Тарифы Услуги Сим-карты

Python процедуры. Функции и их аргументы

Функции являются отличным помощником во всех языках программирования. Они способствуют улучшению кода за счет выполнения ими повторных задании без нужны дублировать код для получения результата без использования функции. Код функции должен быть как можно более компактнее. Функция должна выполнять только одну операцию . Она должна выполнять ее хорошо и ничего другого она делать не должна. Чтобы создать читабельный код для вам и для других программистов вы должны следить за ним. Вы работаете с с чистым кодом, если каждая функция в основном делает то, что вы от нее ожидали. Половина усилий по реализации этого принципа сводится к выбору хороших имен для компактных функции, выполняющих одну операцию.

Чем меньше и специализированнее код функции, тем проще выбрать для нее понятное имя . Не бойтесь использовать длинные имена . Длинное содержательное имя лучше короткого невразумительного. Будьте последовательны в выборе имени. Используйте в имени функции те же словосочетания, глаголы и существительные, которые используются в ваших модулях. Создание функции производится с помощью инструкции def, как показано в следующем примере. Мы уже научились , давайте воспользуется знаниями тут.

# -*- coding: utf-8 -*- Phones = ["Nokia", "Samsung", "LG", "Sony"] def show_as_text(user_list): words = "" for value in user_list: words += str(value) + " " return words print "Phones: ", show_as_text(Phones) # Вернет: Phones: Nokia Samsung LG Sony

Достаточно простая структура функции. Название функции show_as_text, важно чтобы не совпадала с названием функции самого Python. Имя функции должна быть уникальна и по сравнению с переменными. Если функция будет иметь название get_values, и после нее в скрипте будет создана переменная с тем же именем, тогда вызов get_values(args) выдаст ошибку.

# -*- coding: utf-8 -*- def get_value(): return True a = 1 b = 3 get_value = "some text..." is_true = get_value()

Получим ошибку:

TypeError: "str" object is not callable Если потребуется вернуть из функции несколько значений, можно использовать кортеж. Создадим небольшой аналог игры Бинго! чтобы получить разные номера. # -*- coding: utf-8 -*- import random def bingo(): return (random.randint(0, 30), random.randint(0, 30), random.randint(0, 30)) Numbers = bingo() print "Первый: ", Numbers print "Второй: ", Numbers print "Третий: ", Numbers

Присвоить аргументу функции значение по умолчанию можно с помощью оператора присваивания.

Def connect(ip, port=8080): return str(ip) + " " + str(port) print connect("127.0.0.1") # Получим: 127.0.0.1 8080

Если в определении функции для каких-либо параметров указаны значения по умолчанию, при последующих вызовах функции эти параметры можно опустить. Если при вызове какой-то из этих не указан, он получит значение по умолчанию. Например:

Connect("сайт", 80)

также имеется возможность передавать функции именованные аргументы, которые при этом можно перечислять в произвольном порядке. Однако в этом случае вы должны знать, какие имена аргументов указаны в определении функции.

Connect(port=80, host="сайт")

Когда внутри функции создаются новые переменные, они имеют локальную область видимости. То есть такие переменные определены только в пределах тела функции, и они уничтожаются, когда функция возвращает управление программе. ЧТобы иметь возможность изменять глобальные переменные внтури функции, эти переменные следует определить в теле функции с помощью инструкции global.

Num = 1 # Глабальная перемення def next_number(): global num personal_num = 999 num += 1 return num print next_number() # результат 2 # Попробуем получить значении локальной переменной personal_num print personal_num # Ошибка NameError: name "personal_num" is not defined

Функция в программировании представляет собой обособленный участок кода, который можно вызывать, обратившись к нему по имени, которым он был назван. При вызове происходит выполнение команд тела функции.

Функции можно сравнить с небольшими программками, которые сами по себе, т. е. автономно, не исполняются, а встраиваются в обычную программу. Нередко их так и называют – подпрограммы. Других ключевых отличий функций от программ нет. Функции также при необходимости могут получать и возвращать данные. Только обычно они их получают не с ввода (клавиатуры, файла и др.), а из вызывающей программы. Сюда же они возвращают результат своей работы.

