Тарифы Услуги Сим-карты

Найти ранг матрицы: способы и примеры. Алгебраические дополнения и миноры. Виды миноров и алгебраических дополнений

Определение. Рангом матрицы называется максимальное число линейно независимых строк, рассматриваемых как векторы.

Теорема 1 о ранге матрицы. Рангом матрицы называется максимальный порядок отличного от нуля минора матрицы.

Понятие минора мы уже разбирали на уроке по определителям , а сейчас обобщим его. Возьмём в матрице сколько-то строк и сколько-то столбцов, причём это "сколько-то" должно быть меньше числа строк и стобцов матрицы, а для строк и столбцов это "сколько-то" должно быть одним и тем же числом. Тогда на пересечении скольки-то строк и скольки-то столбцов окажется матрица меньшего порядка, чем наша исходная матрица. Определитель это матрицы и будет минором k-го порядка, если упомянутое "сколько-то" (число строк и столбцов) обозначим через k.

Определение. Минор (r +1)-го порядка, внутри которого лежит выбранный минор r -го порядка, называется называется окаймляющим для данного минора.

Наиболее часто используются два способа отыскания ранга матрицы . Это способ окаймляющих миноров и способ элементарных преобразований (методом Гаусса).

При способе окаймляющих миноров используется следующая теорема.

Теорема 2 о ранге матрицы. Если из элементов матрицы можно составить минор r -го порядка, не равный нулю, то ранг матрицы равен r .

При способе элементарных преобразований используется следующее свойство:

Если путём элементарных преобразований получена трапециевидная матрица, эквивалентная исходной, то рангом этой матрицы является число строк в ней кроме строк, полностью состоящих из нулей.

Отыскание ранга матрицы способом окаймляющих миноров

Окаймляющим минором называется минор большего порядка по отношению к данному, если этот минорм большего порядка содержит в себе данный минор.

Например, дана матрица

Возьмём минор

окаймляющими будут такие миноры:

Алгоритм нахождения ранга матрицы следующий.

1. Находим не равные нулю миноры второго порядка. Если все миноры второго порядка равны нулю, то ранг матрицы будет равен единице (r =1 ).

2. Если существует хотя бы один минор второго порядка, не равный нулю, то составляем окаймляющие миноры третьего порядка. Если все окаймляющие миноры третьего порядка равны нулю, то ранг матрицы равен двум (r =2 ).

3. Если хотя бы один из окаймляющих миноров третьего порядка не равен нулю, то составляем окаймляющие его миноры. Если все окаймляющие миноры четвёртого порядка равны нулю, то ранг матрицы равен трём (r =2 ).

4. Продолжаем так, пока позволяет размер матрицы.

Пример 1. Найти ранг матрицы

.

Решение. Минор второго порядка .

Окаймляем его. Окаймляющих миноров будет четыре:

,

,

Таким образом, все окаймляющие миноры третьего порядка равны нулю, следовательно, ранг данной матрицы равен двум (r =2 ).

Пример 2. Найти ранг матрицы

Решение. Ранг данной матрицы равен 1, так как все миноры второго порядка этой матрицы равны нулю (в этом, как и в случаях окаймляющих миноров в двух следующих примерах, дорогим студентам предлагается убедиться самостоятельно, возможно, используя правила вычисления определителей), а среди миноров первого порядка, то есть среди элементов матрицы, есть не равные нулю.

Пример 3. Найти ранг матрицы

Решение. Минор второго порядка этой матрицы , в все миноры третьего порядка этой матрицы равны нулю. Следовательно, ранг данной матрицы равен двум.

Пример 4. Найти ранг матрицы

Решение. Ранг данной матрицы равен 3, так как единственный минор третьего порядка этой матрицы равен 3.

Отыскание ранга матрицы способом элементарных преобразований (методом Гаусса)

Уже на примере 1 видно, что задача определения ранга матрицы способом окаймляющих миноров требует вычисления большого числа определителей. Существует, однако, способ, позволяющий свести объём вычислений к минимуму. Этот способ основан на использовании элементарных преобразований матриц и ещё называется также методом Гаусса.

