Тарифы Услуги Сим-карты

Методы доступа к сетевым каналам данных. Введение в сети передачи данных

Классификация сетей по топологии

Сети на основе сервера

В сетях с выделœенным сервером, появляется иерархия, призванная упростить управление различными функциями сети по мере увеличения ее размера. Часто такие сети называют с архитектурой клиент/сервер.

В подобных сетях основная часть совместно используемых ресурсов сосредоточена на отдельном компьютере, называемом сервером. На сервере обычно нет базовых пользователœей, вместо этого они являются многопользовательскими компьютером, то есть предоставляют возможность совместного использования своих ресурсов клиентам сети.

Серверному подходу присуще множество преимуществ:

Можно поддерживать более строгую безопасность, по сравнению с одноранговой сетью;

Упрощение регулярного и надежного выполнения административных задач;

Пользователям не нужно запоминать, где хранятся различные ресурсы, как это было в одноранговых сетях.

Сеть на основе сервера имеет одно ограничение - ее развертывание и эксплуатация обходится намного дороже одноранговых сетей.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, сети на основе сервера оказываются очень эффективными в больших организациях. При обстоятельствах, требующих строго соблюдения безопасности или четкого управления ресурсами.

Сегодня широко используется комбинация однораногового и серверного доступа к ресурсам одной сети. Примером может послужить сеть с сервером, на котором централизованы ресурсы для универсального использования. Локальные рабочие группы такой сети могут предоставлять одноранговый доступ к своим ресурсам для своих внутренних нужд (комбинированные сети).

Топология сети - ϶ᴛᴏ схема соединœения компьютеров и других сетевых устройств с помощью кабеля или другой сетевой среды.

1.4.1 Сети с топологией «шина»

Шина представляет собой сеть, проложенную по линии (рис.2). Кабель проходит от од­ного компьютера к следующему, затем к следующему и т.д.


Рисунок 2 – Топология «шина»

В сети с шинной топологией сообщения, посылаемые каждым компьютером, по­ступают на всœе компьютеры, подключенные к шинœе. Каждый сетевой адаптер анали­зирует заголовки сообщений и таким образом определяет, предназначено ли сообще­ние для этого компьютера. В случае если да, то сообщение обрабатывается, в противном слу­чае отбрасывается. Причем в каждый момент времени передачу может вести только один компьютер. По этой причине пропускная способность делится между всœеми узлами сети.

В топологии «шина» существует проблема отражения сигнала. Электрические сигналы распространяются от одного конца кабеля к другому и если не предпринимать никаких специальных мер, сигнал, достигая конца кабеля, будет отражаться и создавать помехи, не позволяя другим компьютерам осуществлять передачу. По этой причине на концах кабеля электрические сигналы нужно гасить. Для этого используют терминатор (оконечное устройство).

Преимущества сети с шинной топологией.

Шинную топологию очень просто реализовать. Она относительно дешевая, потому что требует меньше кабелœей, чем другие топологии. Это решение особенно пригодно для небольших сетей, которые будут использоваться всœего несколько дней или недель, к примеру в классной комнате.

Недостатки сети с шинной топологией.

Недостаток шинной топологии состоит в том, что если происходит раз­рыв кабеля (или один из пользователœей вынимает разъем из гнезда, чтобы отклю­читься от сети), то вся сеть разрывается. При этом происходит не только разрыв связи между двумя группами изолированных компьютеров, но и возникает отра­жение сигнала из-за отсутствия терминаторов на концах, вследствие чего вся сеть выходит из строя.

1.4.2 Топология «Звезда»

Звезда – одна из наиболее популярных топологий локальных сетей. Звезда образуется путем соединœения каждого компьютера с центральным компонентом- концентратором (рис.3).

Рисунок 3- Топология «звезда»

Сигналы от передающего компьютера поступают на концентратор, где усиливается и передается на всœе порты ко всœем компьютерам. В этой топологии, как и в шинœе, сигнал поступает на всœе компьютеры. Получив сообщение, компьютер анализирует его заголовок и принимает решение: обработать или отбросить сообщение.