Существует множество встроенных в язык программирования функций. С некоторыми такими в Python мы уже сталкивались. Это print(), input(), int(), float(), str(), type(). Код их тела нам не виден, он где-то "спрятан внутри языка". Нам же предоставляется только интерфейс – имя функции.

С другой стороны, программист всегда может определять свои функции. Их называют пользовательскими. В данном случае под "пользователем" понимают программиста, а не того, кто пользует программу. Разберемся, зачем нам эти функции, и как их создавать.

Предположим, надо три раза подряд запрашивать на ввод пару чисел и складывать их. С этой целью можно использовать цикл:

i = 0 while i < 3 : a = int (input () ) b = int (input () ) print (a+b) i += 1

Однако, что если перед каждым запросом чисел, надо выводить надпись, зачем они нужны, и каждый раз эта надпись разная. Мы не можем прервать цикл, а затем вернуться к тому же циклу обратно. Придется отказаться от него, и тогда получится длинный код, содержащий в разных местах одинаковые участки:

print () a = int (input () ) b = int (input () ) print ("Всего" , a+b, "шт." ) print () a = int (input () ) b = int (input () ) print ("Всего" , a+b, "шт." )

Пример исполнения программы:

Сколько бананов и ананасов для обезьян? 15 5 Всего 20 шт. Сколько жуков и червей для ежей? 50 12 Всего 62 шт. Сколько рыб и моллюсков для выдр? 16 8 Всего 24 шт.

Внедрение функций позволяет решить проблему дублирования кода в разных местах программы. Благодаря им можно исполнять один и тот же участок кода не сразу, а только тогда, когда он понадобится.

Определение функции. Оператор def

В языке программирования Python функции определяются с помощью оператора def. Рассмотрим код:

def countFood() : a = int (input () ) b = int (input () ) print ("Всего" , a+b, "шт." )

Это пример определения функции. Как и другие сложные инструкции вроде условного оператора и циклов функция состоит из заголовка и тела. Заголовок оканчивается двоеточием и переходом на новую строку. Тело имеет отступ.

Ключевое слово def сообщает интерпретатору, что перед ним определение функции. За def следует имя функции. Оно может быть любым, также как и всякий идентификатор, например, переменная. В программировании весьма желательно давать всему осмысленные имена. Так в данном случае функция названа "посчитатьЕду" в переводе на русский.

После имени функции ставятся скобки. В приведенном примере они пустые. Это значит, что функция не принимает никакие данные из вызывающей ее программы. Однако она могла бы их принимать, и тогда в скобках были бы указаны так называемые параметры.

После двоеточия следует тело, содержащее инструкции, которые выполняются при вызове функции. Следует различать определение функции и ее вызов. В программном коде они не рядом и не вместе. Можно определить функцию, но ни разу ее не вызвать. Нельзя вызвать функцию, которая не была определена. Определив функцию, но ни разу не вызвав ее, вы никогда не выполните ее тела.

Вызов функции

Рассмотрим полную версию программы с функцией:

def countFood() : a = int (input () ) b = int (input () ) print ("Всего" , a+b, "шт." ) print ("Сколько бананов и ананасов для обезьян?" ) countFood() print ("Сколько жуков и червей для ежей?" ) countFood() print ("Сколько рыб и моллюсков для выдр?" ) countFood()

После вывода на экран каждого информационного сообщения осуществляется вызов функции, который выглядит просто как упоминание ее имени со скобками. Поскольку в функцию мы ничего не передаем скобки опять же пустые. В приведенном коде функция вызывается три раза.

Когда функция вызывается, поток выполнения программы переходит к ее определению и начинает исполнять ее тело. После того, как тело функции исполнено, поток выполнения возвращается в основной код в то место, где функция вызывалась. Далее исполняется следующее за вызовом выражение.

