Тарифы Услуги Сим-карты

Основы хранения данных в эвм. Представление данных в памяти эвм. Основы хранения информации в компьютере

Память ЭВМ состоит из двоичных запоминающих элементов - битов (англ. Binary Digit - двоичная цифра). В обычных ЭВМ применяются ячейки, состоящие из четырех последовательно расположенных байтов (из слов), но в ранних ЭВМ используются одно- или двухбайтовые ячейки (полуслова), а в некоторых супер-ЭВМ - восьмибайтовые ячейки.

В каждую ячейку памяти может быть записано только одно число либо одна команда. Двоичный код хранится в ячейке до тех пор, пока в нее не будет записан новый двоичный код или пока не будет обесточена машина. Разбиение памяти на слова для четырехбайтовых ЭВМ представлено на рис. 2.16.

64-разрядный процессор

32-разрядный процессор

16-разрядный

процессор

Полуслово

Полуслово

Полуслово

Полуслово

Двойное слово

Рис. 2.16. Разбиение памяти на слова в ПЭВМ

В современных компьютерах принята 32-разрядная адресация, а это означает, что независимых адресов всего может быть 2 32 . Таким образом, возможна непосредственная адресация к полю памяти размером 2 32 = 4 294 967 296 байт (4,3 Гбайта).

Различают устройства хранения информации, реализованные в виде электронных схем, и накопители информации, с помощью которых данные записываются на какой-либо носитель (рис. 2.17), например магнитный или оптический (ранее использовались бумажные носители - перфокарты и перфоленты).

Внешняя память располагается на магнитных или оптических дисках. Запись и считывание информации при работе с внешней памятью происходят медленнее, чем при работе с ЯАМ, зато внешняя память имеет большой объем и содержимое ее не меняется при выключении компьютера.

Энергонезависимая память представлена микросхемой памяти, в которую записана информация о типе аппаратуры компью-

Электронные схемы Накопители информации

Оперативное Магнитные Магнитные

запоминающее устройство (ОЗУ, RAM) или оперативная память

Постоянное запоминающее устройство (ПЗУ, ROM)

диски ленты

Гибкие Жесткие

магнитные магнитные диски диски

(дискеты) (винчестеры)

Оптические Магнитооптические диски диски

Простые С возможностью (CD) записи

Рис. 2.17. Классификация накопителей и устройств

хранения информации

тера и его настройке. Настройка ПК может меняться по желанию пользователя, поэтому энергонезависимая память позволяет не только считывать из нее данные, но и записывать. По существу, здесь используется обычная микросхема RAM, но изготовленная по особой CMOS-технологии, обеспечивающей малое потребление энергии при работе этого устройства, поэтому энергонезависимую память часто называют CMOS-памятью. По CMOS-технологии изготавливают все микросхемы для портативных ПК, чтобы обеспечить длительную работу их батарей питания. Микросхема энергонезависимой памяти подключается к батарейке, что сохраняет записанные в микросхеме данные при выключении ПК из сети.

Устройства, представляющие собой электронные схемы, отличаются небольшим временем доступа к данным, но не позволяют хранить большие объемы информации. Накопители информации, наоборот, дают возможность хранить большие объемы информации, но время ее записи и считывания велико, поэтому эффективная работа на компьютере возможна только при совместном использовании накопителей информации и устройств хранения, реализованных в виде электронных схем.

Микросхема (чип) BIOS (Basic Input/Output System - базовая система ввода-вывода). Это встроенное в компьютер программное обеспечение, которое доступно без обращения к диску; совокупность программ, предназначенных для автоматического тестирования устройств после включения питания компьютера и загрузки операционной системы в оперативную память.

Роль BIOS двоякая: с одной стороны, это неотъемлемый элемент аппаратуры (Hardware), а с другой стороны, важный модуль любой операционной системы (Software). BIOS содержит код, необходимый для управления клавиатурой, видеокартой, дисками, портами и другими устройствами.

Обычно BIOS размещается в микросхеме ПЗУ (ROM), расположенной на материнской плате компьютера (поэтому данный чип часто называют ROM BIOS). Эта технология позволяет BIOS всегда быть доступным, несмотря на повреждения, например, дисковой системы и позволяет компьютеру самостоятельно загружаться. Поскольку доступ к RAM (оперативной памяти) осуществляется значительно быстрее, чем к ROM, производители компьютеров создают системы таким образом, чтобы при включении компьютера выполнялось копирование BIOS из ROM в оперативную память.

Постоянная память предназначена для хранения неизменной информации, которая записывается в микросхему постоянной памяти заводом - изготовителем компьютера. В состав BIOS входят программа самотестирования компьютера при его включении, драйверы некоторых устройств (монитора, дисковых накопителей информации и пр.), а также программа загрузки операционной системы с дисковых устройств. В настоящее время почти все материнские платы комплектуются микросхемой для постоянного хранения начального исполняемого кода загрузки комьютера FLASH BIOS, который в любой момент может быть перезаписан в микросхеме ROM с помощью специальной программы.

Внешнее запоминающее устройство (ВЗУ). Данное устройство делится на оперативное запоминающее устройство, постоянное запоминающее устройство и кэш-память.

Внешняя память предназначена для длительного хранения программ и данных, и целостность ее содержимого не зависит от того, включен или выключен компьютер. Дополнительными устройствами внешней памяти являются:

  • FDD (Floppy Disk Drive) - накопитель на гибких магнитных дисках, емкость - 1,44 Мб;
  • CD-ROM и R/W - накопитель на лазерных компакт-дисках, емкость - 800 Мб;
  • DVD-ROM и R/W - накопитель на лазерных DVD-дисках, емкость - до 16 Гб;
  • HDD (Hard Disk Drive) - накопитель на жестких магнитных дисках, емкость - более 100 Гб;
  • FLASH - накопитель на микросхемах памяти, емкость - до 8 Гб.

Память компьютера должна состоять из некоторого количества пронумерованных ячеек, в каждой из которых могут находиться или обрабатываемые данные, или инструкции программ. Все ячейки памяти должны быть одинаково доступны для других устройств компьютера.

Оперативное запоминающее устройство (ОЗУ, англ. Random Access Memory, RAM) - предназначено для записи, считывания и временного хранения программ (системных и прикладных), исходных данных, промежуточных и окончательных результатов.

При выключении компьютера информация в ОЗУ стирается. В современных компьютерах объем памяти обычно составляет от 128 Мб до 2 Гб. Объем памяти - важная характеристика компьютера, она влияет на скорость работы компьютера и на работоспособность программ. Современные прикладные программы часто требуют для выполнения более 4 Мбайт памяти, в противном случае программа просто не сможет работать. Часть ОЗУ, называемая «видеопамять», содержит данные, соответствующие текущему изображению на экране.

Конструктивно элементы оперативной памяти выполняются в виде микросхем типа DIP (Dual In-line Package - двухрядное расположение выводов) или в виде модулей памяти типа SIP (Single In-line Package - однорядное расположение выводов).

Персональный компьютер содержит оперативную память четырех типов: модули SIMM, применяемые в устаревших компьютерах на процессорах 386, 486 и Pentium; более совершенные модули DIMM, используемые в компьютерах от Pentium II и Celeron до Pentium III и Athlon; более современные модули DDR DIMM и МММ, которые используются с новыми процессорами и материнскими платами. Оперативное запоминающее устройство строится на микросхемах памяти с произвольным доступом к любой ячейке. Оперативная память бывает либо статической (на триггерах) и называется SRAM (Static RAM), либо динамической (на основе конденсаторных ячеек) - DRAM (Dynamic RAM).

В статических ОЗУ в качестве ЭП используется статический триггер, который способен сохранять состояние 0 или 1 неограниченно долго (при включенном ПК). Динамические ОЗУ строятся на конденсаторах, реализованных внутри кристалла кремния. Динамические ЭП (конденсаторы) с течением времени са-моразряжаются и записанная информация теряется, поэтому динамическим ЭП требуется периодическое восстановление заряда - регенерация. Во время регенерации запись новой информации должна быть запрещена.

По сравнению со статическими динамические ОЗУ имеют более высокую удельную емкость и меньшую стоимость, но большее энергопотребление и меньшее быстродействие. Оперативные запоминающие устройства имеют модульную структуру. Увеличение емкости ОЗУ производится установкой дополнительных модулей. Время доступа к модулям DRAM составляет 60-70 нс.

Современные компьютеры имеют ОЗУ, составляющую 512-1024 Мбайт. Процессор компьютера может работать только с данными, которые находятся в оперативной памяти. Данные с диска для обработки считываются в оперативную память. Основные фирмы - производители памяти - IBM, Seagate, Maxtor, Western, Digital, Fujitsi и Kingston. Доля продаж памяти DIMM значительно снижается, уступая место модулям памяти DDR DIMM (256 и 512 Мбайт) или RIMM (128 и 256 Мбайт).

Постоянное запоминающее устройство (ПЗУ, англ. Real Only Memory - ROM - память только для чтения) - энергонезависимая память, используется для хранения данных, которые никогда не требуют изменения.

Модули и кассеты ПЗУ имеют емкость, как правило, не превышающую нескольких сотен килобайт. Структурно основная память состоит из миллионов отдельных ячеек памяти емкостью 1 байт каждая. Общая емкость основной памяти современных ПК обычно лежит в пределах от 1 до 32 Мбайт.

Перепрограммируемая постоянная память (FLASH Memory) - энергонезависимая память, допускающая многократную перезапись своего содержимого с дискеты.

Регистровая кэш-память - высокоскоростная память, являющаяся буфером между оперативной памятью и микропроцессором, позволяющая увеличивать скорость выполнения операций. Создавать ее целесообразно в персональном компьютере с тактовой частотой задающего генератора 40 МГц и более. Регистры кэш-памяти недоступны для пользователя, отсюда и название кэш (англ, cache - тайник). По принципу записи результатов различают два типа кэш-памяти:

С обратной записью - результаты операций прежде, чем записать их ОЗУ, фиксируются в кэш-памяти, а затем кон-

троллер кэш-памяти самостоятельно перезаписывает эти данные в ОЗУ;

Со сквозной записью - результаты операций одновременно параллельно записываются и в кэш-память, и в ОЗУ.

Для ускорения операций с основной памятью используется регистровая кэш-память внутри микропроцессора (кэш-память первого уровня) или вне микропроцессора на материнской плате (кэш-память второго уровня). Для ускорения операций с дисковой памятью организуется кэш-память на ячейках электронной памяти.

Микропроцессоры Pentium и Pentium Pro имеют кэш-память отдельно для данных и отдельно для команд, причем если у Pentium емкость этой памяти небольшая - по 8 Кбайт, то у Pentium Pro она достигает 256-512 Кбайт. Следует иметь в виду, что для всех МП может использоваться дополнительная кэш-память, размещаемая на материнской плате вне МП, емкость которой может достигать нескольких мегабайтов.

Основная цель применения кэш-памяти - компенсация разницы в скорости обработки информации процессором (его регистры самые быстродействующие) и несколько менее быстродействующей оперативной памятью. Кэш-память не доступна для пользователя, используется компьютером автоматически. Следует иметь в виду, что наличие кэш-памяти емкостью 256 Кбайт увеличивает производительность ПК примерно на 20 %.