Главное преимущество этой топологии перед шиной – существенно большая надежность. Любые неисправности с кабелœем выводят из строя только тот компьютер, который им был подключен. И лишь неисправность концентратора выводит из строя всю сеть.

Легко менять конфигурацию сети – добавление нового компьютера заключается в присоединœении одного разъема кабеля.

Недостатком данной топологии является более высокая стоимость из-за приобретения концентратора, возможности по наращиванию количества узлов в сети ограничено количеством портов концентратора.

1.4.3 Топология «кольцо»

Сеть с топологией «кольцо» похожа на сеть с топологией «шина»: логически компьютеры в ней также соединœены друг с другом последовательно. Отличие состоит по сути в том, что в топологии «кольцо» два конца кабеля соединœены вместе. Сигнал, сгенерированный одним из компьютеров, движется по кольцу ко всœем остальным компьютерам и в конце концов возвращается в исходную точку.

Важно понимать, что в большинстве случаев «кольцо» - это логическая, а не физическая конструкция. Сетевое «кольцо» реализовано логически с помощью соединœения проводов внутри кабелœей и специального концентратора - модуля множественного доступа . Он получает данные через один порт и по очереди передает их через всœе остальные (рис.4).

Рисунок 4 - Топология «кольцо»

Использование физической топологии «звезда» в сети с топологией «кольцо» обеспечивает функционирование сети даже в случае повреждения кабеля или разъема. С помощью специальной схемы модуль множественного доступа просто исключает неисправную рабочую станцию из кольца, сохраняя его логическую топологию. В случае если компьютеры подключены к обоим кольцам, сеть может функционировать, даже если одно из них выйдет из строя.

Существует несколько различных методов доступа, однако наибольшее распространение получили следующие методы:

Передача маркера (эстафетный доступ);

1.5.1 Метод CSMA/CD

Сегодня самый распространенный метод управления доступом в локальную сеть - это CSMA/CD (Carrier Sense Multiple Access with Collision Detection - множественный доступ с контролем носителя и обнаружением конфликтов).

Чтобы понять, как он работает, рассмотрим отдельно фрагменты его названия.

Контроль носителя - когда компьютер собирается передать данные в сеть методом CSMA/CD, он должен сначала проверить, передает ли в это время по этому же кабелю свои данные другой компьютер. Другими словами, проверить состояние носителя: занят ли он передачей других данных.

Множественный доступ - это означает, что несколько компьютеров могут начать передачу данных в сеть одновременно.

Обнаружение конфликтов - это главная задача метода CSMA/CD. Когда компьютер готов передавать, он проверяет состояние носителя. В случае если кабель занят, компьютер не посылает сигналы. В случае если же компьютер не слышит в кабелœе чужих сигналов, он начинает передавать. При этом может случиться, что кабель прослушивают два компьютера и, не обнаружив сигналов, начинают передавать оба одновременно. Такое явление принято называть конфликтом сигналов (коллизией). Обнаружив коллизию, система немедленно останавливает передачу данных и начинает передачу сигнала затора, сигнализируя всœем системам, что нужно подождать освобождения сети. К омпьютеры ждут на протяжении случайного периода времени и посылают эти же сигналы повторно.

1.5.2 Метод CSMA/CA

Название метода расшифровывается как Carrier Sense Multiple Access with Collision Avoidance - множественный доступ с контролем носителя и предотвращением конфликтов. По сравнению с предыдущим методом заменено лишь одно слово - "обнаружение (конфликтов)" на "предотвращение".

Первый шаг при попытке передать пакет: компьютер прослушивает кабель и определяет, свободен ли он. При этом, если компьютер не находит в кабелœе других сигналов, он сначала посылает сигнал запроса на передачу- RTS (Request to Send). Этим он объявляет другим компьютерам, что намерен начать передачу данных. В случае если другой компьютер сделает то же самое в тот же момент времени, то произойдет конфликт сигналов RTS, а не пакетов данных. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, пакеты данных никогда не смогут конфликтовать. Это принято называть предотвращением конфликтов

На первый взгляд, метод с предотвращением конфликтов значительно совершеннее, чем с обнаружением. При этом его производительность ниже из-за того, что дополнительно к данным приходится посылать сигналы RTS, подавляющее большинство которых не нужны. Фактически количество поступающих на кабель сигналов почти удваивается.

