Тарифы Услуги Сим-карты

Максимальный ток катушки индуктивности. Реальная катушка в цепи переменного тока

Таким образом, напряжение на индуктивности изменяется по периодическому закону с амплитудой , но колебания напряжения на индуктивности опережают по фазе колебания тока на . Зависимости силы тока и напряжения на индуктивности от времени представлены на рис. 7.5.

Физическая причина возникновения разности фаз между током и напряжением на индуктивности заключается в следующем. При нарастании тока в катушке индуктивности возникает индукционный ток, который в этом случае будет направлен, согласно правилу Ленца, навстречу основному току. Поэтому изменение тока будет отставать по фазе от изменения напряжения. Сравнивая выражение для c законом Ома, можно видеть, что величина играет роль сопротивления. Его принято называть индуктивным сопротивлением. Индуктивное сопротивление зависит от частоты, поэтому при больших частотах даже малые индуктивности могут представлять большие сопротивления для переменных токов. Для постоянного тока индуктивность не является сопротивлением.

На векторной диаграмме (рис. 7.6) вектор, соответствующий колебаниям напряжения на индуктивности, повернут на относительно оси токов, длина его равна амплитуде .

Индуктивное сопротивление используется для устройства дросселей, представляющих собой проволочные катушки, вводимые в цепь переменного тока. Введение дросселей позволяет регулировать силу тока, при этом не происходит дополнительных потерь энергии, связанных с выделением тепла согласно закону Джоуля–Ленца.

Пояснение

Если использование элементов высшей математики при изучении этого параграфа вызывает затруднения, можно использовать представления о малых приращениях переменных величин



В рассматриваемом случае , а . Приложенное напряжение в точности уравновешивается электродвижущей силы самоиндукции. Если сила тока в цепи , то падение напряжения на индуктивности равно . Изменение силы тока за малый интервал времени равно

Так как время мало, то , , следовательно, . Отсюда получаем, что . Напряжение на индуктивности будет равно

Таким образом, приходим к тому же результату: напряжение на индуктивности изменяется по периодическому закону с амплитудой , но колебания напряжения на индуктивности опережают колебания тока на .

Цепь с емкостью

Рассмотрим цепь переменного тока, в которой имеется участок, содержащий конденсатор емкостью (рис. 7.7); индуктивностью и сопротивлением можно пренебречь. Наличие в цепи конденсатора исключает протекание по ней постоянного тока. В этом случае разность потенциалов на обкладках конденсатора полностью компенсирует электродвижущую силу. Однако переменный ток в такой цепи может существовать, так как заряд на обкладках изменяется с течением времени. Падение напряжения на конденсаторе . Если , то заряд на пластинах конденсатора будет равен . В этой формуле означает постоянный заряд конденсатора, не связанный с колебаниями тока. Будем считать его равным нулю. Таким образом, напряжение на пластинах конденсатора будет равно:

,

где – амплитуда колебаний напряжения.

Из сравнения с законом Ома видно, что величина играет роль сопротивления, ее принято называть реактивным емкостным сопротивлением. Как и омическое сопротивление, емкостное сопротивление в системе единиц СИ выражается в омах. Обратите внимание, что формула устанавливает связь между максимальными значениями силы тока и напряжения. Однако ее нельзя рассматривать как связь между мгновенными значениями силы тока и напряжения, как в случае закона Ома для постоянного тока, так как между напряжением и силой тока существует разность фаз, и их максимальные значения достигаются неодновременно.

Формулу легко проверить на опыте. Если составить цепь, содержащую конденсатор переменной емкости, лампочку накаливания и источник переменного тока, то можно убедиться в том, что, чем больше емкость конденсатора, тем ярче накал лампочки, то есть тем больше сила тока в цепи. Емкостное сопротивление зависит также от частоты. Поэтому при очень высоких частотах даже малые емкости могут представлять совсем небольшое сопротивление для переменного тока. Для постоянного тока емкость представляет бесконечно большое сопротивление, поэтому постоянный ток в такой цепи существует только в первую четверть периода, когда идет зарядка конденсатора. Далее ток прекращается, цепь оказывается разомкнутой для постоянного тока. Переменный ток в такой цепи существует, и при высоких частотах малые емкости представляют небольшие сопротивления.

