, либо он использует для всех записей одну и ту же маску, а это снижает гибкость маршрутизации.

Как видно из примера таблицы Unix-маршрутизатора, метрика относится к необязательным параметрам. В остальных двух таблицах это поле имеется, однако оно используется только в качестве признака непосредственно подключенной сети. Действительно, если в таблице маршрутизации каждая сеть назначения упомянута только один раз, то поле метрики не будет приниматься во внимание при выборе маршрута, так как выбор отсутствует. А вот признак непосредственно подключенной сети маршрутизатору нужен, потому что пакет для этой сети обрабатывается особым способом - он не передается следующему маршрутизатору, а отправляется узлу назначения. Поэтому метрика 0 для маршрутизатора NetBuilder или 1 для маршрутизатора MPR сообщает, что эта сеть непосредственно подключена к конкретному порту. Другое значение метрики соответствует удаленной сети. Выбор значения метрики для непосредственно подключенной сети является достаточно произвольным, главное, чтобы метрика удаленной сети отсчитывалась с учетом этого выбранного начального значения. В UNIX-маршрутизаторе используется поле признаков, где флаг G отмечает удаленную сеть, а его отсутствие - непосредственно подключенную.

Однако иногда маршрутизатор должен обязательно хранить значение метрики для записи о каждой удаленной сети. Эти ситуации возникают, когда записи в таблице маршрутизации являются результатом работы некоторых протоколов маршрутизации, например протокола RIP. Тогда новая информация о какой-либо удаленной сети сравнивается с имеющейся в таблице, и если метрика оказывается лучше, то новая запись вытесняет предыдущую. В таблице UNIX-маршрутизатора поле метрики отсутствует, и это значит, что он не использует протокол RIP.

Флаги записей присутствуют только в таблице UNIX-маршрутизатора. Они описывают характеристики записи:

U показывает, что маршрут активен и работоспособен. Аналогичный смысл имеет поле Status в маршрутизаторе NetBuilder;

H - признак специфического маршрута к определенному хосту. Маршрут ко всей сети, к которой принадлежит данный хост, может отличаться от данного маршрута;

G означает, что маршрут пакета проходит через промежуточный маршрутизатор (gateway). Отсутствие этого флага указывает на непосредственно подключенную сеть;

D означает, что маршрут получен из сообщения Redirect (перенаправление) протокола ICMP. Такой признак может присутствовать только в таблице маршрутизации конечного узла. Он означает, что конечный узел при какой-то предыдущей передаче пакета выбрал не самый рациональный следующий маршрутизатор на пути к данной сети, и этот маршрутизатор с помощью протокола ICMP сообщил, что все последующие пакеты в данную сеть нужно отправлять через другой соседний маршрутизатор. Протокол ICMP может посылать сообщения только узлу-отправителю, поэтому на промежуточном маршрутизаторе этот признак встретиться не может. Признак никак не влияет на процесс маршрутизации, он только указывает администратору источник появления записи.

В таблице UNIX-маршрутизатора используется еще два поля, имеющих справочное значение. Поле Refcnt показывает, сколько раз на данный маршрут ссылались при продвижении пакетов. Поле Use отражает количество пакетов, переданных по данному маршруту.

В таблице маршрутизатора NetBuil-der также имеются два справочных поля. Поле времени жизни TTL (Time To Live) имеет смысл для динамических записей, с ограниченным сроком жизни. Текущее значение поля показывает оставшийся срок жизни записи в секундах. Поле Source отражает источник появления записи в таблице маршрутизации. Хотя это поле присутствует не во всех таблицах маршрутизаторов, но практически для всех маршрутизаторов существует три основных источника появления записи в таблице.

ИСТОЧНИКИ И ТИПЫ ЗАПИСЕЙ В ТАБЛИЦЕ МАРШРУТИЗАЦИИ

Первым источником является программное обеспечение стека TCP/IP. При инициализации маршрутизатора это программное обеспечение автоматически заносит в таблицу несколько записей, в результате чего создается так называемая минимальная таблица маршрутизации.