В языке Python определение функции должно предшествовать ее вызовам. Это связано с тем, что интерпретатор читает код строка за строкой и о том, что находится ниже по течению, ему еще неизвестно. Поэтому если вызов функции предшествует ее определению, то возникает ошибка (выбрасывается исключение NameError):

print ("Сколько бананов и ананасов для обезьян?" ) countFood() print ("Сколько жуков и червей для ежей?" ) countFood() print ("Сколько рыб и моллюсков для выдр?" ) countFood() def countFood() : a = int (input () ) b = int (input () ) print ("Всего" , a+b, "шт." )

Результат:

Сколько бананов и ананасов для обезьян? Traceback (most recent call last ) : File "test.py" , line 2 , in < module> countFood() NameError: name "countFood" is not defined

Для многих компилируемых языков это не обязательное условие. Там можно определять и вызывать функцию в произвольных местах программы. Однако для удобочитаемости кода программисты даже в этом случае предпочитают соблюдать определенные правила.

Функции придают программе структуру

Польза функций не только в возможности многократного вызова одного и того же кода из разных мест программы. Не менее важно, что благодаря им программа обретает истинную структуру. Функции как бы разделяют ее на обособленные части, каждая из которых выполняет свою конкретную задачу.

Пусть надо написать программу, вычисляющую площади разных фигур. Пользователь указывает, площадь какой фигуры он хочет вычислить. После этого вводит исходные данные. Например, длину и ширину в случае прямоугольника. Чтобы разделить поток выполнения на несколько ветвей, следует использовать оператор if-elif-else:

figure = input () if figure == "1" : a = float (input ("Ширина: " ) ) b = float (input ("Высота: " ) ) print ("Площадь: %.2f" % (a*b) ) elif figure == "2" : a = float (input ("Основание: " ) ) h = float (input ("Высота: " ) ) print ("Площадь: %.2f" % (0.5 * a * h) ) elif figure == "3" : r = float (input ("Радиус: " ) ) print ("Площадь: %.2f" % (3.14 * r**2 ) ) else : print ("Ошибка ввода" )

Здесь нет никаких функций, и все прекрасно. Но напишем вариант с функциями:

def rectangle() : a = float (input ("Ширина: " ) ) b = float (input ("Высота: " ) ) print ("Площадь: %.2f" % (a*b) ) def triangle() : a = float (input ("Основание: " ) ) h = float (input ("Высота: " ) ) print ("Площадь: %.2f" % (0.5 * a * h) ) def circle() : r = float (input ("Радиус: " ) ) print ("Площадь: %.2f" % (3.14 * r**2 ) ) figure = input ("1-прямоугольник, 2-треугольник, 3-круг: " ) if figure == "1" : rectangle() elif figure == "2" : triangle() elif figure == "3" : circle() else : print ("Ошибка ввода" )

Он кажется сложнее, а каждая из трех функций вызывается всего один раз. Однако из общей логики программы как бы убраны и обособлены инструкции для нахождения площадей. Программа теперь состоит из отдельных "кирпичиков Лего". В основной ветке мы можем комбинировать их как угодно. Она играет роль управляющего механизма.

Если нам когда-нибудь захочется вычислять площадь треугольника по формуле Герона, а не через высоту, то не придется искать код во всей программе (представьте, что она состоит из тысяч строк кода как реальные программы). Мы пойдем к месту определения функций и изменим тело одной из них.

Если понадобиться использовать эти функции в какой-нибудь другой программе, то мы сможем импортировать их туда, сославшись на данный файл с кодом (как это делается в Python, будет рассмотрено позже).

Практическая работа

В программировании можно из одной функции вызывать другую. Для иллюстрации этой возможности напишите программу по следующему описанию.

Основная ветка программы, не считая заголовков функций, состоит из одной строки кода. Это вызов функции test(). В ней запрашивается на ввод целое число. Если оно положительное, то вызывается функция positive(), тело которой содержит команду вывода на экран слова "Положительное". Если число отрицательное, то вызывается функция negative(), ее тело содержит выражение вывода на экран слова "Отрицательное".

Последнее обновление: 11.04.2018

Функции представляют блок кода, который выполняет определенную задачу и который можно повторно использовать в других частях программы. Формальное определение функции:

Def имя_функции ([параметры]): инструкции

Определение функции начинается с выражения def , которое состоит из имени функции, набора скобок с параметрами и двоеточия. Параметры в скобках необязательны. А со следующей строки идет блок инструкций, которые выполняет функция. Все инструкции функции имеют отступы от начала строки.

