Тарифы Услуги Сим-карты

Происходит шифрование данных. Алгоритмы шифрования данных. Симметричные алгоритмы шифрования. Алгоритм шифрования RSA. Алгоритм шифрования DES. Выбор алгоритма шифрования. Никто не смог. Попробуйте вы

Доброго времени суток, дорогие друзья, знакомые и прочие личности. Сегодня поговорим про WiFi шифрование , что логично из заголовка.

Думаю, что многие из Вас пользуются такой штукой как , а значит, скорее всего, еще и Wi-Fi на них для Ваших ноутбуков, планшетов и прочих мобильных устройств.

Само собой, что этот самый вай-фай должен быть закрыт паролем, иначе вредные соседи будут безвозмездно пользоваться Вашим интернетом, а то и того хуже, - Вашим компьютером:)

Само собой, что помимо пароля есть еще и всякие разные типы шифрования этого самого пароля, точнее говоря, Вашего Wi-Fi протокола, чтобы им не просто не пользовались, но и не могли взломать.

В общем, сегодня хотелось бы немного поговорить с Вами о такой вещи как WiFi шифрование, а точнее этих самых WPE, WPA, WPA2, WPS и иже с ними.

Готовы? Давайте приступим.

WiFi шифрование - общая информация

Для начала сильно упрощенно поговорим о том как выглядит аутентификация с роутером (сервером), т.е как выглядит процесс шифрования и обмена данными. Вот такая вот у нас получается картинка:

Т.е, сначала, будучи клиентом мы говорим, что мы, - это мы, т.е знаем пароль (стрелочка зелененькая сверху). Сервер, тобишь допустим роутер, радуется и отдаёт нам случайную строку (она же является ключом с помощью которого мы шифруем данные), ну и далее происходит обмен данными, зашифрованными этим самым ключом.

Теперь же поговорим о типах шифрования, их уязвимостях и прочем прочем. Начнем по порядку, а именно с OPEN , т.е с отсутствия всякого шифра, а далее перейдем ко всему остальному.

Тип 1 - OPEN

Как Вы уже поняли (и я говорил только что), собственно, OPEN - это отсутствие всякой защиты, т.е. Wifi шифрование отсутствует как класс, и Вы и Ваш роутер абсолютно не занимаются защитой канала и передаваемых данных.

Именно по такому принципу работают проводные сети - в них нет встроенной защиты и «врезавшись» в неё или просто подключившись к хабу/свичу/роутеру сетевой адаптер будет получать пакеты всех находящихся в этом сегменте сети устройств в открытом виде.

Однако с беспроводной сетью «врезаться» можно из любого места - 10-20-50 метров и больше, причём расстояние зависит не только от мощности вашего передатчика, но и от длины антенны хакера. Поэтому открытая передача данных по беспроводной сети гораздо более опасна, ибо фактически Ваш канал доступен всем и каждому.

Тип 2 - WEP (Wired Equivalent Privacy)

Один из самых первых типов Wifi шифрования это WEP . Вышел еще в конце 90 -х и является, на данный момент, одним из самых слабых типов шифрования.

Во многих современных роутерах этот тип шифрования вовсе исключен из списка возможных для выбора:

Его нужно избегать почти так же, как и открытых сетей - безопасность он обеспечивает только на короткое время, спустя которое любую передачу можно полностью раскрыть вне зависимости от сложности пароля.

Ситуация усугубляется тем, что пароли в WEP - это либо 40 , либо 104 бита, что есть крайне короткая комбинация и подобрать её можно за секунды (это без учёта ошибок в самом шифровании).

Основная проблема WEP - в фундаментальной ошибке проектирования. WEP фактически передаёт несколько байт этого самого ключа вместе с каждым пакетом данных.

Таким образом, вне зависимости от сложности ключа раскрыть любую передачу можно просто имея достаточное число перехваченных пакетов (несколько десятков тысяч, что довольно мало для активно использующейся сети).

Тип 3 - WPA и WPA2 (Wi-Fi Protected Access)

Это одни из самых современных на данный момент типов такой штуки, как Wifi шифрование и новых пока, по сути, почти не придумали.