Во-первых, это записи о непосредственно подключенных сетях и маршрутизаторах по умолчанию, информация о которых появляется в стеке при ручном конфигурировании интерфейсов компьютера или маршрутизатора. В приведенных примерах к ним относятся записи о сетях 213.34.12.0 и 198.21.17.0, а также о маршрутизаторе по умолчанию - default в UNIX-маршрутизаторе и 0.0.0.0 в маршрутизаторе MPR Windows NT. В рассматриваемой таблице для маршрутизатора NetBuilder маршрутизатор по умолчанию не используется, следовательно, при поступлении пакета с адресом назначения, отсутствующим в таблице, этот пакет будет отброшен.

Во-вторых, программное обеспечение автоматически заносит в таблицу маршрутизации записи об адресах особого назначения. В таблице маршрутизатора MPR Windows NT содержится наиболее полный набор записей такого рода. Несколько записей связаны с особым адресом 127.0.0.0 (loopback), который используется для локального тестирования стека TCP/IP. Пакеты, направленные в сеть с номером 127.0.0.0, не передаются протоколом IP на канальный уровень для последующего направления в сеть, а возвращаются в источник - локальный модуль IP. Записи с адресом 224.0.0.0 предназначены для обработки групповых адресов (multicast address). Кроме того, в таблицу могут быть занесены адреса для широковещательных рассылок (например, записи 8 и 11 содержат адрес отправки широковещательного сообщения в соответствующих подсетях, а последняя запись в таблице - адрес ограниченной широковещательной рассылки сообщения). Заметим, что в некоторых таблицах записи об особых адресах вообще отсутствуют.

Вторым источником появления записи в таблице является администратор, непосредственно формирующий ее с помощью некоторой системной утилиты, например программы route, имеющейся в операционных системах UNIX и Windows NT. В аппаратных маршрутизаторах также всегда поддерживается команда для ручного задания записей таблицы маршрутизации. Заданные вручную записи всегда являются статическими, т. е. не имеют срока истечения жизни. Они могут быть как постоянными, т. е. сохраняющимися при перезагрузке маршрутизатора, так и временными, хранящимися в таблице только до выключения устройства. Часто администратор вручную заносит запись default о маршрутизаторе по умолчанию. Таким же образом в таблицу маршрутизации может быть внесена запись о специфичном для узла маршруте, где вместо номера сети содержится полный IP-адрес, т. е. адрес, имеющий ненулевую информацию не только в поле номера сети, но и в поле номера узла. Для такого конечного узла маршрут должен выбираться не так, как для всех остальных узлов сети, к которой он относится. В случае, когда в таблице есть разные записи о продвижении пакетов для всей сети и ее отдельного узла, при поступлении пакета, адресованного узлу, маршрутизатор отдаст предпочтение записи с полным адресом узла.

И, наконец, третьим источником записей могут быть протоколы маршрутизации, такие, как RIP или OSPF. Данные записи всегда являются динамическими, т. е. имеют ограниченный срок жизни. Программные маршрутизаторы Windows NT и UNIX не показывают источник появления той или иной записи в таблице, а маршрутизатор NetBuilder использует для этой цели поле Source. В приведенном в Таблице 2 примере первые две записи созданы программным обеспечением стека на основании данных о конфигурации портов маршрутизатора - это показывает признак Connected. Следующие две записи обозначены как Static, что указывает на то, что их ввел вручную администратор. Последняя запись появилась в результате работы протокола RIP, поэтому в ее поле TTL имеется значение 160.