Метод доступа определяет алгоритм , согласно которому узлы сети получают доступ к среде передачи данных и осуществляют мультиплексирование / демультиплексирование данных.

В 1970-х годах Норман Абрахамсон вместе с сотрудниками Гавайского университета предложил оригинальный способ решения проблемы доступа к сети, который был назван позднее ALOHA . Этот алгоритм использовался для доступа к радиоканалу большого числа независимых пользователей. ALOHA разрешает всем пользователям передачу тогда, когда им это оказалось нужно. При этом неизбежны столкновения и искажения передаваемых данных. Алгоритм , благодаря обратной связи, позволяет отправителям узнать, были ли данные в процессе передачи искажены. Если зарегистрировано такое столкновение, все вовлеченные участники выжидают некоторое время и предпринимают повторную попытку. Время выдержки выбирается случайным образом, что делает повторные столкновения менее вероятными.

Принципиальное отличие алгоритма ALOHA от CSMA/CD (используемого в Ethernet) с точки зрения столкновений заключается в том, что в первом случае столкновения детектируются на входе получателя, а во втором – на выходе отправителя .

Мультиплексирование можно осуществлять по частоте ( по длине волны - FDM ), предоставляя разным клиентам разные частотные диапазоны, или по времени (TDM ), разрешая доступ клиентов к сетевой среде по очереди и резервируя каждому из них для работы фиксированные последовательные временные интервалы. При этом необходима синхронизация работы всех участников процесса. В последнее время стало использоваться также мультиплексирование по кодам CDMA (Code Division Multiple Access ), где каждому участнику выделяется уникальный чип-код и допускается использование всеми клиентами всего частотного диапазона в любой момент времени.

Большая часть современных локальных сетей базируется на алгоритме доступа CSMA/CD ( Carrier Sensitive Multiple Access with Collision Detection ), где все узлы имеют равные возможности доступа к сетевой среде, а при одновременной попытке фиксируется столкновение и сеанс передачи повторяется позднее. Ряд разновидностей такого протокола рассмотрели Кляйнрок и Тобаги еще в 1975 году. После передачи очередного пакета (кадра) обычно делается некоторая пауза. После этого любой узел, подключенный к сетевому сегменту, может попытать счастья. Модификацией CSMA-алгоритма является схема, в которой после передачи кадра выделяется определенный временной домен (соревнования), когда претенденты могут выяснять отношения между собой. При столкновении начало передачи возможно только во время очередного домена соревнования. В этой модификации должен быть предусмотрен некоторый механизм синхронизации и исключения бесконечной череды столкновений.

Алгоритм CSMA предпочтительнее ALOHA , так как здесь ни один из пользователей не начинает передачу, если канал занят. Этот способ доступа покрывается патентами США 4063220 и 4099024 (Ксерокс), но IEEE имеет соглашение с этой компанией, которое разрешает использовать данный алгоритм без каких-либо ограничений. Здесь нет возможности приоритетного доступа, и по этой причине такие сети плохо приспособлены для задач управления в реальном масштабе времени. Некоторое видоизменение алгоритма CSMA/CD (как это сделано в сетях CAN или в IBM DSDB) позволяют преодолеть эти ограничения. Доступ по схеме CSMA/CD (из-за столкновений) предполагает ограничение на минимальную длину пакета. По существу метод доступа CSMA/CD (в полудуплексном случае) предполагает широковещательную передачу пакетов (не путать с широковещательной адресацией). Все рабочие станции логического сетевого сегмента воспринимают эти пакеты хотя бы частично, чтобы прочесть адресную часть. При широковещательной адресации пакеты не только считываются целиком в буфер , но и производится прерывание процессора для обработки факта прихода такого пакета.