Собственно, поколение этих типов шифрования пришло на смену многострадальному WEP . Длина пароля - произвольная, от 8 до 63 байт, что сильно затрудняет его подбор (сравните с 3, 6 и 15 байтами в WEP ).

Стандарт поддерживает различные алгоритмы шифрования передаваемых данных после рукопожатия: TKIP и CCMP .

Первый - нечто вроде мостика между WEP и WPA , который был придуман на то время, пока IEEE были заняты созданием полноценного алгоритма CCMP . TKIP так же, как и WEP , страдает от некоторых типов атак, и в целом не сильно безопасен.

Сейчас используется редко (хотя почему вообще ещё применяется - мне не понятно) и в целом использование WPA с TKIP почти то же, что и использование простого WEP .

Кроме разных алгоритмов шифрования, WPA (2) поддерживают два разных режима начальной аутентификации (проверки пароля для доступа клиента к сети) - PSK и Enterprise . PSK (иногда его называют WPA Personal ) - вход по единому паролю, который вводит клиент при подключении.

Это просто и удобно, но в случае больших компаний может быть проблемой - допустим, у вас ушёл сотрудник и чтобы он не мог больше получить доступ к сети приходится менять пароль для всей сети и уведомлять об этом других сотрудников. Enterprise снимает эту проблему благодаря наличию множества ключей, хранящихся на отдельном сервере - RADIUS .

Кроме того, Enterprise стандартизирует сам процесс аутентификации в протоколе EAP (E xtensible A uthentication P rotocol), что позволяет написать собственный алгоритм.

Тип 4 - WPS/QSS

Wifi шифрование WPS , он же QSS - интересная технология, которая позволяет нам вообще не думать о пароле, а просто нажать на кнопку и тут же подключиться к сети. По сути это «легальный» метод обхода защиты по паролю вообще, но удивительно то, что он получил широкое распространение при очень серьёзном просчёте в самой системе допуска - это спустя годы после печального опыта с WEP .

WPS позволяет клиенту подключиться к точке доступа по 8-символьному коду, состоящему из цифр (PIN ). Однако из-за ошибки в стандарте нужно угадать лишь 4 из них. Таким образом, достаточно всего-навсего 10000 попыток подбора и вне зависимости от сложности пароля для доступа к беспроводной сети вы автоматически получаете этот доступ, а с ним в придачу - и этот самый пароль как он есть.

Учитывая, что это взаимодействие происходит до любых проверок безопасности, в секунду можно отправлять по 10-50 запросов на вход через WPS , и через 3-15 часов (иногда больше, иногда меньше) вы получите ключи от рая.

Когда данная уязвимость была раскрыта производители стали внедрять ограничение на число попыток входа (rate limit ), после превышения которого точка доступа автоматически на какое-то время отключает WPS - однако до сих пор таких устройств не больше половины от уже выпущенных без этой защиты.

Даже больше - временное отключение кардинально ничего не меняет, так как при одной попытке входа в минуту нам понадобится всего 10000/60/24 = 6,94 дней. А PIN обычно отыскивается раньше, чем проходится весь цикл.

Хочу ещё раз обратить ваше внимание, что при включенном WPS ваш пароль будет неминуемо раскрыт вне зависимости от своей сложности. Поэтому если вам вообще нужен WPS - включайте его только когда производится подключение к сети, а в остальное время держите выключенным.

Послесловие

Выводы, собственно, можете сделать сами, а вообще, само собой разумеется, что стоит использовать как минимум WPA , а лучше WPA2 .

В следующем материале по Wi-Fi мы поговорим о том как влияют различные типы шифрования на производительность канала и роутера, а так же рассмотрим некоторые другие нюансы.

Как и всегда, если есть какие-то вопросы, дополнения и всё такое прочее, то добро пожаловать в комментарии к теме про Wifi шифрование .

PS : За существование этого материала спасибо автору Хабра под ником ProgerXP . По сути вся текстовка взята из его материала , чтобы не изобретать велосипед своими словами.