График изменения тока и напряжения на конденсаторе представлен на рис. 7.8. Напряжение на конденсаторе, так же как и ток, меняется по гармоническому закону, однако колебания напряжения отстают по фазе от колебаний тока на . Физический смысл этого эффекта объясняется просто. Когда напряжение начинает расти, заряд на обкладках конденсатора равен нулю, поэтому заряд беспрепятственно течет к обкладкам, и сила тока велика. Когда напряжение приближается к максимальному значению, заряд, уже накопившийся на обкладках конденсатора, препятствует дальнейшему притоку заряда, и сила тока в цепи падает до нуля. Далее, когда напряжение падает, накопившийся на обкладках заряд начинает уходить с пластин, и сила тока возрастает, но ток течет в противоположном направлении. То есть напряжение на конденсаторе в какой-то момент времени определяется величиной заряда на обкладках конденсатора, который привнесен током, протекающим в более ранней стадии колебаний. Поэтому колебания тока опережают напряжение, возникающее на конденсаторе.

На векторной диаграмме (рис. 7.9) вектор колебаний напряжения повернут относительно оси токов на угол в отрицательном направлении.

2.6. Цепь переменного тока,
содержащая активное сопротивление,
индуктивность и емкость

Рассмотрим цепь, состоящую из последовательно соединенных активного сопротивления , катушки индуктивности , конденсатора и источника переменного напряжения U (рис. 7.10). Найдем силу тока , который установится в цепи при напряжении, изменяющемся по закону .

В случае постоянного тока полное сопротивление при последовательном соединении равно сумме сопротивлений всех элементов цепи. Это обусловлено тем, что полная разность потенциалов при последовательном соединении элементов цепи равна сумме падений напряжения на отдельных элементах. В случае переменного тока ситуация более сложная. Ток во всех элементах цепи имеет одно и тоже значение в один и тот же момент времени и одинаковую фазу. Напряжение же на конденсаторе опережает ток по фазе на и, следовательно, опережает на напряжение на сопротивлении, соединенном последовательно с конденсатором. В то же время напряжение на катушке индуктивности отстает по фазе от тока на и, следовательно, отстает по фазе на от напряжения на конденсаторе. Поэтому полное напряжение на катушке индуктивности и конденсаторе равно разности напряжений на них и опережает напряжение на сопротивлении по фазе на . Полная разность потенциалов во всей цепи равна сумме этих двух синусоидально изменяющихся напряжений: результирующего напряжения на катушке индуктивности и конденсаторе и напряжения на активном сопротивлении. Такое напряжение тоже меняется по закону синуса, а его амплитуда равна модулю векторной суммы амплитуд напряжений на всех элементах цепи. равен сдвигу фаз между током и напряжением в цепи. Из треугольника. Фаза напряжения на индуктивности всегда опережает фазу внешнего напряжения на угол от 0 до , а на емкости всегда отстает на угол от 0 до - . Векторная диаграмма на рис 7.11 построена для случая, когда . В этом случае напряжение внешнего источника опережает по фазе ток, текущий в цепи, на угол .

Одним из самых известных и необходимых элементов аналоговых радиотехнических схем является катушка индуктивности. В цифровых электронных схемах индуктивные элементы практически потеряли свою актуальность и применяются только в устройствах питания как сглаживающие фильтры.

Катушки индуктивности на принципиальных схемах обозначаются латинской буквой “L ” и имеют следующее изображение.

Разновидностей катушек индуктивности существуют десятки. Они бывают высокочастотные, низкочастотные, с подстроечными сердечниками и без них. Бывают катушки с отводами, катушки, рассчитанные на большие напряжения. Вот так, например, выглядят бескаркасные катушки.

Катушки для СВЧ аппаратуры называются микрополосковыми линиями. Они даже внешне не похожи на катушки. С катушками индуктивности связан такой эффект как резонанс и гениальный Никола Тесла получал на резонансных трансформаторах миллионы вольт.

Многие факторы влияют на индуктивность катушки. Это и диаметр провода, и число витков, а на высоких частотах, когда применяют бескаркасные катушки с небольшим числом витков, то индуктивность изменяют, сближая или раздвигая соседние витки.

Часто для увеличения индуктивности внутрь каркаса вводят сердечник из ферромагнетика, а для уменьшения индуктивности сердечник должен быть латунным. То есть можно получить нужную индуктивность не увеличением числа витков, что ведёт к увеличению сопротивления, а использовать катушку с меньшим числом витков, но использовать ферритовый сердечник. Катушка индуктивности с сердечником изображается на схемах следующим образом.

В реальности катушка с сердечником может выглядеть так.

Также можно встретить катушки индуктивности с подстроечным сердечником. Изображаются они вот так.