Под элементарными преобразованиями матрицы понимаются следующие операции:

1) умножение какой-либо строки или какого либо столбца матрицы на число, отличное от нуля;

2) прибавление к элементам какой-либо строки или какого-либо столбца матрицы соответствующих элементов другой строки или столбца, умноженных на одно и то же число;

3) перемена местами двух строк или столбцов матрицы;

4) удаление "нулевых" строк, то есть таких, все элементы которых равны нулю;

5) удаление всех пропорциональных строк, кроме одной.

Теорема. При элементарном преобразовании ранг матрицы не меняется. Другими словами, если мы элементарными преобразованиями от матрицы A перешли к матрице B , то .

Миноры матрицы

Пусть дана квадратная матрица А, n - ого порядка. Минором некоторого элемента а ij , определителя матрицы n - ого порядка называется определитель (n - 1) - ого порядка, полученный из исходного путем вычеркивания строки и столбца, на пересечении которых находится выбранный элемент а ij . Обозначается М ij .

Рассмотрим на примере определителя матрицы 3 - его порядка:

Тогда согласно определению минора , минором М 12 , соответствующим элементу а 12 , будет определитель :

При этом, с помощью миноров можно облегчать задачу вычисления определителя матрицы . Надо разложить определитель матрицы по некоторой строке и тогда определитель будет равен сумме всех элементов этой строки на их миноры. Разложение определителя матрицы 3 - его порядка будет выглядеть так:

Знак перед произведением равен (-1) n , где n = i + j.

Алгебраические дополнения:

Алгебраическим дополнением элемента а ij называется его минор , взятый со знаком "+", если сумма (i + j) четное число, и со знаком "-", если эта сумма нечетное число. Обозначается А ij . А ij = (-1) i+j × М ij .

Тогда можно переформулировать изложенное выше свойство. Определитель матрицы равен сумме произведение элементов некторого ряда (строки или столбца) матрицы на соответствующие им алгебраические дополнения . Пример:

4. Обратная матрица и её вычисление.

Пусть А - квадратная матрица n - ого порядка.

Квадратная матрица А называется невырожденной, если определитель матрицы (Δ = det A) не равен нулю (Δ = det A ≠ 0). В противном случае (Δ = 0) матрица А называется вырожденной.

Матрицей , союзной к матрице А, называется матрица

Где А ij - алгебраическое дополнение элемента а ij данной матрицы (оно определяется так же, как и алгебраическое дополнение элемента определителя матрицы ).

Матрица А -1 называется обратной матрице А, если выполняется условие: А × А -1 = А -1 × А = Е, где Е - единичная матрица того же порядка, что и матрица А. Матрица А -1 имеет те же размеры, что и матрица А.

Обратная матрица

Если существуют квадратные матрицы Х и А, удовлетворяющие условию: X × A = A × X = E , где Е - единичная матрица того же самого порядка, то матрица Х называется обратной матрицей к матрице А и обозначается А -1 . Всякая невырожденная матрица имеет обратную матрицу и притом только одну, т. е. для того чтобы квадратная матрица A имела обратную матрицу , необходимо и достаточно, чтобы её определитель был отличен от нуля.

Для получения обратной матрицы используют формулу:

Где М ji дополнительный минор элемента а ji матрицы А.

5. Ранг матрицы. Вычисление ранга с помощью элементарных преобразований.

Рассмотрим прямоугольную матрицу mхn. Выделим в этой матрице какие-нибудь k строк и k столбцов, 1 £ k £ min (m, n) . Из элементов, стоящих на пересечении выделенных строк и столбцов, составим определитель k-го порядка. Все такие определители называются минорами матрицы. Например, для матрицы можно составить миноры второго порядкаи миноры первого порядка 1, 0, -1, 2, 4, 3.

Определение. Рангом матрицы называется наивысший порядок отличного от нуля минора этой матрицы. Обозначают ранг матрицы r (A).

В приведенном примере ранг матрицы равен двум, так как, например, минор

Ранг матрицы удобно вычислять методом элементарных преобразований. К элементарным преобразованиям относят следующие:

1) перестановки строк (столбцов);

2) умножение строки (столбца) на число, отличное от нуля;

3) прибавление к элементам строки (столбца) соответствующих элементов другой строки (столбца), предварительно умноженных на некоторое число.