Почта любого владельца ПК может быть перехвачена, а коллегам ничто не мешает ознакомиться с вашими документами. Шифрование - кодирование информации, после которого ее нельзя прочесть без специального ключа, - сумеет защитить ваши данные от любопытных глаз. Когда-то к шифрованию прибегали одни шпионы, но сейчас оно быстро становится мерой разумной предосторожности для всех тех, кто дома или на работе использует компьютер: это лучшее средство сохранить служебную и личную тайну.

Независимо от того, применяется ли автономная утилита или встроенная функция почтовой программы, процесс шифрования происходит одинаково: данные обрабатываются по определенному алгоритму, в результате чего образуется зашифрованный текст. Алгоритму для работы необходимо получить от вас одну переменную - ключ, и из-за этого постороннему сложно, если не невозможно, раскрыть шифр.

Различается шифрование двух типов: симметричное и асимметричное (иначе называемое шифрованием с открытым ключом). При симметричном вы создаете ключ, пропускаете с ним файл через программу и пересылаете результат адресату, а ключ (пароль или другой файл данных) передаете отдельно. Запустив ту же самую шифровальную программу с полученным ключом, адресат сможет прочитать сообщение. Симметричное шифрование не так надежно, как асимметричное, поскольку ключ может быть перехвачен, но из-за высокой скорости оно широко используется в операциях электронной торговли.

Асимметричное шифрование сложнее - и надежнее. Для него нужны два взаимосвязанных ключа: открытый и закрытый. Свой открытый ключ вы сообщаете всем желающим. Он позволяет кодировать данные, но не раскодировать их. Закрытый ключ есть только у вас. Когда кому-то нужно послать вам зашифрованное сообщение, он выполняет шифрование, используя ваш открытый ключ. Получив сообщение, вы расшифровываете его с помощью своего закрытого ключа. За повышенную надежность асимметричного шифрования приходится платить: поскольку вычисления в этом случае сложнее, процедура отнимает больше времени.

Алгоритмы, применяемые для симметричного и асимметричного шифрования, основаны на различных принципах. При симметричном шифровании алгоритм разделяет данные на небольшие блоки, представляет каждый некоторым числом, преобразует эти числа по сложной математической формуле, в которую входит ключ, а затем повторяет преобразование; в некоторых случаях оно выполняется несколько десятков раз.

Алгоритм же асимметричного шифрования рассматривает текст как одно очень большое число. Он возводит это число в степень, которая также является очень большим числом, делит результат на еще одно очень большое число и вычисляет остаток, после чего преобразует этот остаток обратно в текст. Шифровальные программы могут по-разному использовать один и тот же алгоритм, поэтому чтобы получатель мог прочесть сообщение, у него должна быть такая же программа, как и у отправителя.

И наконец, последний фрагмент головоломки - это ключи. Они различаются по длине и, следовательно, по силе: ведь чем длиннее ключ, тем больше число возможных комбинаций. Скажем, если программа шифрования использует 128-битовые ключи, то ваш конкретный ключ будет одной из 3,4 триллиона миллиардов миллиардов миллиардов, или 2128 возможных комбинаций нулей и единиц. Хакер с большей вероятностью выиграет в лотерею, чем взломает такой уровень шифрования методом «грубой силы» (т. е. планомерно пробуя ключи, пока не встретится нужный). Для сравнения: чтобы подобрать на стандартном ПК симметричный 40-битовый ключ, специалисту по шифрованию потребуется около 6 часов. Однако даже шифры со 128-битовым ключом до некоторой степени уязвимы; у профессионалов имеются изощренные методы, которые позволяют взламывать даже самые сложные коды.

Незримые защитники

Шифрование применялось в военных целях с 479 г. до н. э.: как сообщает древнегреческий историк Геродот, секретные донесения на деревянных табличках, покрытых воском, предупредили спартанских вождей о надвигающемся вторжении персов. В информационных системах предприятий шифрование также используется уже много лет. А домашние пользователи начинают приобщаться к нему только сейчас, причем иногда они об этом и не знают.