Логика поведения субъектов в сети с доступом CSMA/CD может варьироваться. Здесь существенную роль играет то, синхронизовано ли время доступа у этих субъектов. В случае Ethernet такой синхронизации нет. В общем случае при наличии синхронизации возможны следующие алгоритмы:

  1. Если канал свободен, терминал передает пакет с вероятностью 1.
  2. Если канал занят, терминал ждет его освобождения, после чего производится передача.
  1. Если канал свободен, терминал передает пакет.
  2. Если канал занят, терминал определяет время следующей попытки передачи. Это время может задаваться некоторым статистическим распределением.
  1. Если канал свободен, терминал с вероятностью р передает пакет, а с вероятностью 1р он откладывает передачу на t секунд (например, на следующий временной домен).
  2. При повторении попытки в случае свободного канала алгоритм не изменяется.
  3. Если канал занят, терминал ждет, пока канал не освободится, после чего действует снова согласно алгоритму пункта 1.

Алгоритм А на первый взгляд представляется привлекательным, но в нем заложена возможность столкновений с вероятностью 100%. Алгоритмы Б и В более устойчивы в отношении этой проблемы.

Эффективность алгоритма CSMA зависит от того, как быстро передающая сторона узнает о факте столкновения и прерывает передачу, ведь продолжение бессмысленно - данные уже повреждены. Это время зависит от длины сетевого сегмента и задержек в оборудовании сегмента. Удвоенное значение задержки определяет минимальную длину пакета, передаваемого в такой сети. Если пакет короче, он может быть передан так, что передающая сторона не узнает о его повреждении в результате столкновения. Для современных локальных сетей Ethernet, построенных на переключателях и полнодуплексных соединениях, эта проблема неактуальна .

С целью пояснения этого утверждения рассмотрим случай, когда одна из станций (1) передает пакет самой удаленной ЭВМ (2) в данном сетевом сегменте. Время распространения сигнала до этой машины пусть равно Т. Предположим также, что машина (2) попытается начать передачу как раз в момент прихода пакета от станции (1). В этом случае станция (1) узнает о столкновении лишь спустя время 2Т после начала передачи (время распространения сигнала от (1) до (2) плюс время распространения сигнала столкновения от (2) к (1)). Следует учитывать, что регистрация столкновения - это аналоговый процесс и передающая станция должна "прослушивать" сигнал в кабеле в процессе передачи, сравнивая результат чтения с тем, что она передает. Важно, чтобы схема кодирования сигнала допускала детектирование столкновения. Например, сумма двух сигналов с уровнем 0 этого сделать не позволит. Можно подумать, что передача короткого пакета с искажением из-за столкновения - не такая уж большая беда, проблему может решить контроль доставки и повторная передача.

Следует только учесть, что повторная передача в случае зарегистрированного интерфейсом столкновения осуществляется самим интерфейсом, а повторная передача в случае контроля доставки по отклику выполняется прикладным процессом, требуя ресурсов центрального процессора рабочей станции .

Сопоставление эффективности использования канала для различных протоколов произвольного доступа произведено на рис. 10.5 .


Рис. 10.5.

Протокол доступа CSMA может предполагать, что когда канал оказывается свободным, а рабочая станция готова начать передачу, реальная пересылка кадра в рамках заданного временного домена происходит с определенной вероятностью p . С вероятностью 1-р передача будет отложена до следующего временного домена. В следующем домене, если канал свободен, с вероятностью р осуществится передача или будет отложена до следующего домена и так далее. Процесс продолжается до тех пор, пока кадр не будет передан. На рисунке эта вероятность р отмечена цифрами после аббревиатуры "CSMA". В случае Ethernet эта вероятность равна единице (CSMA-1) , то есть рабочая станция безусловно начнет передачу, если она к этому готова, а канал свободен. Из рисунка видно, что чем меньше эта вероятность , тем выше эффективность (среднее время доступа к сетевой среде также увеличивается). Очевидно, что все разновидности протокола доступа CSMA эффективнее протокола ALOHA в обеих его разновидностях. Связано это с тем, что ни одна станция не начинает передачу, если обнаружит, что сетевая среда занята. Существует еще одна разновидность протокола CSMA (nonpersistent ), в которой сетевой субъект при готовности анализирует состояние сетевой среды и, если канал занят, возобновляет попытку спустя псевдослучайный интервал времени, то есть ведет себя так, будто произошло столкновение. Такой алгоритм повышает эффективность использования канала при существенном возрастании усредненной задержки доступа.