Например, определение простейшей функции:

Def say_hello(): print("Hello")

Функция называется say_hello . Она не имеет параметров и содержит одну единственную инструкцию, которая выводит на консоль строку "Hello".

Для вызова функции указывается имя функции, после которого в скобках идет передача значений для всех ее параметров. Например:

Def say_hello(): print("Hello") say_hello() say_hello() say_hello()

Здесь три раза подряд вызывается функция say_hello. В итоге мы получим следующий консольный вывод:

Hello Hello Hello

Теперь определим и используем функцию с параметрами:

Def say_hello(name): print("Hello,",name) say_hello("Tom") say_hello("Bob") say_hello("Alice")

Функция принимает параметр name, и при вызове функции мы можем передать вместо параметра какой-либо значение:

Hello, Tom Hello, Bob Hello, Alice

Значения по умолчанию

Некоторые параметры функции мы можем сделать необязательными, указав для них значения по умолчанию при определении функции. Например:

Def say_hello(name="Tom"): print("Hello,", name) say_hello() say_hello("Bob")

Здесь параметр name является необязательным. И если мы не передаем при вызове функции для него значение, то применяется значение по умолчанию, то есть строка "Tom".

Именованные параметры

При передаче значений функция сопоставляет их с параметрами в том порядке, в котором они передаются. Например, пусть есть следующая функция:

Def display_info(name, age): print("Name:", name, "\t", "Age:", age) display_info("Tom", 22)

При вызове функции первое значение "Tom" передается первому параметру - параметру name, второе значение - число 22 передается второму параметру - age. И так далее по порядку. Использование именованных параметров позволяет переопределить порядок передачи:

Def display_info(name, age): print("Name:", name, "\t", "Age:", age) display_info(age=22, name="Tom")

Именованные параметры предполагают указание имени параметра с присвоением ему значения при вызове функции.

Неопределенное количество параметров

С помощью символа звездочки можно определить неопределенное количество параметров:

Def sum(*params): result = 0 for n in params: result += n return result sumOfNumbers1 = sum(1, 2, 3, 4, 5) # 15 sumOfNumbers2 = sum(3, 4, 5, 6) # 18 print(sumOfNumbers1) print(sumOfNumbers2)

В данном случае функция sum принимает один параметр - *params , но звездочка перед названием параметра указывает, что фактически на место этого параметра мы можем передать неопределенное количество значений или набор значений. В самой функции с помощью цикла for можно пройтись по этому набору и произвести с переданными значениями различные действия. Например, в данном случае возвращается сумма чисел.

Возвращение результата

Функция может возвращать результат. Для этого в функции используется оператор return , после которого указывается возвращаемое значение:

Def exchange(usd_rate, money): result = round(money/usd_rate, 2) return result result1 = exchange(60, 30000) print(result1) result2 = exchange(56, 30000) print(result2) result3 = exchange(65, 30000) print(result3)

Поскольку функция возвращает значение, то мы можем присвоить это значение какой-либо переменной и затем использовать ее: result2 = exchange(56, 30000) .

В Python функция может возвращать сразу несколько значений:

Def create_default_user(): name = "Tom" age = 33 return name, age user_name, user_age = create_default_user() print("Name:", user_name, "\t Age:", user_age)

Здесь функция create_default_user возвращает два значения: name и age. При вызове функции эти значения по порядку присваиваются переменным user_name и user_age, и мы их можем использовать.

Функция main

В программе может быть определено множество функций. И чтобы всех их упорядочить, хорошей практикой считается добавление специальной функции main , в которой потом уже вызываются другие функции:

Def main(): say_hello("Tom") usd_rate = 56 money = 30000 result = exchange(usd_rate, money) print("К выдаче", result, "долларов") def say_hello(name): print("Hello,", name) def exchange(usd_rate, money): result = round(money/usd_rate, 2) return result # Вызов функции main main()

В языках программирования функции являются именованной частью кода. Это отдельные блоки в тексте программы. Определяются с помощью зарезервированного слова def. В Python к функциям можно обращаться неограниченное количество раз из любой части сценария.