Катушка с подстроечным сердечником вживую выглядит так.

Такая катушка, как правило, имеет сердечник, положение которого можно регулировать в небольших пределах. При этом величина индуктивности также меняется. Подстроечные катушки индуктивности применяются в устройствах, где требуется одноразовая подстройка. В дальнейшем индуктивность не регулируют.

Наряду с подстроечными катушками можно встретить и катушки с регулируемой индуктивностью. На схемах такие катушки обозначаются вот так.

В отличие от подстроечных катушек, регулируемые катушки индуктивности допускают многократную регулировку положения сердечника, а, следовательно, и индуктивности.

Ещё один параметр, который встречается достаточно часто это добротность контура. Под добротностью понимается отношение между реактивным и активным сопротивлением катушки индуктивности. Добротность обычно бывает в пределах 15 – 350.

На основе катушки индуктивности и конденсатора выполнен самый необходимый узел радиотехнических устройств, колебательный контур. На схеме изображён входной контур простого радиоприёмника рассчитанного на работу в диапазонах средних и длинных волн.

В настоящее время в этих диапазонах станций практически нет. Катушка индуктивности L1 имеет достаточно большое число витков, чтобы перекрыть диапазон по максимуму. Для улучшения приёма к первой обмотке L1 подключается внешняя антенна. Это может быть простой кусок проволоки длиной в пределах двух метров.

Благодаря большому числу витков в индуктивности L1 присутствует целый спектр частот и как минимум пять - шесть работающих радиостанций. Две индуктивности L1 и L2 намотанные на одном каркасе представляют собой высокочастотный трансформатор . Для того чтобы выделить на катушке индуктивности L2 станцию, работающую, допустим на частоте 650 КГц необходимо с помощью переменного конденсатора C1 настроить колебательный контур на данную частоту.

После этого выделенный сигнал можно подавать на базу транзистора усилителя высокой частоты. Это одно из применений катушки индуктивности. Точно на таком же принципе построены выходные каскады радио- и телевизионных передатчиков только наоборот. Антенна не принимает слабый сигнал, а отдаёт в пространство ЭДС.

Примеров использования катушки индуктивности великое множество. На рисунке изображён весьма несложный, но хорошо зарекомендовавший себя в работе сетевой фильтр.

Фильтр состоит из двух дросселей (катушек индуктивности) L1 и L2 и двух конденсаторов С1 и С2. на старых схемах дроссели могут обозначаться как Др1 и Др2. Сейчас это редкость. Катушки индуктивности намотаны проводом ПЭЛ-0,5 – 1,5 мм. на каркасе диаметром 5 миллиметров и содержат по 30 витков каждая. Очень хорошо параллельно сети 220V подключить варистор . Тогда защита от бросков сетевого напряжения будет практически полной. В качестве конденсаторов лучше не использовать керамические, а поискать старые, но надёжные МБМ на напряжение не менее 400V.

Вот так выглядит дроссель входного фильтра компьютероного блока питания ATX.

Как видно, он намотан на кольцеобразном сердечнике. На схеме он обозначается следующим образом. Точками отмечены места начала намотки провода. Это бывает важно, так как это влият на направление магнитного потока.

Выходные выпрямители современного импульсного блока питания всегда конструируют по двухполупериодным схемам. Широко известный выпрямительный диодный мост , у которого большие потери практически не используют. В двухполупериодных выпрямителях используют сборки из двух диодов Шоттки. Самая важная особенность выпрямителей в импульсных блоках питания это фильтры, которые начинаются с дросселя (индуктивности).

Напряжение, снимаемое с выхода выпрямителя обладающего индуктивным фильтром, зависит кроме амплитуды ещё и от скважности импульсов, поэтому очень легко регулировать выходное напряжение, регулируя скважность входного. Процесс регулирования скважности импульсов называют широтно-импульсной модуляцией (ШИМ), а в качестве управляющей микросхемы используют ШИМ контроллер.

Поскольку амплитуда напряжения на входах всех выпрямителей изменяется одинаково, то стабилизируя одно напряжение, ШИМ контроллер стабилизирует все. Для увеличения эффекта, дроссели всех фильтров намотаны на общем магнитопроводе.

Именно таким образом устроены выходные цепи компьютерного блока питания формата AT и ATX . На его печатной плате легко обнаружить дроссель с общим магнитопроводом. Вот так он выглядит на плате.