трудно что-либо придумать. Напротив, когда задержка доступа несущественна, а загрузка канала велика, то следует использовать одну из разновидностей протокола доступа CSMA или один из протоколов, исключающих возможность столкновения кадров. Такие алгоритмы описаны ниже .

Рассмотрим, как можно избежать проблем столкновений пакетов. Пусть к сетевому сегменту подключено N рабочих станций. После передачи любого пакета выделяется N временных интервалов. Каждой подключенной к сетевому сегменту машине ставится в соответствие один из этих интервалов длительностью L . Если машина имеет данные и готова начать передачу, она записывает в этот интервал бит , равный 1. По завершении этих N интервалов рабочие станции по очереди, определяемой номером приписанного интервала, передают свои пакеты (см. рис. 10.6 , N = 8 ).


Рис. 10.6.

В примере на рис. 10.6 сначала право передачи получают станции 0, 2 и 6, а в следующем цикле - 2 и 5 (пересылаемые пакеты окрашены в серый цвет). Если рабочая станция захочет что-то передать, когда ее интервал ( домен ) уже прошел, ей придется ждать следующего цикла . По существу данный алгоритм является протоколом резервирования. Машина сообщает о своих намерениях до того, как начинает что-либо передавать. Чем больше ЭВМ подключено к сетевому сегменту, тем больше временных интервалов должно быть зарезервировано и тем ниже эффективность сети. Понятно, что эффективность растет с ростом L .

Вариация данного алгоритма доступа реализована в сетях сбора данных реального времени CAN ( Controller Area Network - http://www.kvaser.se/can/protocol/index.htm - алгоритм доступа CSMA/CA - collision avoidance - с исключением столкновений). Там в указанные выше интервалы записывается код приоритета рабочей станции. Причем станции должны быть синхронизованы и начинать запись своего уникального кода одновременно, если все или часть из них готовы начать передачу. Эти сигналы на шине суммируются с помощью операции "проволочное ИЛИ" (если хотя бы один из участников выставляет логическую единицу, на шине будет низкий уровень). В процессе побитового арбитража каждый передатчик сравнивает уровень передаваемого сигнала с реальным уровнем на шине. Если эти уровни идентичны, он может продолжить, в противном случае передача прерывается и шина остается в распоряжении более приоритетного кадра. Для пояснения работы алгоритма предположим, что N = 5 и одновременно производится попытка начать передачу станции с кодами приоритета 10000, 10100 , и 00100 . Первыми будут посланы станциями биты 1, 1 и 0. Третья станция сразу выбывает из конкурса (ее

Методы доступа к сети

Технологии передачи

Методы доступа к сети

Адресация пакетов

Каждый узел сети должен иметь свой уникальный адрес MAC-адрес для того, чтобы ему можно было адресовать пакеты . Существуют две основные системы присвоения адресов сетевым адаптерам абонентам сети.

Первая система . В сети каждому абоненту присваивается индивидуальный порядковый адрес, например, от 0 до 30 или от 0 до 254. Присваивание адресов производится программно или с помощью переключателей на плате адаптера. При этом требуемое количество разрядов адреса определяется из неравенства:

2 n > N max,

где n – количество разрядов адреса, а N max – максимально возможное количество абонентов в сети. Так, восемь разрядов адреса достаточно для сети из 255 абонентов. Один адрес 1111....11 отводится для широковещательной передачи и используется для пакетов , адресованных всем абонентам.

Именно такой подход применен в сети Arcnet . Достоинства – малый объем служебной информации в пакете, а также простота аппаратуры адаптера, распознающей адрес пакета. Недостаток – трудоемкость задания адресов и возможность ошибки – двум абонентам может быть присвоен один и тот же адрес. Контроль уникальности сетевых адресов всех абонентов возлагается на администратора сети.