Так, Microsoft Internet Explorer и Netscape Communicator содержат встроенные средства шифрования для операций электронной торговли. Без каких бы то ни было указаний со стороны пользователя номера кредитных карточек передаются с компьютера пользователя на Web-сервер зашифрованными по симметричному протоколу SSL (Secure Sockets Layer). По умолчанию используются 40-битовые ключи, но для обоих браузеров доступна также версия со 128-битовыми ключами.

Можно сыграть в защите своих данных и более активную роль. Популярные почтовые программы, в том числе Microsoft Outlook и Lotus Notes, в настоящее время позволяют шифровать письма. Многие «почтальоны» поддерживают протокол асимметричного шифрования S/MIME (Secure MIME, защищенный MIME), хотя лишь немногие пользователи его применяют. Для работы с S/MIME требуется цифровой идентификатор - «сертификат», который нужно покупать у компаний, таких как VeriSign, за 15 долл. в год.

Дополнительную защиту могут обеспечить автономные утилиты, которые шифруют не только почтовые сообщения, но и файлы с изображениями, документы, папки на жестком диске и т. д. Наиболее популярной из них является PGP. Ее бесплатную версию для некоммерческого использования можно получить по адресу web.mit.edu/network/pgp.html.

Аналитики предполагают, что применение систем сильного шифрования расширится благодаря недавним изменениям в регулировании экспорта криптографических систем Министерством торговли США. До 13 января большинство программ шифрования проходили по категории вооружений и подпадали под те же экспортные ограничения, что ручные гранаты или ракеты. Экспорт шифровальных программ с ключами длиннее 40 бит запрещался под страхом высокого штрафа или тюрьмы. Новые правила разрешают вывоз из США некоторых систем шифрования. По словам аналитиков, поначалу это не будет иметь серьезного эффекта, поскольку большинство шифровальных программ созданы за пределами Штатов, а импорт ПО этого типа уже был разрешен. Выгоду из изменений в законодательстве должны извлечь производители ПО, которым больше не нужно будет разрабатывать криптографические средства за границей.

Эндрю Брандт, Александра Красне

Об авторах

Эндрю Брандт - внештатный редактор PC World, Александра Красне - редактор и корреспондент PC World.

Симметричное шифрование

1 Чтобы послать зашифрованное сообщение, отправитель сочиняет его и придумывает шифровальный ключ. 2 Он пересылает ключ получателю по каналу, отличному от того, которым пойдет сообщение. 3 Программа шифрования превращает открытый текст в зашифрованный. 4 Зашифрованный текст пересылается получателю. 5 Получатель прочитывает его, используя имеющийся у него ключ.

Асимметричное шифрование

У отправителя и получателя одна и та же программа шифрования. 1 Чтобы кто-либо мог послать вам зашифрованное сообщение, вы заранее генерируете с помощью своей шифровальной программы открытый и закрытый ключи, после чего посылаете соответствующему человеку открытый. 2 Используя алгоритм шифрования и ваш открытый ключ, он получает зашифрованное сообщение. 3 Сообщение пересылается вам. 4 Вы расшифровываете сообщение, используя алгоритм расшифровки и свой закрытый ключ. Чтобы послать ответ, вам понадобится открытый ключ адресата.

Время жизни информации

§ При перехвате зашифрованного сообщения для некоторых типов алгоритмов шифрования можно подсчитать частоту появления определённых символов и сопоставить их с вероятностями появления определённых символов или их комбинаций (биграмм, триграмм и т. д.). Это в свою очередь может привести к однозначному дешифрованию (раскрытию) отдельных участков зашифрованного сообщения.

§ Наличие вероятных слов. Это слова или выражения, появление которых можно ожидать в перехваченном сообщении (например, для английского текста – «and», «the», «аrе» и др.).

§ Существуют методы, позволяющие сделать зашифрованные сообщения практически непригодными для статистического анализа и анализа посредством вероятных слов. К ним относятся следующие.

§ Рассеивание. Влияние одного символа открытого сообщения распространяется на множество символов зашифрованного сообщения. Этот метод хотя и приводит к увеличению количества ошибок при расшифровке, однако с его помощью удаётся скрыть статистическую структуру открытого сообщения.