Основная память компьютера делится на две логические области: непосредственно адресуемую память, занимающую первые 1024 Кбайта ячеек с адресами от 0 до 1024 Кбайт - 1, и расширенную память, доступ к ячейкам которой возможен при использовании специальных программ-драйверов.

Стандартной памятью (Conventional Memory Area - СМА) называется непосредственно адресуемая память в диапазоне от 0 до 640 Кбайт. Непосредственно адресуемая память в диапазоне адресов от 640 до 1024 Кбайт называется верхней памятью (UMA - Upper Memory Area). Верхняя память зарезервирована для памяти монитора (видеопамять) и постоянного запоминающего устройства. Однако обычно в ней остаются свободные участки - «окна», которые могут быть использованы с помощью диспетчера памяти в качестве оперативной памяти общего назначения.

Расширенная память - память с адресами 1024 Кбайта и выше. Непосредственный доступ к этой памяти возможен только в защищенном режиме работы микропроцессора. В реальном режиме имеются два способа доступа к этой памяти, но только при использовании драйверов: по спецификациям XMS (extended Memory Specification) и EMS (Expanded Memory Specification).

Доступ к расширенной памяти согласно спецификации XMS организуется при использовании драйверов ХММ (extended Memory Manager). Эту память часто называют дополнительной, учитывая, что в первых моделях персональных компьютеров эта память размещалась на отдельных дополнительных платах. Спецификация EMS - более ранняя, доступ в ней реализуется путем отображения полей Expanded Memory в определенную область верхней памяти. При этом хранится не обрабатываемая информация, а лишь адреса, обеспечивающие доступ к этой информации. Память, организуемая по спецификации EMS, носит название отображаемой.

Расширенная память может быть использована главным образом для хранения данных и некоторых программ ОС. Расширенную память часто применяют для организации виртуальных (электронных) дисков.

Видеопамять (VRAM) - разновидность оперативного ОЗУ, в котором хранятся закодированные изображения. Это ЗУ организовано так, что его содержимое доступно сразу двум устройствам - процессору и монитору, поэтому изображение на экране меняется одновременно с обновлением видеоданных в памяти.

Контроллеры и адаптеры представляют собой наборы электронных цепей, которыми снабжаются устройства компьютера с целью совместимости их интерфейсов. Контроллеры, кроме того, осуществляют непосредственное управление периферийными устройствами по запросам микропроцессора.

Порты устройств представляют собой электронные схемы, содержащие один или несколько регистров ввода-вывода и позволяющие подключать периферийные устройства компьютера к внешним шинам микропроцессора.

Системная (материнская) плата компьютера. Материнская плата - основная плата ПК (рис. 2.18), на которой размещаются:

  • процессор (микросхема, выполняющая большинство вычислительных операций);
  • микропроцессорный комплект (чипсет) - набор микросхем, управляющих работой внутренних устройств компьютера;
  • три шины (наборы проводников, по которым происходит обмен сигналами между внутренними устройствами компьютера);
  • оперативная память (ОЗУ) - набор микросхем, предназначенных для временного хранения данных;
  • ПЗУ - микросхема, предназначенная для длительного хранения данных;
  • разъемы (слоты) для подключения дополнительных устройств;
  • средства мониторинга состояния системной платы.

Зоны внешних разъемов Слоты плат

встроенной периферии расширения

Рис. 2.18. Системная плата компьютера

Синхронизация и разгон системной платы. Основной тактовый генератор системной платы вырабатывает высокостабильные импульсы опорной частоты, используемой для синхронизации процессора, памяти и шин ввода-вывода. Поскольку быстродействие этих подсистем существенно различается, каждая из них может синхронизироваться со своей частотой. В чипсетах асинхронного типа частоты относительно независимы, что открывает возможность для оптимизации производительности и разгона. Наиболее частый объект для разгона - центральный процессор. Вполне очевидно, что производительность конкретного процессора зависит от тактовой частоты ядра и частоты системной шины. Первая составляющая определяет темп обработки, а вторая - скорость доставки инструкций и данных. Максимально допустимая тактовая частота определяется задержками между различными сигналами и рассеиваемой мощностью процессора.

Кэш-память - память небольшой емкости, но чрезвычайно высокого быстродействия (время обращения к МПП, т. е. время, необходимое на поиск, запись или считывание информации из этой памяти, измеряется наносекундами). Она предназначена для кратковременного хранения, записи и выдачи информации в ближайшие такты работы машины, непосредственно участвующей в вычислениях.

Процессор. Это центральная часть любого современного компьютера, управляющая остальными устройствами. В нем расположены арифметико-логическое устройство, устройство управления и регистры для временного хранения информации. Процессор считывает данные из ОЗУ (оперативной памяти) компьютера, туда же он пересылает результат действия над этими данными. Процессор может выполнять следующие операции над двоичными числами: арифметические, логические, операции сравнения, операции с памятью и операции по передаче управления.

Процессор выполняет все действия только по программе, т. е. определенную последовательность команд. Большинство ошибок компьютера во время работы связано именно с ошибками программиста, который не сумел предусмотреть все возможные ситуации.

Процессор выполняет следующие функции:

  • обработка данных по заданной программе путем выполнения арифметических и логических операций;
  • программное управление работой устройств компьютера.

Скорость работы процессора определяется его тактовой частотой. Чем она больше, тем более быстродействующий процессор. Современные процессоры работают на частотах более 3 ГГц (табл. 2.3).

Каждый конкретный процессор может работать только с определенным количеством оперативной памяти. Максимальное количество памяти, которое процессор может обслужить, назы-

Таблица 2.3. Фирмы-производители процессоров

вается адресным пространством процессора и является важной характеристикой компьютера. Определяется адресное пространство разрядностью адресной шины.

Задачи накопления (хранения), обработки и передачи информации стояли перед человечеством на всех этапах его развития. Каждому этапу соответствовал определенный уровень развития средств информационного труда, прогресс развития которых всякий раз придавал человеческому обществу новое качество. Ранее были выделены основные этапы обращения с информацией, и они являются общими для всех наук при обработке информации с помощью ЭВМ. Научным фундаментом для их решения стала такая наука, как информатика.

Информатика – комплексная научно-техническая дисциплина, занимающаяся изучением структуры и общих свойств информации, информационных процессов, разработкой на этой основе информационной техники и технологии, а также решением научных и инженерных проблем создания, внедрения и эффективного использования компьютерной техники и технологии во всех сферах общественной практики.

Истоки информатики можно искать в глубине веков. Много столетий тому назад потребность выразить и запомнить информацию привела к появлению речи, письменности, счета. Люди пытались изобретать, а затем совершенствовать способы хранения, обработки и распространения информации. До сих пор сохранились свидетельства попыток наших далеких предков сохранять информацию – примитивные наскальные рисунки, записи на берестяной коре и глиняных дощечках, затем рукописные книги.

Появление в ХVI веке печатного станка позволило значительно увеличить возможности человека обрабатывать и хранить нужные сведения. Это явилось важным этапом развития человечества. Информация в печатном виде была основным способом хранения и обмена и продолжала им оставаться вплоть до середины ХХ века. Только с появлением ЭВМ возникли принципиально новые, гораздо более эффективные способы сбора, хранения, обработки и передачи информации (рис. 1.1).

Рисунок 1.1. Развитие способов хранения информации


Развивались способы передачи информации. Примитивный способ передачи посланий от человека к человеку сменился более прогрессивной почтовой связью. Почтовая связь давала достаточно надежный способ обмена информацией. Однако не следует забывать, что таким образом могли передаваться только сообщения, написанные на бумаге. А главное – скорость передачи сообщения была соизмерима только со скоростью передвижения человека. Изобретение телеграфа, телефона дало принципиально новые возможности обработки и передачи информации.

Появление электронно-вычислительных машин позволило обрабатывать, а впоследствии и передавать информацию со скоростью, в несколько миллионов раз превышающей скорость обработки (рис. 1.2) и передачи информации человеком (рис. 1.3).


Рисунок 1.2. Развитие способов обработки информации



Рисунок 1.3. Развитие способов передачи информации


Основу современной информатики образуют три составные части, каждая из которых может рассматриваться как относительно самостоятельная научная дисциплина (рис. 1.4).

Теоретическая информатика – часть информатики, занимающаяся изучением структуры и общих свойств информации и информационных процессов, разработкой общих принципов построения информационной техники и технологии. Она основана на использовании математических методов и включает в себя такие основные математические разделы, как теория алгоритмов и автоматов, теория информации и теория кодирования, теория формальных языков и грамматик, исследование операций и др.).

Средства информатизации (технические и программные) – раздел, занимающийся изучением общих принципов построения вычислительных устройств и систем обработки и передачи данных, а также вопросов, связанных с разработкой систем программного обеспечения.

Информационные системы и технологии – раздел информатики, связанный с решением вопросов анализа потоков информации, их оптимизации, структурирования в различных сложных системах, с разработкой принципов реализации в данных системах информационных процессов.

Информатика находит широкое применение в различных областях современной жизни: в производстве, науке, образовании и других сферах деятельности человека.

Развитие современной науки предполагает проведение сложных и дорогостоящих экспериментов, таких, как, например, при разработке термоядерных реакторов. Информатика позволяет заменить реальные эксперименты машинными. Это экономит колоссальные ресурсы, дает возможность обработать полученные результаты самыми современными методами. Кроме того, такие эксперименты занимают гораздо меньше времени, чем настоящие. А в некоторых областях науки, например, в астрофизике, проведение реального эксперимента просто невозможно. Здесь в основном все исследования проводятся посредством вычислительных и модельных экспериментов.


Рисунок 1.4. Структура информатики как научной дисциплины


Дальнейшее развитие информатики, как и любой другой науки, влечет за собой новые достижения, открытия, а следовательно, и новые области применения, которые, может быть, трудно сегодня предположить.

Информатика – очень широкая сфера научных знаний, возникшая на стыке нескольких фундаментальных и прикладных дисциплин.

Как комплексная научная дисциплина информатика связана (рис. 1.5):

С философией и психологией – через учение об информации и теорию познания;

С математикой – через теорию математического моделирования, дискретную математику, математическую логику и теорию алгоритмов;

С лингвистикой – через учение о формальных языках и о знаковых системах;

С кибернетикой – через теорию информации и теорию управления;

С физикой и химией, электроникой и радиотехникой – через «материальную» часть компьютера и информационных систем.


Рисунок 1.5. Связь информатики с другими науками


Роль информатики в развитии общества чрезвычайно велика. Она является научным фундаментом процесса информатизации общества. С ней связаны прогрессивное увеличение возможностей компьютерной техники, развитие информационных сетей, создание новых информационных технологий, которые приводят к значительным изменениям во всех сферах общества: в производстве, науке, образовании, медицине и т. д.

Главная функция информатики состоит в разработке методов и средств преобразования информации с использованием компьютера и в применении их при организации технологического процесса преобразования информации.

Выполняя свою функцию, информатика решает следующие задачи:

Исследует информационные процессы в социальных системах;

Разрабатывает информационную технику и создает новейшие технологии преобразования информации на основе результатов, полученных в ходе исследования информационных процессов;

Решает научные и инженерные проблемы создания, внедрения и обеспечения эффективного использования компьютерной техники и технологии во всех сферах человеческой деятельности.