Вторая система была разработана институтом IEEE, занимающимся стандартизацией сетей. Именно эта система сейчас используется в сетях. Идея состоит в том, чтобы присваивать уникальный сетевой адрес каждому адаптеру еще на стадии изготовления. Если количество возможных адресов будет достаточно большим, то можно быть уверенным, что в любой сети по всему миру никогда не будет абонентов с одинаковыми адресами. Поэтому был выбран 48-битный формат адреса, что соответствует примерно 280 триллионам различных адресов. Понятно, что столько сетевых адаптеров никогда не будет выпущено.

Для того, чтобы распределить диапазоны адресов среди производителей сетевых адаптеров, была предложена следующая структура адреса:

Ø Младшие 24 разряда кода адреса называются OUA (Organizationally Unique Address ) – организационно уникальный адрес. Именно их присваивает каждый из производителей сетевых адаптеров. Всего возможно свыше 16 миллионов комбинаций, то есть каждый изготовитель может выпустить 16 миллионов сетевых адаптеров.

Ø Следующие 22 разряда кода называются OUI (Organizationally Unique Identifier ) – организационно уникальный идентификатор. IEEE присваивает один или несколько OUI каждому производителю сетевых адаптеров. Это позволяет исключить совпадения адресов адаптеров от разных производителей. Всего возможно свыше 4 миллионов разных OUI. Это означает, что теоретически может быть зарегистрировано 4 миллиона производителей. Вместе OUA и OUI называются UAA (Universally Administered Address ) – универсально управляемый адрес или IEEE-адрес.

Ø Два старших разряда адреса управляющие, они определяют способ интерпретации остальных 46 разрядов. Старший бит I/G (Individual/Group ) указывает на тип адреса. Если он установлен в 0 , то индивидуальный , если в 1 , то групповой . Пакеты с групповым адресом получат все имеющие этот групповой адрес сетевые адаптеры. Причем групповой адрес определяется 46 младшими разрядами. Второй управляющий бит U/L (Universal/Local ) называется флажком универсального/местного управления и определяет, как был присвоен адрес данному сетевому адаптеру. Обычно он установлен в 0 . Установка бита U/L в 1 означает, что адрес задан не производителем сетевого адаптера, а организацией, использующей данную сеть. Это случается довольно редко.

Для широковещательной передачи применяется специально выделенный сетевой адрес, все 48 битов которого установлены в единицу. Его принимают все абоненты сети независимо от их индивидуальных и групповых адресов.

Данной системы адресов придерживаются такие популярные сети, как Ethernet , Fast Ethernet , Token Ring , FDDI , 100VG-AnyLAN . Ее недостатки – высокая сложность аппаратуры сетевых адаптеров, а также большая доля служебной информации в передаваемом пакете – адреса источника и приемника вместе требуют уже 96 битов пакета или 12 байт.

Во многих сетевых адаптерах предусмотрен так называемый циркулярный режим . В этом режиме адаптер принимает все пакеты , приходящие к нему, независимо от значения поля адреса приемника . Такой режим используется, например, для проведения диагностики сети, измерения ее производительности, контроля ошибок передачи. При этом один компьютер принимает и контролирует все пакеты, проходящие по сети, но сам ничего не передает. В данном режиме работают сетевые адаптеры мостов и коммутаторы, которые должны обрабатывать перед ретрансляцией все пакеты, приходящие к ним.

Методы доступа

Каждый абонент сети может передавать свои пакеты. Но по одному кабелю одновременно передавать два или более пакетов нельзя, иначе может возникнуть коллизия (конфликт), которая приведет к искажению или потере всех пакетов, участвующих в конфликте. Значит, надо установить очередность доступа к сети всем абонентам, желающим передавать свои пакеты. В сети обязательно применяется метод доступа, предотвращающий конфликты между абонентами. Метод доступа к сети определяет алгоритм, согласно которому узлы сети получают доступ к среде передачи данных и осуществляют передачу. От эффективности работы выбранного метода управления обменом зависят скорость обмена информацией между компьютерами, нагрузочная способность сети, то есть способность выполнять обмен с различной интенсивностью, время реакции сети на внешние события и т.д. Метод доступа к сети – один из важнейших параметров.