§ Запутывание. Развитие принципа рассеивания. В нём влияние одного символа ключа распространяется на множество символов зашифрованного

сообщения.

§ Перемешивание. Основывается на использовании особых преобразований исходного сообщения, в результате чего вероятные последовательности как бы рассеиваются по всему пространству возможных открытых сообщений. Развитием этого метода явилось применение составных алгоритмов шифрования, состоящих из последовательности простых операций перестановки и подстановки.

Примерами изложенных методов служат стандарты шифрования DES и ГОСТ 28147-89.

Существует два основных типа алгоритмов шифрования:

§ алгоритмы симметричного шифрования;

§ алгоритмы асимметричного шифрования.

Симметричное шифрование .

Алгоритмы симметричного шифрования основаны на том, что и для шифрования сообщения, и для его расшифровки используется один и тот же (общий) ключ (рис. 1).

Одно из главных преимуществ симметричных методов – быстрота шифрования и расшифровки, а главный недостаток – необходимость передачи секретного значения ключа получателю.



Неизбежно возникаем проблема: как передать ключ и при этом не позволить злоумышленникам перехватить его.

Преимущества криптографии с симметричными ключами:

· Высокая производительность.

· Высокая стойкость. При прочих равных условиях стойкость криптографического алгоритма определяется длиной ключа. При длине ключа 256 бит необходимо произвести 10 77 переборов для его определения.

Недостатки криптографии с симметричными ключами.

§ Проблема распределения ключей. Так как для шифрования и расшифровки используется один и тот же ключ, требуются очень надёжные механизмы для их распределения (передачи).

§ Масштабируемость. Так как и отправитель, и получатель используют единый ключ, количество необходимых ключей возрастает в геометрической прогрессии в зависимости от числа участников коммуникации. Для обмена сообщениями между 10 пользователями необходимо иметь 45 ключей, а для 1000 пользователей – уже 499 500.

§ Ограниченное использование. Криптография с секретным ключом используется для шифрования данных и ограничения доступа к ним, с ее помощью невозможно обеспечить такие свойства информации, как аутентичность и

неотрекаемостъ.

Асимметричное шифрование

Асимметричные алгоритмы шифрования (криптография с открытыми ключами) предполагают использование двух ключей. Первый ключ – открытый. Он распространяется совершенно свободно, без всяких мер предосторожности. Второй, закрытый ключ, держится в секрете.

Любое сообщение, зашифрованное с использованием одного из этих ключей, может быть расшифровано только с использованием парного ему ключа. Как правило, отправитель сообщения пользуется открытым ключом получателя, а получатель – своим личным закрытым ключом.

В асимметричной схеме передачи шифрованных сообщений оба ключа являются производными от единого порождающего мастер-ключа. Когда два ключа сформированы на основе одного, они зависимы в математическом смысле, однако в силу вычислительной сложности ни один из них не может быть вычислен на основании другого. После того, как сформированы оба ключа (и открытый, и личный, закрытый), мастер-ключ уничтожается, и таким образом пресекается любая попытка восстановить в дальнейшем значения производных от него ключей.

Асимметричная схема идеально сочетается с использованием общедоступных сетей передачи сообщений (например, Интернет). Любой абонент сети может совершенно свободно переслать открытый ключ своему партнеру по переговорам, а последний, в роли отправителя сообщения, будет использовать этот ключ при шифровании отсылаемого сообщения (рис. 2). Это сообщение сможет расшифровать своим личным ключом только получатель сообщения, который отсылал раньше соответствующий открытый ключ. Злоумышленник, перехвативший такой ключ, сможет воспользоваться им только с единственной целью – передавать законному владельцу ключа какие-нибудь зашифрованные сообщения.

Недостатком асимметричной схемы являются большие затраты времени на шифрование и расшифровку, что не разрешает их использование для оперативного обмена пространными сообщениями в режиме диалога. Реализация методов асимметричного шифрования требует больших затрат процессорного времени. Поэтому в чистом виде криптография с открытыми ключами в мировой практике обычно не применяется.