Зачем нужны функции

Функции - это незаменимый инструмент программиста. С их помощью разработчик структурирует программу, делая ее понятней и компактнее. С помощью функций можно добиться многократного использования отдельной части кода без его повторного написания.

Это простейший способ упаковать логику выполнения отдельных частей программы. При этом сокращается объем и время, которое специалист тратит на создание сценария.

Как написать первую функцию

В Python 3 для начинающих свое знакомство с программированием есть самая простая функция print(). Чтобы увидеть ее в действии вам понадобится среда разработки. Для этого скачайте дистрибутив языка с официального сайта и установите Python на компьютер.

Откройте меню «Пуск» и в списке программ найдите Python 3. Разверните его щелчком левой клавиши. В открывшемся списке найдите среду IDLE и запустите ее. Наберите print(«Hello, World!») и нажмите «Ввод». Интерпретатор вернет результат вашей первой функции.

Некоторые программисты предпочитают работать в консоли. Если вы относитесь к их числу, нажмите win+R и введите команду python.exe. Откроется обычный интерпретатор, только с интерфейсом cmd. Наберите программу описанным выше образом и нажмите Enter в конце, чтобы увидеть результат.

Как использовать def

Новые функции создаются с помощью инструкции def. Они так же эффективны, как и встроенные print() или open(), но отличаются от функций в компилирующих языках. Python def относится к исполняемым инструкциям. Это означает, что функции не существует, пока интерпретатор ее не увидит, и не перейдет к ее исполнению.

Инструкция def создает новый объект и дает ему название. То есть когда интерпретатор приступает к реализации, он создает новый объект и связывает его с именем, указанным после def. Чтобы хранить данные к функциям можно прикреплять различные атрибуты.

Теперь давайте напишем функцию, возвращающую фразу «Hello, World!», только с использованием def:

  • >>> def здравствуй_мир():
  • print(«Hello, World!»)
  • >>> здравствуй_мир() #вызов функции
  • Hello, World!

Синтаксис функций и return

Инструкция def в Python состоит из заголовка и пишется по следующим правилам:

  • >>>def <имя>

После заголовка следует блок инструкций, который начинается с обязательного отступа. В IDLE интерпретатор сделает его автоматически. Но в блокноте или другом текстовом редакторе вы можете забыть нажать Tab. Тогда функция не запустится. Программный код в блоке инструкции называется телом функции и выполняется каждый раз при ее вызове.

Также в теле иногда находится return:

  • def <имя>(аргумент 1, аргумент 2, аргумент N):
  • return <значение>

Return завершает работу функции и передает вызывающей программе объект-результат. Инструкция не является обязательной. Функция будет работать без return, и завершится, когда поток управления достигнет конца ее тела.

Параметры и аргументы

Каждой функции можно передавать параметры, которые указываются в скобках после def. В Python они записываются как переменные, разделенные запятыми. Значения или ссылки на объекты этим именам присваиваются в блоке за двоеточием. После операции присвоения их принято называть аргументами, а не параметрами.

Аргументы внутри функции никак не связаны с объектами вне ее, поэтому в программировании их относят к локальным переменным. Область видимости ограничена блоком функции, который начинается с def и заканчивается return. Чтобы было понятнее, приведем пример:

  • x = 12 #присваиваем переменным ссылки на целочисленные объекты
  • y = 34
  • >>>def example(x,y): #создаем функцию с именем example
  • x = «Hello» #присваиваем значения аргументам x, y
  • y = «Python»
  • print(x, y, sep= «, »)
  • return None
  • >>>example(x, y) #вызываем функцию, не забыв указать параметры
  • Hello, Python
  • >>>print(x, y)
  • 12 34

Обратите внимание на предпоследнюю строчку кода. В интерпретаторе Python команда print() вернула переменные x и y из глобальной области видимости.