Тип метода доступа во многом определяется особенностями топологии сети, но в то же время он не привязан жестко к топологии.

Методы управления обменом в локальных сетях делятся на две группы :

Ø Централизованные методы , в которых все управление доступом сосредоточено в одном месте. Недостатки таких методов – неустойчивость к отказам центра, недостаточная гибкость управления, так как центр обычно не может оперативно реагировать на все события в сети. Достоинство централизованных методов – отсутствие коллизий, так как центр всегда предоставляет право на передачу только одному абоненту.

Ø Децентрализованные методы , в которых отсутствует центр управления доступом. Всеми вопросами предотвращения, обнаружения и разрешения конфликтов занимаются все абоненты сети. Достоинства децентрализованных методов – высокая устойчивость к отказам и большая гибкость. Однако все же возможны коллизии, которые надо разрешать.



Существует и другое деление методов доступа, относящееся, главным образом, к децентрализованным методам:

Ø Детерминированные методы определяют четкие правила, по которым чередуются захватывающие сеть абоненты. Абоненты имеют определенную систему приоритетов. При этом, как правило, конфликты полностью исключены, но некоторые абоненты могут дожидаться своей очереди на передачу слишком долго. К детерминированным методам относится, например, маркерный доступ (сети Token Ring , FDDI ), при котором право передачи передается по эстафете от абонента к абоненту.

Ø Случайные методы подразумевают случайное чередование передающих абонентов. При этом возможность конфликтов подразумевается, но предлагаются способы их разрешения. Случайные методы значительно хуже детерминированных, работают при большом трафике сети и не гарантируют абоненту величину времени доступа . В то же время они обычно более устойчивы к отказам сетевого оборудования и более эффективно используют сеть при малой интенсивности обмена. Пример случайного метода – CSMA/CD (сеть Ethernet ).

Метод доступа – набор правил, определяющих использование сети.

Реализуется на физическом уровне.

Задачей метода доступа является решение вопроса об испльзовании кабеля, соединяющего пользователей в сети.

1. Метод Ethernet

Множественный доступ с прослушиванием несущей и разрешением конфликтов.

Любой ПК в сети «слышит» каждую передачу, однако не любой ПК ее принимает.

Любой ПК передает сообщение, в котором есть адрес приемника и отправителя. Все ПК слышат сообщения, но только один распознает его, принимает, посылает подтверждение.

Конфликт происходит, если два ПК одновременно передают сообщения. Тогда они прекращают передачу на случайный интервал времени, а затем возобновляют ее.

2. Метод Archnet

Метод доступа с эстафетной передачей для сети со звездообразной топологией.

ПК может передать сообщение, если получит маркер (token) – последовательность битов, созданную одним из ПК. Маркер перемещается по цепи как по кольцу. Все ПК имеютномер (от 0 до 255). Маркер идет от ПК к ПК. Когда ПК получает маркер, он может передать пакет данных (до 512 байт), включая адрес отправителя и приемника. Весь пакет идет от узла к узлу, пока не достигнет адресата. В этом узле данные выводятся, а маркер идет дальше.

Преимущество данного метода – предсказуемость, т.к. известен путь маркера, т.е. можно посчитать, сколько нужно времени для передачи.

Недостаток – любой узел функционирует в качестве повторителя, принимая и регенерируя маркер. В случае неправильной работы маркер мржет быть искажен или потерян.

3.МетодToken Ring

Передача маркера по кольцу (кольцевая топология)

При получении пустого маркера ПК может передать сообщение в течении определенного времени. Такое сообщение называется кадр (frame). Приемник копирует сообщение в свою память, но не выводит его из кольца. Это делает передающий компьютер, когда получает свое сообщение обратно.

Существует механизм приоритетов.

Преимущество – надежность и простота.