Как уже говорилось, этот дроссель не только фильтрует высокочастотные помехи, но и играет важную роль в стабилизации выходных напряжений +12, -12, +5, -5. Если выпаять этот дроссель из схемы, то блок питания будет работать, но вот выходные напряжения будут «гулять» причём в очень больших пределах – проверено на практике.

Так магнитопровод у такого дросселя общий, а катушки индуктивности электрически не связаны, то на схемах такой дроссель обозначают так.

Здесь цифра после точки (L1.1 ; L1.2 и т.д.) указывает на порядковый номер катушки на принципиальной схеме.

Ещё одно очень хорошо известное применение катушки индуктивности это использование её в системах зажигания транспортных средств. Здесь катушка индуктивности работает как импульсный трансформатор. Она преобразует напряжение 12V с аккумулятора в высокое напряжение порядка нескольких десятков тысяч вольт, которого достаточно для образования искры в свече зажигания.

Когда через первичную обмотку катушки зажигания протекает ток, катушка запасает энергию в своём магнитном поле. При прекращении прохождения тока в первичной обмотке пропадающее магнитное поле индуцирует во вторичной обмотке мощный короткий импульс напряжением 25 – 35 киловольт.

Импульсный трансформатор из тех же катушек индуктивности является основным узлом хорошо известного устройства для самообороны как электорошокер. Схем может быть несколько, но принцип один: преобразование низкого напряжения от небольшой батарейки или аккумулятора в импульс слабого тока, но очень высокого напряжения. У серьёзных моделей напряжение может достигать 75 – 80 киловольт.

Весьма важное практическое значение имеет один частный случай получивший название самоиндукции. Так, когда индукционная катушка образует ток, то одновременно с ним возникает и магнитный поток, который растет с увеличением тока. С изменением магнитного потока катушка индуктирует величина которой пропорциональна изменению скорости магнитного потока.

Так как в данном случае проводник индуцирует электродвижущую силу в самом себе, то это явление называется самоиндукцией. в электрических цепях иногда сравнивают с проявлением инертности в механике.

Электродвижущая сила, индуктированная в индукционной катушке под влиянием изменения её собственного магнитного потока, называется электродвижущей силой самоиндукции.

Согласно закону Ленца, во всё время роста магнитного потока, принизывающего витки катушки, ЭДС самоиндукции в катушке направлена против включённого в данную цепь, и противодействует росту тока в цепи катушки.

Когда ток в катушке достигает постоянной величины, прекращает изменение, и ЭДС самоиндукции в катушке становится равной нулю.
При самоиндукции, как и при всяком процессе электромагнитной индукции, индуктированная электродвижущая сила пропорциональна скорости, с которой магнитный поток, сцепленный с контуром, по которому течёт ток, изменяется. Величина же магнитного потока при отсутствии в катушке железа пропорциональна скорости, с которой изменяется ток (∆I/∆t), создающий этот поток.

Таким образом, величина электродвижущей силы самоиндукции, возникающей в проводнике, пропорциональна скорости, с которой изменяется ток в нем.
Если брать проводники разной формы, то окажется, что имея одинаковую скорость изменения тока, электродвижущие силы самоиндукции, возникающие в них, будут различны.

Так, если взять катушку, а затем растянуть в один виток, то при одинаковой скорости, с которой происходит изменение тока, ЭДС самоиндукции катушки будет больше. Это связанно с тем, что каждая силовая линия, принизывая витки катушки, сцепляется с ней большее число раз, чем с одним витком.

Величина, характеризующая связь между скоростью, с которой ток изменяется в цепи, и возникающей при этом ЭДС самоиндукции - индуктивность цепи.

Обозначим индуктивность катушки буквой L; тогда зависимость величины электродвижущей силы самоиндукции от скорости, с которой происходит изменение тока, можно выразить следующей формулой:

E = - L (∆I/∆t)

ед. L = (ед.E ˖ ед. t)/(ед.I)

Полагая, что в этой формуле ∆t = 1 сек, ∆I = 1 амперу и Е = 1 вольту, получим:

ед. L = 1(в ˖ сек/а)

Такую единицу называют генри (Гн).

Следовательно,

1 Гн = 1 (в ˖ сек/а)

Итак, генри - это индуктивность катушки, в которой изменение тока на 1 ампер в секунду возбуждает электродвижущую силу самоиндукции, равную 1 вольту.
Для измерения малых индуктивностей применяются тысячные доли генри - миллигенри (мГн) и миллионные доли генри - микрогенри (мкГн).

Кроме того, часто применяется и другая единица - сантиметр индуктивности, причём 1 мкГн = 1000 см индуктивности.