1.2. Понятие информации. Общая характеристика процессов сбора, передачи, обработки и накопления информации

Вся жизнь человека так или иначе связана с накоплением и обработкой информации, которую он получает из окружающего мира, используя пять органов чувств – зрение, слух, вкус, обоняние и осязание. Как научная категория «информация» составляет предмет изучения для самых различных дисциплин: информатики, кибернетики, философии, физики, биологии, теории связи и т. д. Несмотря на это, строгого научного определения, что же такое информация, до настоящего времени не существует, а вместо него обычно используют понятие об информации. Понятия отличаются от определений тем, что разные дисциплины в разных областях науки и техники вкладывают в него разный смысл, с тем чтобы оно в наибольшей степени соответствовало предмету и задачам конкретной дисциплины. Имеется множество определений понятия информации – от наиболее общего философского (информация есть отражение реального мира) до наиболее частного прикладного (информация есть сведения, являющиеся объектом переработки).

Первоначально смысл слова «информация» (от лат. Informatio – разъяснение, изложение) трактовался как нечто присущее только человеческому сознанию и общению: «знания, сведения, сообщения, известия, передаваемые людьми устным, письменным или другим способом».

Информация не является ни материей, ни энергией. В отличие от них, она может возникать и исчезать.

Особенность информации заключается в том, что проявляется она только при взаимодействии объектов, причем обмен информацией может совершаться не вообще между любыми объектами, а только между теми из них, которые представляют собой организованную структуру (систему). Элементами этой системы могут быть не только люди: обмен информацией может происходить в животном и растительном мире, между живой и неживой природой, людьми и устройствами.

Информация – наиболее важный ресурс современного производства: он снижает потребность в земле, труде, капитале, уменьшает расход сырья и энергии, вызывает к жизни новые производства, является товаром, причем продавец информации не теряет ее после продажи, может накапливаться.

Понятие «информация» обычно предполагает наличие двух объектов – «источника» информации и «приемника» (потребителя, адресата) информации.

Информация передается от источника к приемнику в материально-энергетической форме в виде сигналов (например, электрических, световых, звуковых и т. д.), распространяющихся в определенной среде.

Сигнал (от лат. signum – знак) – физический процесс (явление), несущий сообщение (информацию) о событии или состоянии объекта наблюдения.

Информация может поступать в аналоговом (непрерывном) виде или дискретно (в виде последовательности отдельных сигналов). Соответственно различают аналоговую и дискретную информацию.

Понятие информации можно рассматривать с двух позиций: в широком смысле слова – это окружающий нас мир, обмен сведениями между людьми, обмен сигналами между живой и неживой природой, людьми и устройствами; в узком смысле слова информация – это любые сведения, которые можно сохранить, преобразовать и передать.

Информация – специфический атрибут реального мира, представляющий собой его объективное отражение в виде совокупности сигналов и проявляющийся при взаимодействии с «приемником» информации, позволяющим выделять, регистрировать эти сигналы из окружающего мира и по тому или иному критерию их идентифицировать.

Из этого определения следует, что:

Информация объективна, так как это свойство материи – отражение;

Информация проявляется в виде сигналов и лишь при взаимодействии объектов;

Одна и та же информация различными получателями может быть интерпретирована по-разному в зависимости от «настройки» «приемника».

Человек воспринимает сигналы посредством органов чувств, которые «идентифицируются» мозгом. Приемники информации в технике воспринимают сигналы с помощью различной измерительной и регистрирующей аппаратуры. При этом приемник, обладающий большей чувствительностью при регистрации сигналов и более совершенными алгоритмами их обработки, позволяет получить большие объемы информации.

Информация имеет определенные функции. Основными из них являются:

Познавательная – получение новой информации. Функция реализуется в основном через такие этапы обращения информации, как:

– ее синтез (производство)

– представление

– хранение (передача во времени)

– восприятие (потребление)

Коммуникативная – функция общения людей, реализуемая через такие этапы обращения информации, как:

– передача (в пространстве)

– распределение

Управленческая – формирование целесообразного поведения управляемой системы, получающей информацию. Эта функция информации неразрывно связана с познавательной и коммуникативной и реализуется через все основные этапы обращения, включая обработку.

Без информации не может существовать жизнь в любой форме и не могут функционировать любые информационные системы, созданные человеком. Без нее биологические и технические системы представляют груду химических элементов. Общение, коммуникации, обмен информацией присущи всем живым существам, но в особой степени человеку. Будучи аккумулированной и обработанной с определенных позиций, информация дает новые сведения, приводит к новому знанию. Получение информации из окружающего мира, ее анализ и генерирование составляют одну из основных функций человека, отличающую его от остального живого мира.

В общем случае роль информации может ограничиваться эмоциональным воздействием на человека, однако наиболее часто она используется для выработки управляющих воздействий в автоматических (чисто технических) и автоматизированных (человеко-машинных) системах. В подобных системах можно выделить отдельные этапы (фазы) обращения информации, каждый из которых характеризуется определенными действиями.

Последовательность действий, выполняемых с информацией, называют информационным процессом.

Основными информационными процессами являются:

– сбор (восприятие) информации;

– подготовка (преобразование) информации;

– передача информации;

– обработка (преобразование) информации;

– хранение информации;

– отображение (воспроизведение) информации.

Так как материальным носителем информации является сигнал, то реально это будут этапы обращения и преобразования сигналов (рис. 1.6).


Рисунок 1.6. Основные информационные процессы


На этапе восприятия информации осуществляется целенаправленное извлечение и анализ информации о каком-либо объекте (процессе), в результате чего формируется образ объекта, проводятся его опознание и оценка. Главная задача на этом этапе – отделить полезную информацию от мешающей (шумов), что в ряде случаев связано со значительными трудностями.

На этапе подготовки информации осуществляется ее первичное преобразование. На этом этапе проводятся такие операции, как нормализация, аналого-цифровое преобразование, шифрование. Иногда этап подготовки рассматривается как вспомогательный на этапе восприятия. В результате восприятия и подготовки получается сигнал в форме, удобной для передачи, хранения или обработки.

На этапе передачи информация пересылается из одного места в другое (от отправителя получателю – адресату). Передача осуществляется по каналам различной физической природы, самыми распространенными из которых являются электрические, электромагнитные и оптические. Извлечение сигнала на выходе канала, подверженного действию шумов, носит характер вторичного восприятия.

На этапах обработки информации выявляются ее общие и существенные взаимозависимости, представляющие интерес для системы. Преобразование информации на этапе обработки (как и на других этапах) осуществляется либо средствами информационной техники, либо человеком.

Под обработкой информации понимается любое ее преобразование, проводимое по законам логики, математики, а также неформальным правилам, основанным на «здравом смысле», интуиции, обобщенном опыте, сложившихся взглядах и нормах поведения. Результатом обработки является тоже информация, но либо представленная в иных формах (например, упорядоченная по каким-то признакам), либо содержащая ответы на поставленные вопросы (например, решение некоторой задачи). Если процесс обработки формализуем, он может выполняться техническими средствами. Кардинальные сдвиги в этой области произошли благодаря созданию ЭВМ как универсального преобразователя информации, в связи с чем появились понятия данных и обработки данных.

Данными называют факты, сведения, представленные в формализованном виде (закодированные), занесенные на те или иные носители и допускающие обработку с помощью специальных технических средств (в первую очередь ЭВМ).

Обработка данных предполагает производство различных операций над ними, в первую очередь арифметических и логических, для получения новых данных, которые объективно необходимы (например, при подготовке ответственных решений).

На этапе хранения информацию записывают в запоминающее устройство для последующего использования. Для хранения информации используются в основном полупроводниковые и магнитные носители.

Этап отображения информации должен предшествовать этапам, связанным с участием человека. Цель этого этапа – предоставить человеку нужную ему информацию с помощью устройств, способных воздействовать на его органы чувств.

Любая информация обладает рядом свойств, которые в совокупности определяют степень ее соответствия потребностям пользователя (качество информации). Можно привести немало разнообразных свойств информации, так как каждая научная дисциплина рассматривает те свойства, которые ей наиболее важны. С точки зрения информатики наиболее важными представляются следующие:

Актуальность информации – свойство информации сохранять ценность для потребителя в течение времени, т. е. не подвергаться «моральному» старению.

Полнота информации – свойство информации, характеризуемое мерой достаточности для решения определенных задач. Полнота информации означает, что она обеспечивает принятие правильного (оптимального) решения. Оценивается относительно вполне определенной задачи или группы задач.

Адекватность информации – свойство, заключающееся в соответствии содержательной информации состоянию объекта. Нарушение идентичности связано с техническим старением информации, при котором происходит расхождение реальных признаков объектов и тех же признаков, отображенных в информации.

Сохранность информации – свойство информации, характеризуемое степенью готовности определенных информационных массивов к целевому применению и определяемое способностью контроля и защиты информации обеспечить постоянное наличие и своевременное предоставление информационного массива, необходимых для автоматизированного решения целевых и функциональных задач системы.

Достоверность информации – свойство информации, характеризуемое степенью соответствия реальных информационных единиц их истинному значению. Требуемый уровень достоверности информации достигается путем внедрения методов контроля и защиты информации на всех стадиях ее переработки, повышения надежности комплекса технических и программных средств информационной системы, а также административно-организационными мерами.

Информационное общество

Современное общество характеризуется резким ростом объемов информации, циркулирующей во всех сферах человеческой деятельности. Это привело к информатизации общества.

Под информатизацией общества понимают организованный социально-экономический и научно-технический процесс создания оптимальных условий для удовлетворения информационных потребностей и реализации прав физических и юридических лиц на основе формирования и использования информационных ресурсов – документов в различной форме представления.

Целью информатизации является создание информационного общества, когда большинство людей занято производством, хранением, переработкой, реализацией и использованием информации. Для решения этой задачи возникают новые направления в научной и практической деятельности членов общества. Так возникли информатика и информационные технологии.

Характерными чертами информационного общества являются:

1) отсутствие проблемы информационного кризиса, устранение противоречия между информационной лавиной и информационным голодом;

2) приоритет информации перед другими ресурсами;

3) создание информационной экономики как главной формы развития общества;

4) формирование автоматизированной генерации, хранения, обработки и использования знаний с помощью новейшей информационной техники и технологии.

5) информационные технологии, приобретая глобальный характер, охватывают все сферы социальной деятельности человека;

6) образование информационного единства всей человеческой цивилизации;

7) реализация свободного доступа каждого человека к информационным ресурсам всей цивилизации;

8) решение гуманистических принципов управления обществом и воздействия на окружающую среду.


Помимо перечисленных положительных результатов процесса информатизации общества, возможны и негативные тенденции, сопровождающие этот процесс:

1) чрезмерное влияние средств массовой информации;

2) вторжение информационных технологий в частную жизнь человека;

3) сложность адаптации некоторых людей к информационному обществу;

4) проблема качественного отбора достоверной информации.

В настоящий момент ближе всех стран к информационному обществу находятся США, Япония, Англия, страны Западной Европы.