Рис. 2. Асимметричная схема шифрования

Невозможно сравнивать, что лучше, симметричные или асимметричные алгоритмы шифрования. Отмечено, что симметричные криптографические алгоритмы имеют меньшую длину ключа и работают быстрее.

Криптография с секретным и криптография с открытыми ключами предназначены для решения абсолютно разных проблем. Симметричные алгоритмы хорошо подходят для шифрования данных, асимметричные реализуются в большинстве сетевых криптографических протоколов.

Наиболее широкое распространение получили методы, сочетающие достоинства обеих схем. Принцип работы комбинированных схем заключается в том, что для очередного сеанса обмена сообщениями генерируется симметричный (сеансовый) ключ. Затем этот ключ зашифровывается и пересылается с помощью асимметричной схемы. После завершения текущего сеанса переговоров симметричный ключ уничтожается.

  1. Шифрование происходит с обеих сторон. Ведь если шифровать будет только одна сторона (например только сервер), значит трафик от другой стороны (от клиента) будет не зашифрован. Его можно будет подслушать или даже изменить.
  2. Формально никто не передает никому ключ. В протоколе TLS клиент и сервер должны сгенерировать общий секрет (shared secret), набор из 48 байт. Потом клиент и сервер на основании общего секрета вычисляют ключи: ключ шифрования клиента и ключ шифрования сервера. Процедура вычисления ключей из общего секрета стандартная, и задана в описании протокола TLS. Сервер и клиент знают 2 ключа шифрования, одним шифруют, вторым дешифруют. А теперь самое интересное - как клиент и сервер вычисляют общий секрет. Это зависит от выбранного набора шифров:

    • TLS_RSA_WITH_: В данном случае клиент сам создает общий секрет генерируя 48 случайных байт. Затем он шифрует их при помощи публичного RSA ключа, который находится в сертификате сервера. Сервер получает зашифрованные данные, и расшифровывает их при помощи приватного RSA ключа. Данная схема используется редко.
    • TLS_DHE_RSA_/TLS_ECDHE_RSA_/TLS_ECDHE_ECDSA_: Здесь используется криптографическая схема Диффи-Хеллмана (DHE) или ее версия на эллиптических кривих (ECDHE). Суть схемы такая: сервер и клиент генерируют случайные большие числа (приватные ключи), вычисляют на их основе другие числа (публичные ключи), и пересылают друг другу. Имея свой приватный ключ и публичный ключ другой стороны, они вычисляют общий секрет. Третья сторона, которая прослушивает канал, видит только 2 публичных ключа, и она не может вычислить общий секрет. После этого все данные, которыми обменивались клиент и сервер для получение этого ключа подписываются сертификатом сервера (RSA или ECDSA подписи). Если клиент доверяет сертификату сервера, он проверяет эту подпись, и если она правильная, начинается уже обмен данными. Это наиболее часто используемая схема.
    • Есть еще несколько схем, но они используются очень редко или не используются вообще.

    Про перехват. Как я выше описал, перехватывать сообщения здесь бесполезно, так как в первом случае его может расшифровать только сервер, а во втором используется хитрая криптографическая схема.

    Алгоритмы шифрования знает и сервер, и клиент. Ведь если клиент не знает, какой алгоритм шифрования, как он будет шифровать данные для отправки? В современной криптографии никто не использует закрытые алгоритмы. Открытые алгоритмы постоянно изучаются лучшими криптографами мира, ищутся уязвимости, и предлагаются решения для их обхода.

    В TLS мы условно можем сказать, что алгоритмы меняются, так как каждый раз генерируются другие ключи шифрования. А потом, если вы хотите использовать закрытый алгоритм, например для просмотра веб-страницы, каким образом этот алгоритм может быть закрытый, если ваш компьютер/устройство производит шифрование/дешифрование?

Я упустил/упростил некоторые детали, что бы описать только основные идеи.

Шифрование данных чрезвычайно важно для защиты конфиденциальности. В этой статье я расскажу о различных типах и методах шифрования, которые используются для защиты данных сегодня.