Значения аргументов не обязательно указывать внутри функции, можно их вписать вручную при ее вызове:

  • >>>def E_2(x, y):
  • return x + y
  • >>>E_2(«Hello, » «Python!») #чтобы слова были разделены, поставьте пробел перед закрывающей кавычкой
  • Hello, Python!
  • E_2(5, 4)

Как видно из примера с простой функцией E_2, результат полностью зависит от типа объектов x и y. В первом случае E_2 выполнила конкатенацию, а во втором - арифметическую операцию сложения. В этом заключается принцип полиморфизма и То, что объекты определяют синтаксический смысл, обуславливает гибкость и простоту языка. Не нужно тратить время на то, чтобы отдельно указать тип данных, с которым работает функция.

Правило LEGB

Это правило касается работы с переменными в разных областях видимости. По умолчанию все имена, которые вы создаете в теле функции, считаются локальными. А имена в модуле являются глобальными. При желании именам можно присвоить значение переменных верхнего уровня с помощью инструкции notlocal и global.

Правило LEGB объясняет схему разрешения имен:

  1. Как только интерпретатор находит переменную внутри инструкции def, он сначала выполняет поиск значений в локальной области видимости.
  2. Если поиск не дает результата, он переходит к области видимости любой всеобъемлющей инструкции def.
  3. Дальше интерпретатор двигается к глобальным именам в верхнем уровне модуля и тем, что обозначены как global.
  4. Если поиск не дает результатов, интерпретатор ищет имена во встроенной области видимости языка Python.

Рассмотрим наглядный пример:

  • >>>L = 85
  • >>>R = 23
  • >>>def пример_2(K):
  • R = 10
  • C = L + K+R
  • return C
  • >>>пример_2(5)

Переменные L и R находятся на верхнем уровне и являются глобальными именами. R, C и K - это локальные переменные, так как присваивание значения происходит внутри инструкции def.

Интерпретатор сначала выполняет операцию сложения для локальных R, C и K, игнорируя переменную R вне инструкции def. Потом ищет L, и не найдя ее среди имен local, переходит на верхний уровень.

Что такое lambda

Помимо def, в Python функции можно создавать с помощью специальных выражений, одно из которых - lambda. Свое оригинальное название получила в честь лямбда-исчислений языка LISP.

Как и def, lambda создает функцию, которую можно будет в дальнейшем вызвать, но не связывает ее с каким-нибудь именем. На практике lambda используют, когда нужно отложить выполнение фрагмента кода.

Основы лямбда-выражений

По внешнему виду lambda-выражения напоминают инструкции def. Вначале пишется ключевое слово lambda, потом аргументы, двоеточие и само выражение:

  • >>>f = lambda x, y, z: x + y + z
  • >>>f(2, 3, 4)

Тело лямбда представляет собой одно единственное выражение, а не блок инструкций. За счет этого lambda ограничена в возможностях и не настолько универсальна как def. В ней может быть реализована только логика, без циклов while или for.

Для лямбда действуют аналогичные с def правила поиска переменных. Имена, указанные вне выражения, являются глобальными, внутри - локальными, и они никак не влияют друг на друга.

Lambda-выражения очень удобно встраивать в программу. За счет небольшого размера они минимизируют и упрощают код. Но использование лямбда не является принципиальным. В Python 3 начинающим для работы будет достаточно инструкции def.

Именные функции, инструкция def

Функция в python - объект, принимающий аргументы и возвращающий значение. Обычно функция определяется с помощью инструкции def.

Определим простейшую функцию:

Инструкция return говорит, что нужно вернуть значение. В нашем случае функция возвращает сумму x и y.

Теперь мы ее можем вызвать:

>>> add(1, 10)

>>> add("abc", "def")

Функция может быть любой сложности и возвращать любые объекты (списки, кортежи, и даже функции!):

>>> def newfunc(n):

Def myfunc(x):

Return x + n

Return myfunc

>>> new = newfunc(100) # new - это функция

>>> new(200)

Функция может и не заканчиваться инструкцией return, при этом функция вернет значениеNone:

>>> def func():

>>> print(func())

Аргументы функции

Функция может принимать произвольное количество аргументов или не принимать их вовсе. Также распространены функции с произвольным числом аргументов, функции с позиционными и именованными аргументами, обязательными и необязательными.