1.3. Системы счисления

Система счисления – это способ записи чисел с помощью заданного набора специальных знаков (цифр).

Существуют системы позиционные и непозиционные.

В непозиционных системах счисления вес цифры не зависит от позиции, которую она занимает в числе. Так, например, в римской системе счисления в числе XXXII (тридцать два) вес цифры X в любой позиции равен просто десяти.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее позиции в последовательности цифр, изображающих число.

Любая позиционная система характеризуется своим основанием. Основание позиционной системы счисления – это количество различных знаков или символов, используемых для изображения цифр в данной системе.

За основание можно принять любое натуральное число – два, три, четыре, шестнадцать и т. д. Следовательно, возможно бесконечное множество позиционных систем.

Десятичная система счисления

Пришла в Европу из Индии, где она появилась не позднее VI века н. э. В этой системе 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, однако информацию несет не только цифра, но и место, на котором цифра стоит (то есть ее позиция). В десятичной системе счисления особую роль играют число 10 и его степени: 10, 100, 1000 и т. д. Самая правая цифра числа показывает число единиц, вторая справа – число десятков, следующая – число сотен и т. д.

Двоичная система счисления

В этой системе всего две цифры – 0 и 1. Особую роль здесь играет число 2 и его степени: 2, 4, 8 и т. д. Самая правая цифра числа показывает число единиц, следующая цифра – число двоек, следующая – число четверок и т. д. Двоичная система счисления позволяет закодировать любое натуральное число – представить его в виде последовательности нулей и единиц. В двоичном виде можно представлять не только числа, но и любую другую информацию: тексты, картинки, фильмы и аудиозаписи. Инженеров двоичное кодирование привлекает тем, что легко реализуется технически.

Восьмеричная система счисления

В этой системе счисления 8 цифр: 0, 1, 2, 3, 4, 5, 6, 7. Цифра 1, указанная в самом младшем разряде, означает, как и в десятичном числе, просто единицу. Та же цифра 1 в следующем разряде означает 8, в следующем – 64 и т. д. Число 100 (восьмеричное) есть не что иное, как 64 (десятичное). Чтобы перевести в двоичную систему, например, число 611 (восьмеричное), надо заменить каждую цифру эквивалентной ей двоичной триадой (тройкой цифр). Легко догадаться, что для перевода многозначного двоичного числа в восьмеричную систему нужно разбить его на триады справа налево и заменить каждую триаду соответствующей восьмеричной цифрой.

Шестнадцатеричная система счисления

Запись числа в восьмеричной системе счисления достаточно компактна, но еще компактнее она получается в шестнадцатеричной системе. В качестве первых 10 из 16 шестнадцатеричных цифр взяты привычные цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, а вот в качестве остальных 6 цифр используют первые буквы латинского алфавита: A, B, C, D, E, F. Цифра 1, записанная в самом младшем разряде, означает просто единицу. Та же цифра 1 в следующем – 16 (десятичное), в следующем – 256 (десятичное) и т. д. Цифра F, указанная в самом младшем разряде, означает 15 (десятичное). Перевод из шестнадцатеричной системы в двоичную и обратно производится аналогично тому, как это делается для восьмеричной системы.

Таблица 1. Соответствие между первыми несколькими натуральными числами всех трех систем счисления

1.4. Кодирование информации

В настоящее время во всех вычислительных машинах информация представляется с помощью электрических сигналов. При этом возможны две формы ее представления – в виде непрерывного сигнала (с помощью сходной величины – аналога) и в виде нескольких сигналов (с помощью набора напряжений, каждое из которых соответствует одной из цифр представляемой величины).

Первая форма представления информации называется аналоговой, или непрерывной. Величины, представленные в такой форме, могут принимать принципиально любые значения в определенном диапазоне. Количество значений, которые может принимать такая величина, бесконечно велико. Отсюда названия – непрерывная величина и непрерывная информация. Слово непрерывность отчетливо выделяет основное свойство таких величин – отсутствие разрывов, промежутков между значениями, которые может принимать данная аналоговая величина. При использовании аналоговой формы для создания вычислительной машины потребуется меньшее число устройств (каждая величина представляется одним, а не несколькими сигналами), но эти устройства будут сложнее (они должны различать значительно большее число состояний сигнала). Непрерывная форма представления используется в аналоговых вычислительных машинах (АВМ). Эти машины предназначены в основном для решения задач, описываемых системами дифференциальных уравнений: исследования поведения подвижных объектов, моделирования процессов и систем, решения задач параметрической оптимизации и оптимального управления. Устройства для обработки непрерывных сигналов обладают более высоким быстродействием, они могут интегрировать сигнал, выполнять любое его функциональное преобразование и т. п. Однако из-за сложности технической реализации устройств выполнения логических операций с непрерывными сигналами, длительного хранения таких сигналов, их точного измерения АВМ не могут эффективно решать задачи, связанные с хранением и обработкой больших объемов информации.

Вторая форма представления информации называется дискретной (цифровой). Такие величины, принимающие не все возможные, а лишь вполне определенные значения, называются дискретными (прерывистыми). В отличие от непрерывной величины, количество значений дискретной величины всегда будет конечным. Дискретная форма представления используется в цифровых электронно-вычислительных машинах (ЭВМ), которые легко решают задачи, связанные с хранением, обработкой и передачей больших объемов информации.

Для автоматизации работы ЭВМ с информацией, относящейся к различным типам, очень важно унифицировать их форму представления – для этого обычно используется прием кодирования.

Кодирование – это представление сигнала в определенной форме, удобной или пригодной для последующего использования сигнала. Говоря строже, это правило, описывающее отображение одного набора знаков в другой набор знаков. Тогда отображаемый набор знаков называется исходным алфавитом, а набор знаков, который используется для отображения, – кодовым алфавитом, или алфавитом для кодирования. При этом кодированию подлежат как отдельные символы исходного алфавита, так и их комбинации. Аналогично для построения кода используются как отдельные символы кодового алфавита, так и их комбинации.

Совокупность символов кодового алфавита, применяемых для кодирования одного символа (или одной комбинации символов) исходного алфавита, называется кодовой комбинацией, или, короче, кодом символа. При этом кодовая комбинация может содержать один символ кодового алфавита.

Символ (или комбинация символов) исходного алфавита, которому соответствует кодовая комбинация, называется исходным символом.

Совокупность кодовых комбинаций называется кодом.

Взаимосвязь символов (или комбинаций символов, если кодируются не отдельные символы исходного алфавита) исходного алфавита с их кодовыми комбинациями составляет таблицу соответствия (или таблицу кодов).

В качестве примера можно привести систему записи математических выражений, азбуку Морзе, морскую флажковую азбуку, систему Брайля для слепых и др.

В вычислительной технике также существует своя система кодирования – она называется двоичным кодированием и основана на представлении данных последовательностью всего двух знаков: 0 и 1 (используется двоичная система счисления). Эти знаки называются двоичными цифрами, или битами (binary digital).

Если увеличивать на единицу количество разрядов в системе двоичного кодирования, то увеличивается в два раза количество значений, которое может быть выражено в данной системе. Для расчета количества значений используется следующая формула:

где N – количество независимо кодируемых значений,

а m – разрядность двоичного кодирования, принятая в данной системе.

Например, какое количество значений (N) можно закодировать 10-ю разрядами (m)?

Для этого возводим 2 в 10 степень (m) и получаем N=1024, т. е. в двоичной системе кодирования 10-ю разрядами можно закодировать 1024 независимо кодируемых значения.

Кодирование текстовой информации

Для кодирования текстовых данных используются специально разработанные таблицы кодировки, основанные на сопоставлении каждого символа алфавита с определенным целым числом. Восьми двоичных разрядов достаточно для кодирования 256 различных символов. Этого хватит, чтобы выразить различными комбинациями восьми битов все символы английского и русского языков, как строчные, так и прописные, а также знаки препинания, символы основных арифметических действий и некоторые общепринятые специальные символы. Но не все так просто, и существуют определенные сложности. В первые годы развития вычислительной техники они были связаны с отсутствием необходимых стандартов, а в настоящее время, наоборот, вызваны изобилием одновременно действующих и противоречивых стандартов. Практически для всех распространенных на земном шаре языков созданы свои кодовые таблицы. Для того чтобы весь мир одинаково кодировал текстовые данные, нужны единые таблицы кодирования, что до сих пор пока еще не стало возможным.

Кодирование графической информации

Кодирование графической информации основано на том, что изображение состоит из мельчайших точек, образующих характерный узор, называемый растром. Каждая точка имеет свои линейные координаты и свойства (яркость), следовательно, их можно выразить с помощью целых чисел – растровое кодирование позволяет использовать двоичный код для представления графической информации. Черно-белые иллюстрации представляются в компьютере в виде комбинаций точек с 256 градациями серого цвета – для кодирования яркости любой точки достаточно восьмиразрядного двоичного числа.

Для кодирования цветных графических изображений применяется принцип декомпозиции (разложения) произвольного цвета на основные составляющие. При этом могут использоваться различные методы кодирования цветной графической информации. Например, на практике считается, что любой цвет, видимый человеческим глазом, можно получить путем механического смешивания основных цветов. В качестве таких составляющих используют три основных цвета: красный (Red, R), зеленый (Green, G) и синий (Blue, B). Такая система кодирования называется системой RGB.

На кодирование цвета одной точки цветного изображения надо затратить 24 разряда. При этом система кодирования обеспечивает однозначное определение 16,5 млн различных цветов, что на самом деле близко к чувствительности человеческого глаза. Режим представления цветной графики с использованием 24 двоичных разрядов называется полноцветным (True Color).

Каждому из основных цветов можно поставить в соответствие дополнительный цвет, то есть цвет, дополняющий основной цвет до белого. Соответственно дополнительными цветами являются: голубой (Cyan, C), пурпурный (Magenta, M) и желтый (Yellow, Y). Такой метод кодирования принят в полиграфии, но в полиграфии используется еще и четвертая краска – черная (Black, K). Данная система кодирования обозначается CMYK, и для представления цветной графики в этой системе надо иметь 32 двоичных разряда. Такой режим называется полноцветным (True Color).

Если уменьшать количество двоичных разрядов, используемых для кодирования цвета каждой точки, то можно сократить объем данных, но при этом диапазон кодируемых цветов заметно сокращается. Кодирование цветной графики 16-разрядными двоичными числами называется режимом High Color.

Кодирование звуковой информации

Приемы и методы кодирования звуковой информации пришли в вычислительную технику наиболее поздно и до сих пор далеки от стандартизации. Множество отдельных компаний разработали свои корпоративные стандарты, хотя можно выделить два основных направления.

Метод FM (Frequency Modulation) основан на том, что теоретически любой сложный звук можно разложить на последовательность простейших гармоничных сигналов разной частоты, каждый из которых представляет правильную синусоиду, а следовательно, может быть описан числовыми параметрами, то есть кодом. В природе звуковые сигналы имеют непрерывный спектр, то есть являются аналоговыми. Их разложение в гармонические ряды и представление в виде дискретных цифровых сигналов выполняют специальные устройства – аналогово-цифровые преобразователи (АЦП). Обратное преобразование для воспроизведения звука, закодированного числовым кодом, выполняют цифро-аналоговые преобразователи (ЦАП). При таких преобразованиях часть информации теряется, поэтому качество звукозаписи обычно получается не вполне удовлетворительным и соответствует качеству звучания простейших электромузыкальных инструментов с «окрасом», характерным для электронной музыки.