Таким образом,

1 Гн = 1000 мГн = 1000000 мкГн = 1000000000 см

Индуктивность катушки находится в зависимости от её числа витков, формы и размеров. Чем больше число витков в катушке самоиндукции, тем больше ее индуктивность.

Также, самоиндукция, индуктивность катушки значительно увеличивается при внесении внутрь её сердечника из железа или какого-либо другого магнитного материала.
Большой индуктивностью обладают обмотки электромагнитов у генераторов и двигателей, в момент размыкания цепи, когда скорость изменения электрического тока (∆I/∆t) очень велика, в этих обмотках может возникнуть большая ЭДС самоиндукции, которая, если не принять соответствующих мер, приведёт к пробою изоляции обмоток.

Индуктивность в цепи переменного тока будет влиять на силу переменного тока. Проверим это на следующем опыте.

Возьмем два источника питания. Один из них пусть будет источником постоянного напряжения, а второй – переменного. Причем подберем источники так, чтобы постоянное значение напряжения равнялось действующему значению переменного напряжения. Подключим к ним с помощью переключателя цепь, состоящую из лампочки и катушки индуктивности.

Причем лампочка и катушка подключены последовательно. Переключатель включим так, чтобы при одном положении цепь питалась от источника постоянного тока, а при другом – от источника переменного тока.

При включении питания от источника постоянного тока лампочка загорится очень ярко. Если подключить цепь к источнику тока с переменным напряжением, то лампочка будет гореть, но заметно слабее. Можем сделать вывод, что действующее значение силы тока при переменном токе меньше, чем сила тока при постоянном источнике.

Индуктивность катушки

Это можно объяснить с помощью явления самоиндукции. ЭДС самоиндукции катушки будет достаточно большим, и будет препятствовать нарастанию силы тока, поэтому свое максимальное значение сила тока достигнет только спустя некоторое время. Если напряжение будет быстро меняться, то сила тока не будет успевать достигнуть своего максимального значения.

Можно сделать вывод, что индуктивность катушки будет ограничивать максимальное значение силы тока. Чем больше индуктивность катушки и частота изменения напряжения, тем меньше будет максимальное значение силы тока.

Рассмотрим цепь, в которой есть только катушка индуктивности. При этом значение сопротивления катушки и соединительных проводов пренебрежимо мало.

Выясним, как будут связаны напряжение на катушке с ЭДС самоиндукции в ней. При сопротивлении катушки равном нулю, напряженность электрического поля внутри проводника тоже будет равна нулю. Равенство нулю напряженности возможно.

Напряженности электрического поля создаваемого зарядами Eк будет соответствовать такая же по модулю и противоположно направленная напряженность вихревого электрического поля, которое появится вследствие изменения магнитного поля.

Следовательно, ЭДС самоиндукции ei будет равна по модулю и противоположна по знаку удельной работе кулоновского поля.

Следовательно:

Сила тока будет изменяться по гармоническому закону:

I = Im*sin(ω*t).

ЭДС самоиндукции будет равна:

Ei = -L*i’ = -L*ω*im*cos(ω*t).

Следовательно, напряжение будет равно:

U = L*ω*Im*cos(ω*t) = L*ω*Im*sin(ω*t+pi/2).

Отсюда значение действующего напряжения будет равняться Um = L*ω*Im. Видим, что между колебаниями тока и напряжения получилась разность фаз равная pi/2.

Индуктивное сопротивление

Следовательно, колебания силы тока отстают от колебания напряжения на pi/2. Это наглядно представлено на следующем рисунке.



Добавить свою цену в базу

Комментарий

Индуктивностью называется идеализированный элемент электрической цепи, в котором происходит запасание энергии магнитного поля. Запасания энергии электрического поля или преобразования электрической энергии в другие виды энергии в ней не происходит.

Наиболее близким к идеализированному элементу – индуктивности – является реальный элемент электрической цепи – индуктивная катушка.

В отличие от индуктивности в индуктивной катушке имеют место также запасание энергии электрического поля и преобразование электрической энергии в другие виды энергии, в частности в тепловую.

Количественно способность реального и идеализированного элементов электрической цепи запасать энергию магнитного поля характеризуется параметром, называемым индуктивностью.

Таким образом термин «индуктивность» применяется как название идеализированного элемента электрической цепи, как название параметра, количественно характеризующего свойства этого элемента, и как название основного параметра индуктивной катушки.