>>> def func(a, b, c=2): # c - необязательный аргумент

Return a + b + c

>>> func(1, 2) # a = 1, b = 2, c = 2 (по умолчанию)

>>> func(1, 2, 3) # a = 1, b = 2, c = 3

>>> func(a=1, b=3) # a = 1, b = 3, c = 2

>>> func(a=3, c=6) # a = 3, c = 6, b не определен

Traceback (most recent call last):

File "", line 1, in

TypeError: func() takes at least 2 arguments (2 given)

Функция также может принимать переменное количество позиционных аргументов, тогда перед именем ставится *:

>>> def func(*args):

>>> func(1, 2, 3, "abc")

(1, 2, 3, "abc")

>>> func(1)

Как видно из примера, args - это кортежиз всех переданных аргументов функции, и с переменной можно работать также, как и с кортежем.

Функция может принимать и произвольное число именованных аргументов, тогда перед именем ставится **:

>>> def func(**kwargs):

Return kwargs

>>> func(a=1, b=2, c=3)

{"a": 1, "c": 3, "b": 2}

>>> func(a="python")

В переменной kwargs у нас хранится словарь, с которым мы, опять-таки, можем делать все, что нам заблагорассудится.

Анонимные функции, инструкция lambda

Анонимные функции могут содержать лишь одно выражение, но и выполняются они быстрее. Анонимные функции создаются с помощью инструкции lambda. Кроме этого, их не обязательно присваивать переменной, как делали мы инструкцией def func():

>>> func = lambda x, y: x + y

>>> func(1, 2)

>>> func("a", "b")

>>> (lambda x, y: x + y)(1, 2)

>>> (lambda x, y: x + y)("a", "b")

lambda функции, в отличие от обычной, не требуется инструкция return, а в остальном, ведет себя точно так же:

>>> func = lambda *args: args

>>> func(1, 2, 3, 4)

19. Понятие рекурсии, реализация в языке Python

В программировании рекурсия - вызов функции (процедуры) из неё же самой, непосредственно (простая рекурсия) или через другие функции (сложная или косвенная рекурсия), например, функция вызывает функцию, а функция- функцию. Количество вложенных вызовов функции или процедуры называется глубиной рекурсии.

Проще сказать нельзя. Про рекурсии есть известная поговорка:

Чтобы понять рекурсию, нужно сперва понять рекурсию

Итак, питон позволяет работать с рекурсиями легко и непринужденно. Самый первый пример рекурсии, с которой сталкиваются большинство программистов - это нахождение факториала. Код может быть таким:

def factorial(n):

if n <= 1: return 1

else: return n * factorial(n - 1)

Как видно, мы записали инструкцию if else слегка необычным для питона способом, но это позволяется в данном случаее, ввиду того, что читабельность здесь не ухудшается, но не следует злоупотреблять таким стилем. И вообще, PEP8всех рассудит. :)

Теперь проясним несколько важных особенностей, о которых всегда нужно помнить при работе с рекурсиями.

    Существует ограничение на глубину рекурсии. По умолчанию оно равно 1000.

    Для того, чтобы изменить это ограничение нужно вызвать функцию sys.setrecursionlimit(), а для просмотра текущего лимита sys.getrecursionlimit().

    Не смотря на это - существует ограничение размером стека, который устанавливается операционной системой.

    Рекурсия в Python не может использоваться в функциях-генераторах и сопрограммах. Однако, можно это поведение исправить, но лучше не стоит.

    И последнее - применение декораторов к рекурсивным функциям может приводить к неожиданным результатам, поэтому будьте очень осторожны декорируя рекурсивные функции.

Также, всегда следует определять точки выхода из рекурсивных функций. Это как с циклами - бесконечный цикл может здорово «просадить» вашу операционную систему. И наконец, где лучше применять рекурсию, а где лучше воздержаться и обойтись, например циклами. Конечно, здесь многое зависит от задачи, но всегда следует помнить, что рекурсия в разы медленнее цикла. Так уж устроен питон, что вызов функции дорого вам обходится:) Вообще, в циклах не стоит вызывать функции, а уж рекурсивные функции и подавно.

Рекурсия хорошо подходит там, где производительность не слишком важна, а важнее читабельность и поддержка кода. К примеру, напишите две функции для обхода дерева каталогов, одну рекурсивную, другую с циклами.