Метод таблично-волнового синтеза (Wave-Table) лучше соответствует современному уровню развития техники. Имеются заранее подготовленные таблицы, в которых хранятся образцы звуков для множества различных музыкальных инструментов. В технике такие образцы называются сэмплами. Числовые коды выражают тип инструмента, номер его модели, высоту тона, продолжительность и интенсивность звука, динамику его изменения. Поскольку в качестве образцов используются «реальные» звуки, то качество звука, полученного в результате синтеза, получается очень высоким и приближается к качеству звучания реальных музыкальных инструментов.

Единицы измерения данных

Наименьшей единицей измерения информации является байт, равный восьми битам. Одним байтом можно закодировать одно из 256 значений. Существуют и более крупные единицы, такие как килобайт (Кбайт), мегабайт (Мбайт), гигабайт (Гбайт) и терабайт (Тбайт).

1 байт = 8 бит

1 Кбайт = 1024 байт

1 Мбайт = 1024 Кбайт = 2 20 байт

1 Гбайт = 1024 Мбайт = 2 30 байт

1 Тбайт = 1024 Гбайт = 2 40 байт

Контрольные вопросы

1. Что изучает информатика?

2. Как развивались способы сбора, хранения и передачи информации?

3. Какова структура современной информатики?

4. Что такое информация?

5. Какие функции выполняет информация?

6. Дайте характеристику основным информационным процессам.

7. В чем основное отличие данных от информации?

8. Какими свойствами обладает информация?

9. Что понимается под информатизацией общества?

10. Какими характерными чертами обладает информационное общество?

11. Что такое системы счисления и какие они бывают? Приведите примеры.

12. Дайте характеристику основным позиционным системам счисления.

13. В каких двух видах может быть представлена информация? Охарактеризуйте их и приведите примеры.

14. Что такое кодирование? Приведите примеры кодирования из жизни.

15. Что является основной единицей представления информации в ЭВМ?

16. Как кодируются различные виды информации в ЭВМ?

17. С помощью каких единиц измеряют информацию?

В основе функционирования любого типа компьютера лежит запоминающее устройство, способное сохранять информацию, использовать ее для расчетов и выдавать по первому требованию оператора.

Определение

Устройство хранения информации представляет собой приспособление, связанное с остальными элементами компьютера и способное воспринимать внешнее воздействие. В современных ЭВМ применяется сразу несколько типов подобных изделий, каждое из которых обладает собственной функциональностью и особенностями работы. Устройства хранения ключевой информации классифицируются по своим принципам работы, требованиям к энергообеспечению и по многим другим параметрам.

Действия с памятью

Главная задача любого записывающего приспособления заключается в возможностях работы с ним оператора. Все действия разделяются на три типа:

  • Хранение . Вся информация, попавшая на записывающее устройство, обязана находиться там до удаления оператором или компьютером. Бывают изделия, способные хранить данные долгое время даже при выключенной ЭВМ. Именно так функционируют стандартные жесткие диски. Другие схожие изделия (оперативная память) содержат только часть данных, чтобы оператор получил к ним доступ максимально быстро.
  • Ввод . Информация должна каким-то образом попадать на записывающее устройство. В данном случае разделение может идти по этому принципу. Одни модели работают напрямую с оператором. Другие связаны с иными запоминающими элементами, ускоряя их работу.
  • Вывод . Полученные данные выводятся на интерфейс взаимодействия с пользователем или предоставляются для расчетов другим запоминающим приспособлениям.

Все устройства хранения, ввода и вывода информации тем или иным образом связаны в единую сеть в рамках одного компьютера. Все вместе они обеспечивают его работоспособность.

Форма

Классификация устройств хранения информации по форме записи разделяет их все на две категории: аналоговые и цифровые. Первые в современном мире практически не используются. Ближайшим примером аналогового записывающего устройство является кассета для магнитофона, которая уже давно устарела. Тем не менее некоторые разработки ведутся и в этом направлении. На данный момент уже есть несколько прототипов неплохих по емкости и скорости работы изделий такого типа, однако сравнительно с цифровыми устройствами они значительно проигрывают по стоимости производства. Стандартный жесткий диск для компьютера хранит информацию в виде единиц и нулей. Это цифровое записывающее устройство, как и подавляющее большинство современных изделий такого типа. В основе их функционирования лежит принцип сохранения физического состояния носителя в одной из двух возможных форм (для двоичной системы). Сейчас применяются и более современные варианты, способные использовать троичный или даже десятичный вид записи. Это стало возможно благодаря использованию уникальных свойств разных материалов и появлению новых технологий записи данных на накопители. Человечество постепенно увеличивает объем возможной для сохранения информации с одновременным уменьшеним размера носителя.

Устойчивость записи

Классификация по этому показателю разделяет все устройства хранения и обработки информации на четыре группы:

  • Оперативные записывающие (ОЗУ). Оператор получает возможность вносить новую информацию, считывать уже имеющуюся и работать с ней прямо в процессе функционирования. Пример - оперативная память компьютера. В ней хранится большая часть постоянно запрашиваемых данных, благодаря чему не требуется постоянно обращаться к основному жесткому диску. В большинстве случаев вся информация стирается с таких носителей после отключения подачи энергии.
  • Перезаписываемые (ПППЗУ). Такие изделия позволяют записывать, стирать и вновь вносить данные практически неограниченное количество раз. Пример - CD-RW и стандартные жесткие диски. В любом компьютере такой памяти больше всего, и именно на ней хранится практически вся информация пользователя.
  • Записываемые (ППЗУ). На таких устройствах данные можно сохранить только один раз. Невозможно перезаписать или удалить информацию, что и является самым главным минусом подобных изделий. Пример - диски CD-R. В современном мире используется крайне редко.
  • Постоянные (ПЗУ). Этот тип устройств сохраняет единожды записанную информацию и не позволяет как-либо ее удалять или изменять. Пример - BIOS компьютера. В нем все данные остаются без изменений и пользовать получает возможность выбрать только другие настройки из перечня существующих. В отличие от ППЗУ, на такие носители все же можно вносить новые данные, но, как правило, это требует полного удаления старых. То есть BIOS можно переустановить, но не дополнить или обновить.

Энергонезависимость

Для работы компьютеру требуется электроэнергия, без которой выполнение всех действий было бы невозможным. Однако если бы каждый раз после выключения ПК данные обо всей проделанной работе стирались, то значение ЭВМ в нашей жизни было бы значительно меньшим. Так какие устройства хранения информации по потребности в питании существуют?

  • Энергозависимые . Эти изделия работают только тогда, когда есть к ним подано электричество. К такому типу относят стандартные модули оперативной памяти DRAM или SRAM.
  • Энергонезависимые . Для сохранения информации записывающие устройства не требуют питания. Пример - жесткий диск компьютера.

Тип доступа

Устройства хранения информации разделяются также и по этому показателю. По типу доступа память бывает:

  • Ассоциативной . Используется редко. К таким изделиям можно отнести специальные устройства, которые используются с целью повышения скорости работы обширных массивов данных.
  • Прямой . Полный и неограниченный доступ предлагается жесткими дисками, которые относятся к этому типу доступа.
  • Последовательной . Сейчас практически не используется. Ранее применялся в магнитных лентах.
  • Произвольной . По такому принципу работает оперативная память, предоставляющая пользователю возможность в произвольной форме получить доступ к последней информации, с которой работала система. Применяется для ускорения работы компьютера.

Исполнение

Устройства, предназначенные для хранения информации, имеют классификацию по типу исполнения.

  • Печатные платы . К такому виду относятся модули оперативной памяти и картриджи для старых приставок. Работают очень быстро, однако нуждаются в постоянной подаче энергии, из-за чего их текущее применение носит вспомогательную роль.
  • Дисковые. Бывают магнитными и оптическими. Самым популярным представителем считается жесткий диск компьютера. Используются в качестве основного носителя информации.
  • Карточные . Вариантов исполнения много. Из последних можно отметить флеш-карты. Ранее этот тип применялся для изготовления перфокарт и их магнитных аналогов.
  • Барабанные . Пример - магнитный барабан. Практически не используется.
  • Ленточные. Пример - перфорированные или магнитные ленты. В современном мире почти не встречается.

Физический принцип

По физическому принципу работы устройства ввода, вывода, хранения и обработки информации разделяются на:

  • Магнитные . Выполняются в виде сердечников, дисков, лент или карт. Пример - жесткий диск. Это не самый быстрый способ обработки информации, однако он позволяет долгое время хранить данные без подачи энергии, что и обеспечивает их текущую популярность.
  • Перфорационные . Изготавливаются как ленты или карты. Пример - старинная перфокарта, используемая для записи информации в первых моделях ЭВМ. Из-за сложности изготовления и небольшого количества хранимых данных сейчас такой принцип практически не используется.
  • Оптические . CD-диски любого вида. Все они работают на принципе отражения света от своей поверхности. Лазер прожигает дорожки, образуя участки, отличающиеся от общей массы, что позволяет использовать все ту же систему двоичного кода, в которой одно состояние диска обозначается единицей, а другое - нулем.
  • Магнитооптические . Диски типа MO. Используются редко, но сочетают в себе преимущества обеих систем.
  • Электростатические. Работают по принципу накопления заряда электричества. Примеры - ЭЛТ, конденсаторные запоминающие устройства.
  • Полупроводниковые . Используют особенности одноименных материалов для сбора и хранения данных. Так работает флеш-накопитель.

Помимо всего прочего, существуют запоминающие устройства, работающие по другим физическим принципам. Например, на сверхпроводимости или звуке.

Количество состояний

Последним вариантом классификации устройства долговременного хранения информации является то, сколько состояний оно может поддерживать. Как уже было сказано выше, цифровые носители работают за счет изменения своей физической части на основе поданной электроэнергии. Самый простой пример: если магнитится, значит, это равно цифре 1, если нет, значит - 0. Это принцип работа двоичных систем, которые способны поддерживать только два варианта состояния. Сейчас также используются устройства, работающие в трех и более формах. Это открывает очень широкие перспективы использования носителей данных, позволяет уменьшать их размер, одновременно с увеличением общего объема хранимой информации.

Итоги

Старые накопители были очень большими. Самые первые компьютеры требовали помещения, сравнимого с современными спортивными залами, да еще при этом работали очень медленно. Прогресс не стоит на месте и сейчас устройства хранения информации, даже самые объемные, можно просто положить в карман. Дальнейшее развитие может пойти как по пути поиска новых материалов или способов взаимодействия со старыми, так и по направлению создания постоянной и стабильной связи по всему миру. В таком случае емкие накопители будут расположены в специальных серверных, а все данные пользователь будет получать по «облачной» технологии.

Все современные вычислительные машины построены по принципам и имеют структуру, предложенную еще в 40–х годах академиком Джоном Фон Нейманом.