Наталья Олифер - ответственный редактор LAN. С ней можно связаться по адресу:

Для измерения расстояния до сети стандарты протокола RIP допускают различные виды метрик: хопы, значения пропускной способности, вносимые задержки, надежность сетей (то есть соответствующие признакам D, Т и R в поле качества сервиса IP-пакета), а также любые комбинации этих метрик. Метрика должна обладать свойством аддитивности - метрика составного пути должна быть равна сумме метрик составляющих этого пути. В большинстве реализаций RIP используется простейшая метрика - количество хопов, то есть количество промежуточных маршрутизаторов, которые нужно преодолеть пакету до сети назначения.

Рассмотрим процесс построения таблицы маршрутизации с помощью протокола RIP на примере составной сети, изображенной на рис. 1. Мы разделим этот процесс на 5 этапов.

Рис. 1. Сеть, построенная на маршрутизаторах RIP

Этап 1 - создание минимальной таблицы. Данная составная сеть включает восемь IP-сетей, связанных четырьмя маршрутизаторами с идентификаторами: Rl, R2, R3 и R4. Маршрутизаторы, работающие по протоколу RIP, могут иметь идентификаторы, однако для протокола они не являются необходимыми. В RIP-сообщениях эти идентификаторы не передаются.

В исходном состоянии на каждом маршрутизаторе программным обеспечением стека TCP/ IP автоматически создается минимальная таблица маршрутизации, в которой учитываются только непосредственно подсоединенные сети. На рисунке адреса портов маршрутизаторов в отличие от адресов сетей помещены в овалы.

Таблица 1 позволяет оценить примерный вид минимальной таблицы маршрутизации маршрутизатора R1.

Таблица 1. Минимальная таблица маршрутизации маршрутизатора R1

Минимальные таблицы маршрутизации в других маршрутизаторах будут выглядеть соответственно, например, таблица маршрутизатора R2 будет состоять из трех записей (табл. 2).

Таблица 2. Минимальная таблица маршрутизации маршрутизатора R2

Этап 2 - рассылка минимальной таблицы соседям. После инициализации каждый маршрутизатор начинает посылать своим соседям сообщения протокола RIP, в которых содержится его минимальная таблица. RIP-сообщения передаются в дейтаграммах протокола UDP и включают два параметра для каждой сети: ее IP-адрес и расстояние до нее от передающего сообщение маршрутизатора.

По отношению к любому маршрутизатору соседями являются те маршрутизаторы, которым данный маршрутизатор может передать IP-пакет по какой-либо своей сети, не пользуясь услугами промежуточных маршрутизаторов. Например, для маршрутизатора R1 соседями являются маршрутизаторы R2 и R3, а для маршрутизатора R4 - маршрутизаторы R2 и R3.

Таким образом, маршрутизатор R1 передает маршрутизаторам R2 и R3 следующие сообщения:

сеть 201.36.14.0, расстояние 1;

сеть 132.11.0.0, расстояние 1;

сеть 194.27.18.0, расстояние 1.

Этап 3 - получение RIP-сообщений от соседей и обработка полученной информации. После получения аналогичных сообщений от маршрутизаторов R2 и R3 маршрутизатор R1 наращивает каждое полученное поле метрики на единицу и запоминает, через какой порт и от какого маршрутизатора получена новая информация (адрес этого маршрутизатора станет адресом следующего маршрутизатора, если эта запись будет внесена в таблицу маршрутизации). Затем маршрутизатор начинает сравнивать новую информацию с той, которая хранится в его таблице маршрутизации (табл. 3).

Номер сети Порт Расстояние
201.36.14.0 201.36.14.3 1 1
132.11.0.0 132.11.0.7 2 1
194.27.18.0 194.27.18.1 3 1
132.17.0.0 132.11.0.101 2 2
132.15.0.0 132.11.0.101 2 2
194.27.19.0 194.27.18.51 3 2
202.101.15.0 194.27.18.51 3 2
132.11.0.0 132.11.0.101 2 2
194.27.18.0 194.27.18.51 3 2

Записи с четвертой по девятую получены от соседних маршрутизаторов, и они претендуют на помещение в таблицу. Однако только записи с четвертой по седьмую попадают в таблицу, а записи восьмая и девятая - нет. Это происходит потому, что они содержат данные об уже имеющихся в таблице маршрутизатора R1 сетях, а расстояние до них больше, чем в существующих записях.