Можно отключать неисправные ПК

Способы коммутации и передачи данных

Сеть передачи данных обеспечивает связь между абонентами путем установления соединений. Важная характеристика сетипередачи данных – время доставки данных , коорое зависит от структуры сети передачи данных, ??? узлов связи и пропускной способности линий связи, а также от способа организации каналов связи между абонентами и способа передачи данных по каналам.

Рассмотрим сеть передачи данных (диаграмма а):

Информационная связь между абонентами может устанавливаться 3-мя способами: коммутацией каналов, сообщений, пакетов.

1. Коммутация каналов (диаграмма б)

Обеспечивает выделение физического канала для прямой передачи данных между абонентами.

Абонент a i инициирует установление связи с a j . Узел связи А, реагируя на адрес a j ,устанавливает соединение, в результате чего линия абонента a i коммутируется с линией, соединяющей узелAи В. Затем процедура установления связи повторяется для узловB, C, D. В конечном счете коммутируется канал между абонентамиa i иa j . По окончании коммутацииa j посылает сигнал обратной связи, после получения которого абонентa i начинает передавать данные. Время передачи данных зависит от длины сообщения и скорости передачи данных.

Наименование параметра Значение
Тема статьи: Методы доступа
Рубрика (тематическая категория) Технологии

Эффективность взаимодействия рабочих станций в рамках локальной компьютерной сети во многом определяется используемым правилом доступа к общей передающей среде в сетях с шинной и кольцевой топологии. Правило, с помощью которого организуется доступ рабочих станций к передающей среде, получило название метода доступа. Т.е., метод доступа - ϶ᴛᴏ способ ʼʼзахватаʼʼ передающей среды, способ определœения того, какая из рабочих станций может следующей использовать ресурсы сети. Но, кроме того, так же принято называть набор правил (алгоритм), используемых сетевым оборудованием, чтобы направлять поток сообщений через сеть, а также один из базовых признаков, по которым различают сетевое оборудование.

В силу большого разнообразия локальных сетей и требований к ним, нельзя назвать какой–либо универсальный метод доступа, эффективный во всœех случаях. Каждый из известных методов доступа имеет определœенные преимущества и недостатки.

Классификация методов доступа:

Рисунок 6.1 Методы доступа.

Учитывая зависимость отиспользуемого метода доступа локальные сети делятся на две группы. К первой группе относятся сети, в которых используются методы детерминированного доступа, ко второй – методы случайного доступа.

Методы доступа - понятие и виды. Классификация и особенности категории "Методы доступа" 2017, 2018.

  • - Методы доступа и протоколы передачи данных в локальных сетях

    В различных сетях существуют различные процедуры обмена данными между рабочими станциями. Эти процедуры называют протоколами передачи данных. Международный институт инженеров по электротехнике и радиоэлектронике (Institute of Electronics Engineers-IEEE) разработал стандарты для... .


  • - Методы доступа к передающей среде

    Передающая среда является общим ресурсом для всех узлов сети. Чтобы получить возможность доступа к этому ресурсу из узла сети, необходимы специальные механизмы - методы доступа. Метод доступа к передающей среде- метод, обеспечивающий выполнение совокупности правил, по... .



  • - Методы доступа к среде в беспроводных сетях

    Пропускная способность канала Существует множество факторов, способных исказить или повредить сигнал. Наиболее распространенные из них - помехи или шумы, представляющие собой любой нежелательный сигнал, который смешивается с сигналом, предназначенным для передачи... .


  • - Тема 19. Методы доступа

    Звезда Кольцо Рис. 4.1 Топология Кольцо Кольцо – это топология ЛВС, в которой каждая станция соединена с двумя другими станциями, образуя кольцо (рис.4.3). Данные передаются от одной рабочей станции к другой в одном направлении (по кольцу). Каждый ПК работает... .


  • - Методы доступа к шине

    Интерфейс RS-485 Интерфейс RS-422 Интерфейс RS-232C Передача данных Основными достоинствами промышленных сетей являются недорогие линии и надежность передачи данных. Данные передаются последовательно бит за битом, как правило, по...