Принципы Фон Неймана:

    вычислительная машина конструктивно делится на ряд устройств: процессор, запоминающее устройство (для хранения программ и данных), устройство ввода–вывода и т.д.;

    наличие хранимой в памяти программы;

    одинаковое представление чисел и команд в виде двоичных кодов;

    принцип микропрограммного управления процессом вычислений;

    естественный порядок выборки команд (команды выполняются последовательно, так как они хранятся в памяти; изменение порядка выполнения команд, при необходимости, осуществляется специальными командами перехода).

    Согласно первому принципу ЭВМ состоит из ряда устройств, взаимодействующих друг с другом в процессе решения задачи. Рассмотрим кратко основные устройства и их функции (рис. 1).


    Рис.1. Структурная схема ЭВМ

    Оперативная память (ОЗУ) – реализуется, как правило, на модулях (микросхемах) динамической памяти. ОЗУ служит для хранения программы, исходных данных задачи, промежуточных и конечных результатов решения задачи.

    Память ЭВМ к настоящему времени приобрела довольно сложную структуру и «расползлась» по многим компонентам. Кроме оперативной, память включает также и постоянную (ПЗУ), из которой можно только считывать команды и данные, и некоторые виды специальной памяти (например видеопамять графического адаптера). Вся эта память вместе с оперативной располагается в едином пространстве с линейной адресацией. В любом компьютере обязательно есть постоянная память, в которой хранится программа начального запуска компьютера и минимальный необходимый набор сервисов (например: ROM BIOS).

    Все узлы ЭВМ не входящие в ядро называются периферийными. Они обеспечивают расширение возможностей ЭВМ, облегчают пользование ими. В состав периферийных (внешних) устройств могут входить следующие узлы.

    Внешняя память (устройства хранения данных, например, дисковые) – память, имеющая относительно невысокое быстродействие, но по сравнению с ОЗУ существенно более высокую емкость. Внешняя память предназначена для записи данных с целью последующего считывания (возможно, и на другом компьютере). От рассмотренной выше памяти, называемой также внутренней, устройства хранения отличаются тем, что процессор не имеет непосредственного доступа к данным по линейному адресу. Доступ к данным на устройствах хранения выполняется с помощью специальных программ, обращающихся к контроллерам этих устройств. В силу того что быстродействие внешней памяти значительно ниже быстродействия АЛУ, последнее в процессе работы взаимодействует лишь с ОЗУ, получая из него команды и данные, отсылая в эту память результаты операций. Часто при решении сложных задач емкость ОЗУ оказывается недостаточной. В этих случаях в процессе решения задач данные определенными порциями могут пересылаться из внешней памяти в ОЗУ, откуда они затем выбираются для обработки в АЛУ.

    Системы памяти современных ЭВМ представляют собой совокупность аппаратных средств, предназначенных для хранения используемой в ЭВМ информации. К этой информации относятся обрабатываемые данные, прикладные программы, системное программное обеспечение и служебная информация различного назначения. К системе памяти можно отнести и программные средства, организующие управление ее работой в целом, а также драйверы различных видов запоминающих устройств.

    Память представляет собой одну из важнейших подсистем ЭВМ, во многом определяющую их производительность. Тем не менее, в течение всей истории развития вычислительных машин она традиционно считается их «узким местом».

    Ключевым принципом построения памяти ЭВМ является ее иерархическая организация (принцип, сформулированный еще Джоном фон Нейманом), которая предполагает использование в системе памяти компьютера запоминающих устройств (ЗУ) с различными характеристиками. Причем с развитием технологий, появлением новых видов ЗУ и совершенствованием структурной организации ЭВМ количество уровней в иерархии памяти ЭВМ не только не уменьшается, но даже увеличивается. Например, сверхоперативные ЗУ больших ЭВМ 50-60-х годов заменяет двухуровневая кэш-память персональных ЭВМ 90-х годов.

    Запоминающие устройства (ЗУ) характеризуются рядом параметров, определяющих возможные области применения различных типов таких устройств. К основным параметрам, по которым производится наиболее общая оценка ЗУ, относятся их информационная емкость (E), время обращения (T) и стоимость (C).

    Под информационной емкостью ЗУ понимают количество информации, измеряемое в байтах, килобайтах, мегабайтах или гигабайтах, которое может храниться в запоминающем устройстве.

    Как известно, приставки кило-, мега- и гига- допускают неоднозначную трактовку в связи с различием их понимания в общенаучном и специфическом при использовании двоичной системы счисления смыслах. Так, в общем смысле приставка «кило» соответствует 103, «мега» – 106, а «гига» – 109 (на подходе «тера», «пента» и «гексо») . В то же время, близкие по звучанию и смыслу двоичные аналоги этих величин: К-, М- и Г- обозначают 210 (1024), 220 (1048576) и 230 (1073741824), что только приблизительно соответствует перечисленным выше степеням 10. Поэтому при указании емкости одного и того же устройства памяти, например жесткого диска, в Гбайтах и миллиардах байт, могут наблюдаться определенные различия.

    Обычно информационная емкость учитывает только полезный объем хранимой информации, который не включает объем памяти, расходуемый на служебную информацию, контрольные разряды или байты, резервные области (например, интервал между концом дорожки диска и ее началом), дорожки синхросигналов и пр.

    Время обращения к ЗУ различных типов определяется по-разному. В качестве примера можно рассмотреть оперативные ЗУ и жесткие диски.

    Оперативные ЗУ обычно реализуются как ЗУ с произвольным доступом

    Это означает, что доступ к данным, физически организованным в виде двумерного массива (матрицы элементов памяти), производится с помощью схем дешифрации, выбирающих нужные строку и столбец массива по их номерам (адресам). Поэтому время T обр обращения к ним определяется, в случае отсутствия дополнительных этапов (таких, например, как передача адреса за два такта), временем срабатывания схем дешифрации адреса и собственно временами записи или считывания данных.

    Емкости оперативных ЗУ этого же периода составляли для небольших ЭВМ порядка 256 Мб – 2 Гб.

    Процесс обращения (чтения или записи) к жесткому диску показан на рис.2. Он включает в себя 3 этапа: перемещение блока головок чтения/записи на нужную дорожку (а ), ожидание подхода требуемого сектора под головки чтения/записи (б ) и собственно передача данных, считываемых с диска или записываемых на него (в ). Каждый из этих этапов занимает определенное время, входящее в общее время обращения к диску. Все этапы так или иначе связаны с механическими перемещениями, поэтому их времена сравнительно велики и составляют величины порядка единиц миллисекунд.

    Время перемещения блока головок, обычно называемое изготовителями дисков временем поиска (seek time), зависит от количества дорожек, на которое надо переместить блок головок. Минимальное время затрачивается на перемещение блока головок на соседнюю дорожку (цилиндр). Это время составляет порядка 1-2 мс. Максимальное время требуется на перемещение блока головок от крайней дорожки к центральной или наоборот. Это время может составлять порядка 15-20 мс. Среднее время поиска (перемещения головок) составляет порядка 8-10 мс.


    Рис. 2 Обращение к жесткому диску

    Время ожидания повода файла (точнее, его первого сектора) под блок головок производители называют также временем задержки (latency time ). Это время в среднем равно времени половины оборота диска, что, например, при скорости вращения (шпинделя) диска 7200 оборотов/мин, или 120 оборотов/с, составляет 4,2 мс.

    Наконец, время передачи данных зависит от количества передаваемых данных (размера файла, если он располагается целиком на последовательных секторах одной дорожки диска) и скорости передачи. Из-за зависимости этого времени от размера файла и его размещения на диске в качестве характеристики диска используют скорость передачи данных (transfer rate ). Эта скорость определяется как параметрами тракта связи с ЭВМ, так и скоростью считывания данных с диска или записи данных на диск. Обычно пользуются именно этими параметрами, так как каналы передачи достаточно быстрые, чтобы снижать скорость передачи, а диски имеют буферные ЗУ (кэш диска), скорость обмена данными с которым заметно превышает скорость считывания с диска или записи на диск.

    В свою очередь, скорость обмена с диском определяется скоростью его вращения и плотностью записи информации на него. Обе эти величины непрерывно возрастают с развитием технологий изготовления жестких дисков. В начале 2000 годов скорости вращения дисков составляли порядка 5-15 тыс. оборотов/мин. Плотность записи информации на диск удваивалась примерно каждый год – полтора. К концу 2003 г. плотность записи достигала 45 Гбит/кв.дюйм. Это позволяло размещать на одной пластине диска до 60 Гбайт данных (при использовании обеих сторон пластины). При такой плотности, с учетом примерно десятикратного различия продольной и поперечной плотности записи, на одной стороне пластины имелось порядка 50-60 тыс. дорожек, каждая из которых в среднем позволяла записать 500-600 Кбайт информации.

    Максимально достижимая скорость обмена с пластиной при этих условиях составляла до 700 Мбит/с, а средняя скорость обмена данными с диском находилась в пределах 30-50 Мбайт/с.

    Стоимость запоминающих устройств также представляет собой важную характеристику. Именно она является одной из причин иерархической организации памяти ЭВМ.

    Действительно, хорошо иметь быструю и емкую память. Нужно, чтобы она была и относительно дешевой. Понятно, что эти параметры противоречивы. Поэтому в ЭВМ и строят иерархию памяти, на вершине которой (ближе всего к процессору) находятся маленькие быстродействующие, но дорогие ЗУ, а внизу – большие, дешевые, но медленные.

    Определения дорогие и дешевые понимаются не в абсолютном, а в относительном измерении, исходя из стоимости хранения единицы информации (удельной стоимости) в ЗУ. На тот же период времени стоимость хранения 1 Мбайта информации в оперативных ЗУ и на жестких дисках составляла порядка 10-15 центов и 0,1-0,2 цента соответственно, т.е. различалась примерно в 100 раз.

    Конечно, помимо емкости, времени обращения и стоимости, существуют и другие характеристики памяти такие, как надежность, энергопотребление, габариты, время хранения информации, способность сохранять ее при отключении питания и другие. При определенных условиях эти характеристики могут иметь важное значение. Например, для ноутбуков энергопотребление и габариты играют существенную роль, что при обеспечении требуемых значений этих показателей приводит к более высокой стоимости устройств такого класса. Напротив, для серверов на первый план выдвигается требование надежности сохранения информации.

    В настоящее время существует большое количество различных типов ЗУ, используемых в ЭВМ и системах. Эти устройства различаются рядом признаков: принципом действия, логической организацией, конструктивной и технологической реализацией, функциональным назначением и т.д. Большое количество существующих типов ЗУ обусловливает различия в структурной и логической организации (систем) памяти ЭВМ. Требуемые характеристики памяти достигаются не только за счет применения ЗУ с соответствующими характеристиками, но в значительной степени за счет особенностей ее структуры и алгоритмов функционирования.

    Память ЭВМ почти всегда является «узким местом», ограничивающим производительность компьютера. Поэтому в ее организации используется ряд приемов, улучшающих временные характеристики памяти и, следовательно, повышающих производительность ЭВМ в целом.

    Классификация запоминающих устройств и систем памяти позволяет выделить общие и характерные особенности их организации, систематизировать базовые принципы и методы, положенные в основу их реализации и использования.