Знаете ли вы?
Еще во времена Римской империи, шифрование использовалось Юлием Цезарем для того, чтобы сделать письма и сообщения нечитаемыми для врага. Это играло важную роль как военная тактика, особенно во время войн.

Так как возможности Интернета продолжают расти, все больше и больше наших предприятий проводятся на работу онлайн. Среди этого наиболее важными являются, интернет банк, онлайн оплата, электронные письма, обмен частными и служебными сообщениями и др., которые предусматривают обмен конфиденциальными данными и информацией. Если эти данные попадут в чужие руки, это может нанести вред не только отдельному пользователю, но и всей онлайн системе бизнеса.

Чтобы этого не происходило, были приняты некоторые сетевые меры безопасности для защиты передачи личных данных. Главными среди них являются процессы шифрования и дешифрования данных, которые известны как криптография. Существуют три основные методы шифрования, используемых в большинстве систем сегодня: хеширование, симметричное и асимметричное шифрование. В следующих строках, я расскажу о каждом из этих типов шифрования более подробно.

Типы шифрования

Симметричное шифрование

При симметричном шифровании, нормальные читабельные данные, известные как обычный текст, кодируется (шифруется), так, что он становится нечитаемым. Это скремблирование данных производится с помощью ключа. Как только данные будут зашифрованы, их можно безопасно передавать на ресивер. У получателя, зашифрованные данные декодируются с помощью того же ключа, который использовался для кодирования.

Таким образом ясно что ключ является наиболее важной частью симметричного шифрования. Он должен быть скрыт от посторонних, так как каждый у кого есть к нему доступ сможет расшифровать приватные данные. Вот почему этот тип шифрования также известен как "секретный ключ".

В современных системах, ключ обычно представляет собой строку данных, которые получены из надежного пароля, или из совершенно случайного источника. Он подается в симметричное шифрование программного обеспечения, которое использует его, чтобы засекретить входные данные. Скремблирование данных достигается с помощью симметричного алгоритма шифрования, такие как Стандарт шифрования данных (DES), расширенный стандарт шифрования (AES), или международный алгоритм шифрования данных (IDEA).

Ограничения

Самым слабым звеном в этом типе шифрования является безопасность ключа, как в плане хранения, так и при передаче аутентифицированного пользователя. Если хакер способен достать этот ключ, он может легко расшифровать зашифрованные данные, уничтожая весь смысл шифрования.

Еще один недостаток объясняется тем, что программное обеспечение, которое обрабатывает данные не может работать с зашифрованными данными. Следовательно, для возможности использовать этого программного обеспечение, данные сначала должны быть декодированы. Если само программное обеспечение скомпрометировано, то злоумышленник сможет легко получить данные.

Асимметричное шифрование

Асимметричный ключ шифрования работает аналогично симметричному ключу, в том, что он использует ключ для кодирования передаваемых сообщений. Однако, вместо того, чтобы использовать тот же ключ, для расшифровки этого сообщения он использует совершенно другой.

Ключ, используемый для кодирования доступен любому и всем пользователям сети. Как таковой он известен как «общественный» ключ. С другой стороны, ключ, используемый для расшифровки, хранится в тайне, и предназначен для использования в частном порядке самим пользователем. Следовательно, он известен как «частный» ключ. Асимметричное шифрование также известно, как шифрование с открытым ключом.

Поскольку, при таком способе, секретный ключ, необходимый для расшифровки сообщения не должен передаваться каждый раз, и он обычно известен только пользователю (приемнику), вероятность того, что хакер сможет расшифровать сообщение значительно ниже.

Diffie-Hellman и RSA являются примерами алгоритмов, использующих шифрование с открытым ключом.

Ограничения

Многие хакеры используют «человека в середине» как форму атаки, чтобы обойти этот тип шифрования. В асимметричном шифровании, вам выдается открытый ключ, который используется для безопасного обмена данными с другим человеком или услугой. Однако, хакеры используют сети обман, чтобы заставить вас общаться с ними, в то время как вас заставили поверить, что вы находитесь на безопасной линии.