Эти преобразования не меняют ранга матрицы, так как известно, что 1) при перестановке строк определитель меняет знак и, если он не был равен нулю, то уже и не станет; 2) при умножении строки определителя на число, не равное нулю, определитель умножается на это число; 3) третье элементарное преобразование вообще не изменяет определитель. Таким образом, производя над матрицей элементарные преобразования, можно получить матрицу, для которой легко вычислить ранг ее и, следовательно, исходной матрицы.

Определение. Матрица , полученная из матрицыпри помощи элементарных преобразований, называется эквивалентной и обозначаетсяА В .

Теорема. Ранг матрицы не изменяется при элементарных преобразованиях матрицы.

С помощью элементарных преобразований можно привести матрицу к так называемому ступенчатому виду, когда вычисление ее ранга не представляет труда.

Матрица называется ступенчатой если она имеет вид:

Очевидно, что ранг ступенчатой матрицы равен числу ненулевых строк , т.к. имеется минор -го порядка, не равный нулю:

.

Матрицы, элементы которой стоят в данной прямоугольной матрице порядка k (который называется также порядком этого минора) на пересечении строк с номерами и столбцов с номерами .

Если номера отмеченных строк совпадают с номерами отмеченных столбцов, то минор называется главным , а если отмечены первые k строк и первые k столбцов ― угловым или ведущим главным .

Дополнительный минор элемента матрицы n-го порядка есть определитель порядка (n-1), соответствующий той матрице, которая получается из матрицы путем вычеркивания i-ой строки и j-го столбца.

Базисным минором матрицы называется любой её ненулевой минор максимального порядка. Для того чтобы минор был базисным, необходимо и достаточно, чтобы все окаймляющие его миноры (то есть содержащие его миноры на единицу большего порядка) были равны нулю. Система строк (столбцов) матрицы, связанных с базисным минором, является максимальной линейно независимой подсистемой системы всех строк (столбцов) матрицы.

Пример

Например, есть матрица:

Предположим, надо найти дополнительный минор M 23 . Этот минор - определитель матрицы, получающейся путем вычеркивания строки 2 и столбца 3:


Получаем M 23 = 13

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Минор матрицы" в других словарях:

    Минор (от лат. minor меньший) k го порядка матрицы, определитель, составленный из элементов, стоящих на пересечении произвольно выделенных k строк и k столбцов матрицы. Так, определитель есть М. 2 го порядка матрицы составленный из ее элементов,… …

    Определитель, составленный из элементов, состоящих на пересечении произвольно выделенных k строк и k столбцов данной матрицы или определителя … Большой Энциклопедический словарь

    МИНОР, определитель, составленный из элементов, состоящих на пересечении произвольно выделенных k строк и k столбцов данной матрицы или определителя … Энциклопедический словарь

    1. М. элемента aij определителя А есть определитель, полученный из А после вычеркивания элементов i ой строки и j гo столбца. М. m го порядка матрицы А ||aij|| есть определитель m го порядка, составленный из m2 элементов, стоящих на пересечении… … Геологическая энциклопедия

    Минор - см. Определитель матрицы … Экономико-математический словарь

    У этого термина существуют и другие значения, см. Минор (значения). Минор матрицы ― определитель такой квадратной матрицы порядка (который называется также порядком этого минора), элементы которой стоят в матрице на пересечении строк с номерами … Википедия

    I Минор Лазарь Соломонович , советский невропатолог, заслуженный деятель науки РСФСР (1927). В 1879 окончил медицинский факультет Московского университета, работал у А. И. Бабухина, А. Я. Кожевникова. В 1910 17… … Большая советская энциклопедия

    А; м. [от итал. minore меньший]. 1. Музыкальный лад, звуки которого образуют аккорд, построенный на малой трапеции (характеризуется звуковой окраской, связанной с настроениями грусти, скорби; противоп.: мажор). Играть в миноре. 2. Разг. О… … Энциклопедический словарь

    Порядка к определитель матрицы, элементы к рой стоят в данной прямоугольной матрице на пересечении кразных столбцов и кразных строк. Если номера отмеченных строк совпадают с номерами отмеченных столбцов, то М. наз. главным, а есля отмечены первые … Математическая энциклопедия

    Определитель, составленный из элементов, стоящих на пересечении произвольно выделенных k строк и k столбцов данной матрицы или определителя … Естествознание. Энциклопедический словарь

Пусть в матрице выделены
какие-либо k строк и k столбцов, k и k. Элементы, расположенные на пересечении этих строк и столбцов, образуют квадратную матрицу А¢ порядка k (подматрицу матрицы А).
Ее определитель называется минором k-го порядка данной матрицы А. Очевидно, что в общем случае таких миноров матрицы А может быть несколько. При этом максимальный порядок миноров равен минимальному из чисел m и n, т.е. . Из всех возможных миноров матрицы А выделим те, которые отличны от нуля. В свою очередь, среди этих миноров можно найти по крайней мере один минор наибольшего порядка.