    Один из возможных вариантов классификации ЗУ представлен на рис.3. В нем устройства памяти подразделяются по двум основным критериям: по функциональному назначению (роли или месту в иерархии памяти) и принципу организации.


    Рис. 3. Классификация запоминающих устройств

    При разделении ЗУ по функциональному назначению иногда рассматривают два класса: внутренние и внешние ЗУ ЭВМ. Такое деление первоначально основывалось на различном конструктивном расположении их в ЭВМ. В настоящее время, например, накопители на жестких магнитных дисках, традиционно относимые к внешним ЗУ, конструктивно располагаются непосредственно в основном блоке компьютера. Поэтому разделение на внешние и внутренние ЗУ имеет в ряде случаев относительный, условный характер. Обычно к внутренним ЗУ относят устройства, непосредственно доступные процессору, а к внешним – такие, обмен информацией которых с процессором происходит через внутренние ЗУ.

    Общий вид иерархии памяти ЭВМ представлен на рис.4. На нем показаны различные типы ЗУ, причем поскольку рисунок обобщенный, то не все из представленных на нем ЗУ обязательно входят в состав ЭВМ, а характер связей между устройствами может отличаться от показанного на рисунке.


    Рис. 4. Возможный состав системы памяти ЭВМ

    1. Верхнее место в иерархии памяти занимают регистровые ЗУ , которые входят в состав процессора и часто рассматриваются не как самостоятельный блок ЗУ, а просто как набор регистров процессора. Такие ЗУ в большинстве случаев реализованы на том же кристалле, что и процессор, и предназначены для хранения небольшого количества информации (до нескольких десятков слов, а в RISC-архитектурах – до сотни), которая обрабатывается в текущий момент времени или часто используется процессором. Это позволяет сократить время выполнения программы за счет использования команд типа регистр-регистр и уменьшить частоту обменов информацией с более медленными ЗУ ЭВМ. Обращение к этим ЗУ производится непосредственно по командам процессора.

    2. Следующую позицию в иерархии занимают буферные ЗУ . Их назначение состоит в сокращении времени передачи информации между процессором и более медленными уровнями памяти компьютера. Буферная память может устанавливаться на различных уровнях, но здесь речь идет именно об указанном ее местоположении. Ранее такие буферные ЗУ в отечественной литературе называли сверхоперативными, сейчас это название практически полностью вытеснил термин «кэш-память» или просто кэш .

    3. Еще одним (внутренним) уровнем памяти являются служебные ЗУ . Они могут иметь различное назначение.

    Одним из примеров таких устройств являются ЗУ микропрограмм, которые иногда называют управляющей памятью. Другим – вспомогательные ЗУ, используемые для управления многоуровневой памятью.

    В управляющей памяти, использующейся в ЭВМ с микропрограммным управлением, хранятся микропрограммы выполнения команд процессора, а также различных служебных операций.

    Вспомогательные ЗУ для управления памятью (например, теговая память, используемая для управления кэш-памятью, буфер переадресации TLB – translation location buffer ) представляют собой различные таблицы, используемые для быстрого поиска информации в разных ступенях памяти, отображения ее свойств, очередности перемещения между ступенями и пр.

    Емкости и времена обращения к таким ЗУ зависят от их назначения. Обычно – это небольшие (до нескольких Кбайт), но быстродействующие ЗУ. Специфика назначения предполагает недоступность их командам процессора.

    4. Следующим уровнем иерархии памяти является оперативная память . Оперативное ЗУ (ОЗУ) является основным запоминающим устройством ЭВМ, в котором хранятся выполняемые в настоящий момент процессором программы и обрабатываемые данные, резидентные программы, модули операционной системы и т.п. Название оперативной памяти также несколько изменялось во времени. В некоторых семействах ЭВМ ее называли основной памятью, основной оперативной памятью и пр. В англоязычной литературе также используется термин RAM (random access memory ), означающий память с произвольным доступом.

    Эта память используется в качестве основного запоминающего устройства ЭВМ для хранения программ, выполняемых или готовых к выполнению в текущий момент времени, и относящихся к ним данных. В оперативной памяти располагаются и компоненты операционной системы, необходимые для ее нормальной работы. Информация, находящаяся в ОЗУ, непосредственно доступна командам процессора, при условии соблюдения требований защиты.

    Оперативная память реализуется на полупроводниках (интегральных схемах), стандартные объемы ее составляют (в начале 2000-х годов) сотни мегабайт – единицы гигабайт, а времена обращения – единицы÷десятки наносекунд.

    5. Еще одним уровнем иерархии ЗУ может являться дополнительная память , которую иногда называли расширенной или массовой. Первоначально (1970-е годы) эта ступень использовалась для наращивания емкости оперативной памяти до величины, соответствующей адресному пространству (например, 24-битного адреса) команд, с помощью подключения более дешевого и емкого, чем ОЗУ, запоминающего устройства.

    Это могла быть ферритовая память или даже память на магнитных дисках. Конечно, она была более медленной, а хранимая в ней информация сперва передавалась в оперативную память и только оттуда попадала в процессор. При записи путь был обратный.

    Затем, в ранних моделях ПЭВМ, дополнительная память также использовалась для наращивания емкости ОЗУ и представляла собой отдельную плату с микросхемами памяти. А еще позже термин дополнительная память (extended или expanded memory ) стал обозначать область оперативного ЗУ с адресами выше одного мегабайта. Конечно, этот термин применим только к IBM PC совместимым ПЭВМ.

    6. В состав памяти ЭВМ входят также ЗУ, принадлежащие отдельным функциональным блокам компьютера. Формально эти устройства непосредственно не обслуживают основные потоки данных и команд, проходящие через процессор. Их назначение обычно сводится к буферизации данных, извлекаемых из каких-либо устройств и поступающих в них.

    Типичным примером такой памяти является видеопамять графического адаптера, которая используется в качестве буферной памяти для снижения нагрузки на основную память и системную шину процессора.

    Другими примерами таких устройств могут служить буферная память контроллеров жестких дисков, а также память, использовавшаяся в каналах (процессорах) ввода-вывода для организации одновременной работы нескольких внешних устройств.

    Емкости и быстродействие этих видов памяти зависят от конкретного функционального назначения обслуживаемых ими устройств. Для видеопамяти, например, объем может достигать величин, сравнимых с оперативными ЗУ, а быстродействие – даже превосходить быстродействие последних.

    7. Следующей ступенью памяти, ставшей фактически стандартом для любых ЭВМ, являются жесткие диски . В этих ЗУ хранится практически вся информация, которая используется более или менее активно, начиная от операционной системы и основных прикладных программ и кончая редко используемыми пакетами и справочными данными.

    Емкость этой ступени памяти, которая может включать в свой состав до десятков дисков, обеспечивая хранение очень большого количества данных, зависит от области применения ЭВМ. Типовая емкость жесткого диска, составляющая на начало 2000-х годов десятки гигабайт, удваивается примерно каждые полтора года.

    Со временами обращения дело обстоит несколько иначе: компоненты этого времени, обусловленные перемещением блока головок чтения-записи уменьшаются сравнительно медленно (примерно вдвое за 10 лет). Компонента, обусловленная временем подвода сектора и зависящая от скорости вращения шпинделя диска, также уменьшается с ростом этой скорости примерно такими же темпами. А скорость передачи данных растет значительно быстрее, что связано с увеличением плотности записи информации на диски.

    8. Все остальные запоминающие устройства можно объединить с точки зрения функционального назначения в одну общую группу, охарактеризовав ее как группу внешних ЗУ . Под словом «внешние» следует подразумевать то, что информация, хранимая в этих ЗУ, в общем случае расположена на носителях не являющихся частью собственно ЭВМ. Под это определение подпадают гибкие диски, компакт диски, накопители на сменных магнитных дисках и магнитооптические диски, твердотельные (флэш) диски и флэш-карты, стримеры, внешние винчестеры и др. Естественно, что параметры этих устройств достаточно различны. Функциональное назначение их обычно сводится либо к архивному хранению информации, либо к переносу ее од одного компьютера к другому.

    Некоторые сомнения в принадлежности к данной категории могут вызвать сменные диски, устанавливаемые в салазки (rack ). Такие диски, действительно, лучше отнести к предыдущей (седьмой) группе.

    Особенности организации ЗУ определяются, в первую очередь, используемыми технологиями, логикой их функционирования, а также некоторыми другими факторами. Эти особенности и соответствующие разновидности ЗУ перечисляются ниже.

    1. По функциональным возможностям ЗУ можно разделять:

    — на простые, допускающие только хранение информации;

    — многофункциональные, которые позволяют не только хранить, но и перерабатывать хранимую информацию без участия процессора непосредственно в самих ЗУ.

    Подход, используемый во второй группе ЗУ, в принципе, позволяет создать производительные системы с параллельной обработкой данных. В частности, похожие подходы используются в различных частях видеотракта компьютера.

    2. По возможности изменения информации различают ЗУ:

    — постоянные (или с однократной записью);

    — односторонние (с перезаписью или перепрограммируемые);

    — двусторонние.

    В постоянных ЗУ (ПЗУ) информация заносится либо при изготовлении, либо посредством записи (или, как иначе называют эту процедуру, программирования или прожига), которая может быть выполнена только однократно. В ходе такой записи изменяется сам носитель информации, например, пережигаются проводники в микросхемах ПЗУ или формируются лунки в отражающем слое CD-ROM.

    Односторонними называют ЗУ, которые имеют существенно различные времена записи и считывания информации. Наиболее распространенными типами таких ЗУ являются перепрограммируемые постоянные ЗУ или компакт-диски с перезаписью – CD-RW. Время записи в устройствах этих типов значительно превышает время считывания информации.

    К односторонним ЗУ можно отнести и ЗУ на приборах с зарядовой связью (ПЗС), в которых время записи (формирования изображения), вообще говоря, заметно меньше времени считывания (передачи изображения).

    Двусторонние ЗУ имеют близкие значения времен чтения и записи. Типичными представителями таких ЗУ являются оперативные ЗУ и ЗУ на жестких дисках.

    3. По способу доступа различают ЗУ:

    — с адресным доступом;

    — с ассоциативным доступом.

    При адресном доступе для записи или чтения место расположения информации в ЗУ определяется ее адресом. Логически адрес может иметь различную структуру. Например, в оперативных ЗУ адрес представляет собой двоичный код, одна часть разрядов которого указывают строку матрицы элементов памяти, а другая – столбец этой матрицы. На пересечении заданных строки и столбца находится искомая информация. В ЗУ на магнитных дисках адрес может представлять собой либо комбинацию номеров цилиндра, головки и сектора (так называемая CHS-геометрия), либо логический номер сектора (LBA-адресация). Возможны и иные варианты.

    В любом случае, заданный адрес отрабатывается схемами доступа ЗУ (дешифратором, блоком позиционирования головок и т.п.) таким образом, что в операции участвует соответствующая адресу область матрицы элементов памяти, запоминающей среды или носителя информации.

    При этом, в зависимости от того, как именно срабатывает механизм доступа, различают следующие виды адресного доступа:

    — произвольный;

    — прямой (циклический);

    — последовательный.