Связь между напряжением и током в индуктивной катушке определяется законом электромагнитной индукции, из которого следует, что при изменении магнитного потока, пронизывающего индуктивную катушку, в ней наводится электродвижущая сила е, пропорциональная скорости изменения потокосцепления катушки ψ и направленная таким образом, чтобы вызываемый ею ток стремился воспрепятствовать изменению магнитного потока:

Чем выше индуктивность проводника, тем больше будет магнитное поле при одном и том же значении электрического тока. Физически индуктивность в электрической цепи – это катушка, состоящая из пассивного (диэлектрик) или активного (ферромагнитный материал, железо) сердечника и намотанного на него электрического провода.

Если протекающий ток изменяет свою величину во времени, то есть является не постоянным, а переменным, то в индуктивном контуре меняется магнитное поле, вследствие чего возникает ЭДС (электродвижущая сила) самоиндукции. Эта ЭДС также как и электрическое напряжение измеряется в вольтах (В).

Единицей измерения индуктивности является Гн (генри). Она названа в честь Джозефа Генри – американского ученого, открывшего явление самоиндукции. Считается, что контур (катушка индуктивности) имеет величину 1 Гн, если при изменении тока в 1 А (ампер) за одну секунду в нем возникает ЭДС величиною в 1 В (вольт). Обозначается индуктивность буквой L, в честь Эмиля Христиановича Ленца– знаменитого российского физика. Термин «индуктивность» был предложен Оливером Хевисайдом – английским ученым-самоучкой в 1886 году.

Свойства индуктивности

  • Индуктивность всегда положительна.
  • Индуктивность зависит только от геометрических размеров контура и магнитных свойств среды (сердечника).

Катушка индуктивности

Катушка индуктивности – электронный компонент, представляющий собой винтовую либо спиральную конструкцию, выполненную с применением изолированного проводника. Основным свойством катушки индуктивности, как понятно из названия – индуктивность. Индуктивность – это свойство преобразовать энергию электрического тока в энергию магнитного поля. Величина индуктивности для цилиндрической или кольцевой катушки равна

Где ψ — потокосцепление, µ 0 = 4π*10 -7 – магнитная постоянная, N – количество витков, S – площадь поперечного сечения катушки.

Также катушке индуктивности присущи такие свойства как небольшая ёмкость и малое активное сопротивление, а идеальная катушка и вовсе их лишена. Применение данного электронного компонента отмечается практически повсеместно в электротехнических устройствах.

Цели применения различны:

  • подавление помех в электрической цепи;
  • сглаживание уровня пульсаций;
  • накопление энергетического потенциала;
  • ограничение токов переменной частоты;
  • построение резонансных колебательных контуров;
  • фильтрация частот в цепях прохождения электрического сигнала;
  • формирование области магнитного поля;
  • построение линий задержек, датчиков и т.д.

Применение в технике

Катушки индуктивности применяются:


По большому счёту, во всех генераторах электрического тока любого типа, равно как и в электродвигателях, их обмотки представляют собой катушки индуктивности. Следуя традиции древних изображения плоской Земли, стоящей на трёх слонах или китах, сегодня мы могли бы с большим основанием утверждать, что жизнь на Земле покоится на катушке индуктивности.

– это качество работы катушки в цепях переменного тока. Добротность катушки индуктивности определяют как отношение её индуктивного сопротивления к активному сопротивлению. Грубо говоря, индуктивное сопротивление – это сопротивление катушки переменному току, а активное сопротивление – это сопротивление катушки постоянному току и сопротивление, обусловленное потерями электрической мощности в каркасе, сердечнике, экране и изоляции катушки. Чем меньше активное сопротивление, тем выше добротность катушки и её качество. Таким образом, можно сказать, что чем выше добротность, тем меньше потери энергии в катушке индуктивности.

Индуктивное сопротивление определяется формулой:

X L = ωL = 2πfL

Где ω = 2πf – круговая частота (f – частота, Гц); L – индуктивность катушки, Гн.

Добротность катушки индуктивности определяется формулой:

Q = X L / R = ωL / R = 2πfL / R

Где R – активное сопротивление катушки индуктивности, Ом.

Энергия магнитного поля тока

Вокруг проводника с током существует магнитное поле, которое обладает энергией. Откуда она берется? Источник тока, включенный в эл. цепь, обладает запасом энергии. В момент замыкания эл. цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля. Энергия магнитного поля равна собственной энергии тока.
Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока. Куда пропадает энергия магнитного поля после прекращения тока? – выделяется (при размыкании цепи с достаточно большой силой тока возможно возникновение искры или дуги).