Определение. Наибольший порядок минора, отличного от нуля, называется рангом матрицы.

Определение. Отличный от нуля минор матрицы, порядок которого равен рангу матрицы, называется базисным минором этой матрицы.

Строки и столбцы, на пересечении которых стоит базисный минор, называются базисными .

В общем случае у матрицы может быть несколько базисных миноров.

Важную роль играет следующая основная теорема, которую мы приводим без доказательства.

Теорема 3.6. (о базисном миноре). Базисные строки (базисные столбцы) матрицы линейно независимы. Любая строка (любой столбец) матрицы А является линейной комбинацией базисных строк (базисных столбцов).

Таким образом, если ранг матрицы А равен r , то в этой матрице обязательно имеется минор r -го порядка, отличный от нуля, а все миноры, порядок которых больше r , равны нулю.

Ранее было дано определение ранга матрицы как наибольшего числа линейно независимых ее вектор-строк (столбцов). В курсе алгебры доказывается, что эти два определения эквивалентны. Это дает возможность вычислять ранг матрицы, а значит, и ранг системы векторов.

Пример. Найти все базисные миноры матрицы

А=.

○ Любой минор матрицы А третьего порядка равен нулю, так как содержит нулевую строку. Будем находить миноры второго порядка, отличные от нуля.

, , , , .

Среди миноров второго порядка есть отличные от нуля, значит ранг матрицы А равен 2 и базисными минорами являются . ●

Теорема 3.7. Для того чтобы определитель n-го порядка был равен нулю, необходимо и достаточно, чтобы его строки (столбцы) были линейно зависимы.

□ 1) Пусть определитель квадратной матрицы А порядка n равен нулю. Тогда максимальный порядок миноров, не равных нулю, должен быть меньше n ; следовательно, ранг матрицы А меньше n . Это означает, что система всех строк матрицы линейно зависима.

2) Если строки А 1 , А 2 ,…, А m определителя линейно зависимы,
то по свойству 6° линейной зависимости одна строка А i является линейной комбинацией остальных строк определителя, т.е.


Прибавив к строке А i эту линейную комбинацию, умноженную на (–1), получим одну строку, целиком состоящую из нулей, при этом на основании свойства 7° определителя величина определителя не изменится. Но тогда по свойству 2° определитель равен нулю. ■


Пример. Доказать, что векторы a 1 =(2;–1;3), a 2 =(–1;1;0), a 3 =(1;1;6) компланарны.

○ Три ненулевые трехмерные векторы компланарны, если они линейно зависимы. Составим определитель из координат этих векторов

Так как определитель равен нулю, то его строки линейно зависимы, значит, линейно зависимы векторы a 1 =(2;–1;3), a 2 =(–1;1;0), a 3 =(1;1;6), следовательно, они компланарны. ●

Определители матриц часто используются в вычислениях, в линейной алгебре и аналитической геометрии. Вне академического мира определители матриц постоянно требуются инженерам и программистам, в особенности тем, кто работает с компьютерной графикой. Если вы уже знаете, как найти определитель матрицы размерностью 2x2, то из инструментов для нахождения определителя матрицы 3x3 вам будут необходимы только сложение, вычитание и умножение.

Шаги

Поиск определителя

    Запишите матрицу размерностью 3 x 3. Запишем матрицу размерностью 3 x 3, которую обозначим M, и найдем ее определитель |M|. Далее приводится общая форма записи матрицы, которую мы будем использовать, и матрица для нашего примера:

    • M = (a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33) = (1 5 3 2 4 7 4 6 2) {\displaystyle M={\begin{pmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{pmatrix}}={\begin{pmatrix}1&5&3\\2&4&7\\4&6&2\end{pmatrix}}}
  1. Выберите строку или столбец матрицы. Эта строка (или столбец) будет опорной. Результат будет одинаков, независимо от того, какую строку или какой столбец вы выберете. В данном примере давайте возьмем первую строку. Чуть позже вы найдете несколько советов касательно того, как выбирать строку или столбец, чтобы упростить вычисления.