    Термин «память с произвольным доступом» (random access memory – RAM ) применяют к ЗУ, в которых выбор места хранения информации производится непосредственным подключением входов и выходов элементов памяти (через буферы, усилители и логические элементы) к входным и выходным шинам ЗУ. Это наиболее быстрый вид адресного доступа, применяемый в оперативных ЗУ и кэш-памяти.

    При прямом (циклическом) доступе непосредственной коммутации связей оказывается недостаточно. В таких ЗУ обычно происходит еще и перемещение данных относительно механизма чтения/записи, механизма чтения/записи относительно данных или и то и другое. Физически это может быть как механическое перемещение, например, в жестких дисках, перемещение областей намагниченности, как в ЗУ на магнитных доменах, перенос зарядов и др.

    С логической точки зрения такие ЗУ можно сопоставить набору сдвигающих регистров, информация в которых сдвигается циклически и может вводиться в регистр или выводиться из него только в одном из разрядов. Термины «циклический» и «прямой» доступ близки по содержанию, хотя «прямой доступ» – имеет более широкий смысл.

    Последовательный доступ характерен для ЗУ, использующих в качестве носителя информации (запоминающей среды) магнитную ленту, например, для стримеров. В таких ЗУ для доступа к блоку данных необходимо переместить носитель так, чтобы участок, на котором располагается требуемый блок данных, оказался под блоком головок чтения/записи.

    Кроме того, при всех формах адресного доступа адресуемым элементом может быть не только байт или слово (как в оперативной памяти и кэш-памяти), но целый блок данных. Это обычно связано либо с конструктивными особенностями ЗУ, либо с большим временем доступа.

    При ассоциативном доступе место хранения информации при чтении и записи определяется не адресом, а значением некоторого ключа поиска. Каждое записанное и хранимое в ассоциативной памяти слово имеет поле ключа. Значение этого ключа сравнивается со значением ключа поиска при чтении данных из памяти. В случае совпадения сравниваемых значений информация считывается из памяти.

    Ассоциативная память эффективна для решения задач, связанных с поиском данных. Однако ее использование ограничено в силу сравнительно высокой ее сложности.

    Действительно, с аппаратной точки зрения сам поиск может быть организован по-разному: последовательно по разрядам ключевых полей или параллельно по всем ключам во всем массиве памяти. Второй способ, конечно, более быстрый, но требует соответствующей организации (ключевой части) памяти, которая должна иметь для этого в ключевой части каждого хранимого слова схемы сравнения. Именно поэтому такая память существенно более дорогая, чем оперативная, и используется в основном для решения задач, требующих быстрого поиска в небольших объемах информации.

    Одним из частых применений ассоциативной памяти является быстрое преобразование логических (линейных) адресов данных в физические (т.е. адреса ячеек памяти), выполняемое, например, так называемым буфером трансляции адресов. Другой близкой задачей является определение того, имеется ли требуемая информация в верхних уровнях ЗУ или необходима ее подкачка из более медленных ЗУ.

    4. По организации носителя различают ЗУ:

    — с неподвижным носителем;

    — с подвижным носителем.

    В первых из них носитель механически неподвижен в процессе чтения и записи информации, что имеет место, например, в оперативных и кэш ЗУ, твердотельных дисках, ЗУ с переносом зарядов и др.

    Для ЗУ второй группы чтение и запись информации сопровождаются механическим перемещением носителя, что обычно имеет место в различных ЗУ с магнитной записью, например в жестких и гибких дисках.

    Однако, возможны и иные варианты. Например, фирмой IBM разрабатывается ЗУ с механическим перемещением записывающих и считывающих элементов (микроигл) и неподвижным носителем информации (пластиковой пленкой).

    5. По возможности смены носителя ЗУ могут быть:

    — с постоянным носителем;

    — со сменным носителем.

    В ЗУ первого вида носитель является частью самого устройства и не может быть извлечен из него в процессе нормального функционирования (оперативные ЗУ, жесткие диски).

    В ЗУ второй группы носитель не является собственной частью устройства и может устанавливаться в ЗУ и извлекаться из него в процессе работы (гибкие диски, CD-ROM-дисководы, карты памяти, магнито-оптические диски).

    6. По способу подключения к системе ЗУ делятся:

    — на внутренние (стационарные);

    — внешние (съемные).

    В первом случае ЗУ, как правило, является обязательным компонентом вычислительной системы, устанавливается в корпусе системы (например, оперативная память) или интегрируется с другими ее компонентами (например, кэш-память).

    Во втором случае устройство подключается к системе дополнительно и представляет собой отдельный блок. Подключение (и отключение) таких ЗУ, в зависимости от особенности их реализации, может производиться как при выключенной системе – так называемое «холодное подключение», так и в работающей системе – «горячее подключение».

    Последний вариант в серверных системах предусматривают и для стационарных ЗУ (жестких дисков).

    7. По количеству блоков , образующих модуль или ступень памяти, можно различать:

    — одноблочные ЗУ;

    — многоблочные ЗУ.

    Такое разделение может представлять интерес в том случае, когда в многоблочное ЗУ входят блоки (или банки памяти), допускающие возможность параллельной работы. В этом случае за счет одновременной работы блоков можно повысить общую производительность модуля (ступени) ЗУ, иначе называемую его пропускной способностью и измеряемую количеством информации, которое модуль может записать или считать в единицу времени.

    Но возможность одновременной работы блоков еще не означает, что они именно так и будут работать. Чтобы это произошло, необходимо обращения системы к памяти более или менее равномерно распределять по различным блокам. Достичь этого можно различными способами, например запустить параллельные задачи или процессы (threads ), работающие с разными блоками, либо разместить информацию, относящуюся к одному процессу, в разных блоках.

    Однако, поскольку параллельные процессы в действительности выполняются параллельно только в многопроцессорных системах (в крайнем случае, в гиперпоточных архитектурах), то часто используют второй путь, прибегая к так называемому чередованию (interleave ) адресов между блоками. Т.е. последовательные адреса или группы адресов адресного пространства назначают в различные блоки памяти так. На практике известны системы, допускающие расслоение по шестнадцати блокам.

    Ясно, что в случае такого назначения адресов при выполнении какой-либо программы обращения к памяти будут распределяться по блокам достаточно равномерно. А при обмене блоком данных с другой ступенью памяти обращения по последовательным адресам тем более будут попадать в различные блоки памяти.

    Рассматривая расслоение адресов, можно отметить его аналогию с некоторыми режимами работы RAID-контроллеров.

    Конечно, за пределами приведенной классификации остались такие довольно представительные признаки, как физические принципы реализации, уровень потребляемой мощности, радиационная устойчивость и некоторые другие, которые в определенных случаях могут иметь немаловажное значение.

    СПИСОК ЛИТЕРАТУРЫ

  1. Гукин Д. IBM-совместимый компьютер: Устройство и модернизация: Пер. с англ.– М.: Мир, 2005.

    Информатика / Под ред. Н.В. Макаровой.–М.: Финансы и статистика, 2004.

  2. Информатика: Учебник / Под ред. Н.В. Макаровой. М., 2002.
    Состав и структура дебиторской задолженности СУБД

    2014-06-02

Центральный процессор имеет доступ к данным, находящимся в оперативной памяти. Работа компьютера с пользовательскими программами начинается после того как данные будут считаны из внешней памяти в ОЗУ.

ОЗУ работает синхронно с центральным процессором и имеет малое время доступа. Оперативная память сохраняет данные только при включенном питании. Отключение питания приводит к необратимой потере данных, поэтому пользователю, работающему с большими массивами данных в течение длительного времени, рекомендуют периодически сохранять промежуточные результаты на внешнем носителе.

Оперативная память

Функции памяти

1) приём информации от других устройств;

2) запоминание информации;

3) передача информации по запросу в другие устройства машины.

Периферийные устройства

К функциям периферийных устройств относятся ввод и вывод информации.

Каждое устройство имеет набор характеристик, которые позволяют подобрать такую конфигурацию устройств, которая наилучшим образом подходит для решения определенного круга задач с помощью компьютера.

Основное назначение периферийных устройств

Обеспечить поступление в ПК из окружающей среды программ и данных для обработки, а также выдачу результатов работы ПК в виде, пригодном для восприятия человека или для передачи на другую ЭВМ, или в иной, необходимой форме.

Периферийные устройства можно разделить на несколько групп по функциональному назначению:

1. Устройства ввода-вывода – предназначены для ввода информации в ПК, вывода в необходимом для оператора формате или обмена информацией с другими ПК. К такому типу ПУ можно отнести внешние накопители, модемы.

2. Устройства вывода – предназначены для вывода информации в необходимом для оператора формате. К этому типу периферийных устройств относятся: принтер, монитор, аудиосистема.

3. Устройства ввода – Устройствами ввода являются устройства, посредством которых можно ввести информацию в компьютер. Главное их предназначение - реализовывать воздействие на машину. К такому виду периферийных устройств относятся: клавиатура, сканер, графический планшет и т.д.

4. Дополнительные ПУ – такие как манипулятор «мышь», который лишь обеспечивает удобное управление графическим интерфейсом операционных систем ПК и не несет ярковыраженных функций ввода либо вывода информации; WEB-камеры, способствующие передаче видео и аудио информации в сети Internet, либо между другими ПК. Последние, правда, можно отнести и к устройствам ввода , благодаря возможности сохранения фото, видео и аудио информации на магнитных или магнитооптических носителях.

Двоичный код

Информация всегда имеет форму сообщения, а сообщение кодируется тем или иным набором знаков, символов, цифр. С технической точки зрения самым удобным и эффективным является использование двоичного кода, то есть набора символов, алфавита, состоящего из пары цифр {0,1}. Поскольку двоичный код используется для хранения информации в вычислительных машинах, его еще называют машинным кодом.

Цифры 0 и 1, образующие набор {0,1}, обычно называют двоичными цифрами, потому что они используются как алфавит в так называемой двоичной системе счисления. Система счисления представляет собой совокупность правил и приемов наименования и записи чисел, а также получения значения чисел из изображающих их символов. Количество знаков в алфавите системы счисления обычно отражается в ее названии: двоичная, троичная, восьмеричная, десятичная, шестнадцатеричная и т. д. Вообще говоря, можно рассматривать системы счисления с любым количеством знаков в алфавите. В настоящее время общепринятой является арабская десятичная система счисления, алфавит которой состоит из десяти цифр {0,1,2,3,4,5,6,7,8,9}. Однако для использования в ЭВМ десятичная система слишком сложна, так как для ее применения необходимо подобрать технические способы изображения десяти различных цифр. С точки зрения технической реализации компьютера, гораздо проще работать всего с двумя цифрами двоичной системы {0,1}.

Элементарное устройство памяти компьютера, которое применяется для изображения одной двоичной цифры, называется двоичным разрядом или битом.

Внутренняя разрядность процессора определяет, какое количество битов он может обрабатывать одновременно при выполнении арифметических операций.

Внешняя разрядность процессора определяет, сколько битов одновременно он может принимать или передавать во внешние устройства.

Литература

1. А.В. Могилев, Н.И. Пак, Е.К. Хеннер. Информатика. М., 2000.

2. А.Я. Савельев. Основы информатики. М., 2001.

3. Статьи журналов Compas за 2007г.

4. Информатика: базовый курс, 2 издание. Издательство «Питер», 2005 год