Чтобы лучше понять этот тип взлома, рассмотрим две взаимодействующие стороны Сашу и Наташу, и хакера Сергея с умыслом на перехват их разговора. Во-первых, Саша отправляет сообщение по сети, предназначенное для Наташи, прося ее открытый ключ. Сергей перехватывает это сообщение и получает открытый ключ, связанный с ней, и использует его для шифрования и передачи ложного сообщения, Наташе, содержащего его открытый ключ вместо Сашиного.

Наташа, думая, что это сообщение пришло от Саши, теперь шифрует ее с помощью открытого ключа Сергея, и отправляет его обратно. Это сообщение снова перехватил Сергей, расшифровал, изменил (при желании), зашифровал еще раз с помощью открытого ключа, который Саша первоначально отправил, и отправил обратно к Саше.

Таким образом, когда Саша получает это сообщение, его заставили поверить, что оно пришло от Наташи, и продолжает не подозревать о нечестной игре.

Хеширование

Методика хеширования использует алгоритм, известный как хэш-функция для генерации специальной строки из приведенных данных, известных как хэш. Этот хэш имеет следующие свойства:

  • одни и те же данные всегда производит тот же самый хэш.
  • невозможно, генерировать исходные данные из хэша в одиночку.
  • Нецелесообразно пробовать разные комбинации входных данных, чтобы попытаться генерировать тот же самый хэш.

Таким образом, основное различие между хэшированием и двумя другими формами шифрования данных заключается в том, что, как только данные зашифрованы (хешированы), они не могут быть получены обратно в первозданном виде (расшифрованы). Этот факт гарантирует, что даже если хакер получает на руки хэш, это будет бесполезно для него, так как он не сможет расшифровать содержимое сообщения.

Message Digest 5 (MD5) и Secure Hashing Algorithm (SHA) являются двумя широко используемыми алгоритмами хеширования.

Ограничения

Как уже упоминалось ранее, почти невозможно расшифровать данные из заданного хеша. Впрочем, это справедливо, только если реализовано сильное хэширование. В случае слабой реализации техники хеширования, используя достаточное количество ресурсов и атаки грубой силой, настойчивый хакер может найти данные, которые совпадают с хэшем.

Сочетание методов шифрования

Как обсуждалось выше, каждый из этих трех методов шифрования страдает от некоторых недостатков. Однако, когда используется сочетание этих методов, они образуют надежную и высоко эффективную систему шифрования.

Чаще всего, методики секретного и открытого ключа комбинируются и используются вместе. Метод секретного ключа дает возможность быстрой расшифровки, в то время как метод открытого ключа предлагает более безопасный и более удобный способ для передачи секретного ключа. Эта комбинация методов известна как "цифровой конверт". Программа шифрования электронной почты PGP основана на технике "цифровой конверт".

Хеширования находит применение как средство проверки надежности пароля. Если система хранит хэш пароля, вместо самого пароля, он будет более безопасным, так как даже если хакеру попадет в руки этот хеш, он не сможет понять (прочитать) его. В ходе проверки, система проверит хэш входящего пароля, и увидит, если результат совпадает с тем, что хранится. Таким образом, фактический пароль будет виден только в краткие моменты, когда он должен быть изменен или проверен, что позволит существенно снизить вероятность его попадания в чужие руки.

Хеширование также используется для проверки подлинности данных с помощью секретного ключа. Хэш генерируется с использованием данных и этого ключа. Следовательно, видны только данные и хэш, а сам ключ не передается. Таким образом, если изменения будут сделаны либо с данными, либо с хэшем, они будут легко обнаружены.

В заключение можно сказать, что эти методы могут быть использованы для эффективного кодирования данных в нечитаемый формат, который может гарантировать, что они останутся безопасными. Большинство современных систем обычно используют комбинацию этих методов шифрования наряду с сильной реализацией алгоритмов для повышения безопасности. В дополнение к безопасности, эти системы также предоставляют множество дополнительных преимуществ, таких как проверка удостоверения пользователя, и обеспечение того, что полученные данные не могут быть подделаны.