    • Давайте выберем первую строку матрицы M в нашем примере. Обведите числа 1 5 3. В общей форме обведите a 11 a 12 a 13 .
  2. Зачеркните строку или столбец с первым элементом. Обратитесь к опорной строке (или к опорному столбцу) и выберите первый элемент. Проведите горизонтальную и вертикальную черту через этот элемент, вычеркнув таким образом столбец и строку с этим элементом. Должно остаться четыре числа. Будем считать эти элементы новой матрицей размерностью 2 x 2.

    • В нашем примере, опорной строкой будет 1 5 3. Первый элемент находится на пересечении первого столбца и первой строки. Вычеркните строку и столбец с этим элементом, то есть первую сроку и первый столбец. Запишите оставшиеся элементы в виде матрицы 2 x 2 :
    • 1 5 3
    • 2 4 7
    • 4 6 2
  3. Найдите определитель матрицы 2 x 2. Запомните, что определитель матрицы (a b c d) {\displaystyle {\begin{pmatrix}a&b\\c&d\end{pmatrix}}} вычисляется как ad - bc . Опираясь на это, вы можете вычислить определитель полученной матрицы 2 x 2, которую, если хотите, можете обозначить как X. Умножьте два числа матрицы X, соединенных по диагонали слева направо (то есть так: \). Затем вычтите результат умножения двух других чисел по диагонали справа налево (то есть так: /). Используйте эту формулу, чтобы вычислить определитель матрицы, которую вы только что получили.

    Умножьте полученный ответ на выбранный элемент матрицы M. Вспомните, какой элемент из опорной строки (или столбца) мы использовали, когда вычеркивали другие элементы строки и столбца, чтобы получить новую матрицу. Умножьте этот элемент на полученный минор (определитель матрицы 2x2, которую мы обозначили X).

    • В нашем примере мы выбирали элемент a 11 , который равнялся 1. Умножим его на -34 (определитель матрицы 2x2), и у нас получится 1*-34 = -34 .
  4. Определите знак полученного результата. Далее вам понадобится умножить полученный результат на 1, либо на -1, чтобы получить алгебраическое дополнение (кофактор) выбранного элемента. Знак кофактора будет зависеть от того, в каком месте матрицы 3x3 стоит элемент. Запомните эту простую схему знаков, чтобы знать знак кофактора:

  5. Повторите все вышеописанные действия со вторым элементом опорной строки (или столбца). Вернитесь к исходной матрице размерностью 3x3 и строке, которую мы обвели в самом начале вычислений. Повторите все действия с этим элементом:

    • Вычеркните строку и столбец с этим элементом. В нашем примере мы должны выбрать элемент a 12 (равный 5). Вычеркнем первую строку (1 5 3) и второй столбец (5 4 6) {\displaystyle {\begin{pmatrix}5\\4\\6\end{pmatrix}}} матрицы.
    • Запишите оставшиеся элементы в виде матрицы 2x2. В нашем примере матрица будет иметь вид (2 7 4 2) {\displaystyle {\begin{pmatrix}2&7\\4&2\end{pmatrix}}}
    • Найдите определитель этой новой матрицы 2x2. Воспользуйтесь вышеприведенной формулой ad - bc. (2*2 - 7*4 = -24)
    • Умножьте полученный определитель на выбранный элемент матрицы 3x3. -24 * 5 = -120
    • Проверьте, нужно ли умножить результат на -1. Воспользуемся формулой (-1) ij , чтобы определить знак алгебраического дополнения. Для выбранного нами элемента a 12 в таблице указан знак «-», аналогичный результат дает и формула. То есть мы должны изменить знак: (-1)*(-120) = 120 .
  6. Повторите с третьим элементом. Далее вам понадобится найти еще одно алгебраическое дополнение. Вычислите его для последнего элемента опорной строки или опорного столбца. Далее приводится краткое описание того, как вычисляется алгебраическое дополнение для a 13 в нашем примере:

    • Зачеркните первую строку и третий столбец, чтобы получить матрицу (2 4 4 6) {\displaystyle {\begin{pmatrix}2&4\\4&6\end{pmatrix}}}
    • Ее определитель равен 2*6 - 4*4 = -4.
    • Умножьте результат на элемент a 13: -4 * 3 = -12.
    • Элемент a 13 имеет знак + в приведенной выше таблице, поэтому ответ будет -12 .
  7. Сложите полученные результаты. Это последний шаг. Вам необходимо сложить полученные алгебраические дополнения элементов опорной строки (или опорного столбца). Сложите их вместе, и вы получите значение определителя матрицы 3x3.

    • В нашем примере определитель равен -34 + 120 + -12 = 74 .

    Как упростить задачу

    1. Выбирайте в качестве опорной строки (или столбца) ту, что имеет больше нулей. Помните, что в качестве опорной вы можете выбрать любую строку или столбец. Выбор опорной строки или столбца не влияет на результат. Если вы выберете строку с наибольшим количеством нулей, вам придется выполнять меньше вычислений, поскольку вам будет необходимо вычислить алгебраические дополнения только для ненулевых элементов. Вот почему:

      • Допустим, вы выбрали 2 строку с элементами a 21 , a 22 , and a 23 . Чтобы найти определитель, вам будет необходимо найти определители трех различных матриц размерностью 2x2. Давайте назовем их A 21 , A 22 , and A 23 .
      • То есть определитель матрицы 3x3 равен a 21 |A 21 | - a 22 |A 22 | + a 23 |A 23 |.
      • Если оба элемента a 22 и a 23 равны 0, то наша формула становится намного короче a 21 |A 21 | - 0*|A 22 | + 0*|A 23 | = a 21 |A 21 | - 0 + 0 = a 21 |A 21 |. То есть необходимо вычислить только алгебраическое дополнение одного элемента.
    2. Используйте сложение строк, чтобы упростить матрицу. Если вы возьмете одну строку и прибавите к ней другую, то определитель матрицы не изменится. То же самое верно и для столбцов. Подобные действия можно выполнять несколько раз, кроме того, вы можете умножать значения строки на постоянную (перед сложением) для того, чтобы получить как можно больше нулей. Подобные действия могут сэкономить массу времени.

      • Например, у нас есть матрица из трех строк: (9 − 1 2 3 1 0 7 5 − 2) {\displaystyle {\begin{pmatrix}9&-1&2\\3&1&0\\7&5&-2\end{pmatrix}}}
      • Чтобы избавиться от 9 на месте элемента a 11 , мы можем умножить вторую строку на -3 и прибавить результат к первой. Новая первая строка будет + [-9 -3 0] = .
      • То есть мы получаем новую матрицу (0 − 4 2 3 1 0 7 5 − 2) {\displaystyle {\begin{pmatrix}0&-4&2\\3&1&0\\7&5&-2\end{pmatrix}}} Попробуйте проделать то же самое со столбцами, чтобы получить на месте элемента a 12 нуль.
    3. Помните, что вычислять определитель треугольных матриц намного проще. Определитель треугольных матриц вычисляется как произведение элементов на главной диагонали, от a 11 в верхнем левом углу до a 33 в нижнем правом углу. Речь в данном случае идет о треугольных матрицах размерностью 3x3. Треугольные матрицы могут быть следующих видов, в зависимости от расположения ненулевых значений:

      • Верхняя треугольная матрица: Все ненулевые элементы находятся на главной диагонали и выше нее. Все элементы ниже главной диагонали равны нулю.
      • Нижняя треугольная матрица: Все ненулевые элементы находятся ниже главной диагонали и на ней.
      • Диагональная матрица: Все ненулевые элементы находятся на главной диагонали. Является частным случаем вышеописанных матриц.
      • Описанный метод распространяется на квадратные матрицы любого ранга. Например, если вы используете его для матрицы 4x4, то после «вычеркивания» будут оставаться матрицы 3x3, для которых определитель будет вычисляться вышеупомянутым способом. Будьте готовы к тому, что вычислять определитель для матриц таких размерностей вручную - очень трудоемкая задача!
      • Если все элементы строки или столбца равны 0, то определитель матрицы тоже равен 0.