Протокол RIP замещает запись о какой-либо сети только в том случае, если новая информация имеет лучшую метрику (с меньшим расстоянием в хопах), чем имеющаяся. В результате в таблице маршрутизации о каждой сети остается только одна запись; если же имеется несколько записей, равнозначных в отношении путей к одной и той же сети, то все равно в таблице остается одна запись, которая пришла в маршрутизатор первая по времени. Для этого правила существует исключение - если худшая информация о какой-либо сети пришла от того же маршрутизатора, на основании сообщения которого была создана данная запись, то худшая информация замещает лучшую.

Аналогичные операции с новой информацией выполняют и остальные маршрутизаторы сети.

Этап 4 - рассылка новой таблицы соседям. Каждый маршрутизатор отсылает новое RIP-сообщение всем своим соседям. В этом сообщении он помещает данные обо всех известных ему сетях: как непосредственно подключенных, так и удаленных, о которых маршрутизатор узнал из RIP-сообщений.
Этап 5 - получение RIP-сообщений от соседей и обработка полученной информации. Этап 5 повторяет этап 3 - маршрутизаторы принимают RIP-сообщения, обрабатывают содержащуюся в них информацию и на ее основании корректируют свои таблицы маршрутизации.

Посмотрим, как это делает маршрутизатор R1 (табл. 4).

На этом этапе маршрутизатор R1 получает от маршрутизатора R3 информацию о сети 132.15.0.0, которую тот, в свою очередь, на предыдущем цикле работы получил от маршрутизатора R4. Маршрутизатор уже знает о сети 132.15.0.0, причем старая информация имеет лучшую метрику, чем новая, поэтому новая информация об этой сети отбрасывается.

Таблица 4. Таблица маршрутизации маршрутизатора R1

Номер сети Адрес следующего маршрутизатора Порт Расстояние
201.36.14.0 201.36.14.3 1 1
132.11.0.0 132.11.0.7 2 1
194.27.18.0 194.27.18.1 3 1
132.17.0.0 132.11.0.101 2 2
132.15.0.0 132.11.0.101 2 2
132.15.0.0 194.27.18.51 3 3
194.27.19.0 194.27.18.51 3 2
104.27.10.0 132.11.0.101 2 3
202.101.15.0 194.27.18.51 3 2
202.101.16.0 132.11.0.101 2 3
202.101.16.0 104.27.18.51 3 3

О сети 202.101.16.0 маршрутизатор R1 узнает на этом этапе впервые, причем данные о ней приходят от двух соседей - от R3 и R4. Поскольку метрики в этих сообщениях указаны одинаковые, то в таблицу попадают данные, пришедшие первыми. В нашем примере считается, что маршрутизатор R2 опередил маршрутизатор R3 и первым переслал свое RIP-сообщение маршрутизатору R1.

Если маршрутизаторы периодически повторяют этапы рассылки и обработки RIP-сообщений, то за конечное время в сети установится корректный режим маршрутизации. Под корректным режимом маршрутизации здесь понимается такое состояние таблиц маршрутизации, когда все сети достижимы из любой сети с помощью некоторого рационального маршрута. Пакеты будут доходить до адресатов и не зацикливаться в петлях, подобных той, которая образуется на рис. 1, маршрутизаторами Rl, R2, R3 и R4.

Очевидно, если в сети все маршрутизаторы, их интерфейсы и соединяющие их линии связи остаются работоспособными, то объявления по протоколу RIP можно делать достаточно редко, например один раз в день. Однако в сетях постоянно происходят изменения - меняется работоспособность маршрутизаторов и линий связи, кроме того, маршрутизаторы и линии связи могут добавляться в существующую сеть или же выводиться из ее состава.

Для адаптации к изменениям в сети протокол RIP использует ряд механизмов.