Тарифы Услуги Сим-карты

Разъемы pci виды. Стандартные слоты и карты PCI. Разъемы для установки оперативной памяти или слоты

И PCI-X представляют собой щелевые разъемы, имеющие контакты с шагом 0,05 дюйма. Слоты расположены несколько дальше от задней панели, чем ISA/EISA или MCA. Компоненты карт PCI расположены на левой поверхности плат. По этой причине крайний PCI-слот обычно совместно использует посадочное место адаптера (прорезь на задней стенке корпуса) с соседним ISA-слотом. Такой слот называют разделяемым (shared slot), в него может устанавливаться либо карта ISA, либо PCI.

Карты PCI могут предназначаться для интерфейсных сигналов уровня 5 В и 3,3 В, а также быть универсальными. Слоты PCI имеют уровни сигналов, соответствующие питанию микросхем PCI-устройств системной платы (включая главный мост): либо 5 В, либо 3,3 В. Во избежание ошибочного подключения слоты имеют ключи, определяющие номинал напряжения. Ключами являются пропущенные ряды контактов 12, 13 и/или 50, 51:

  • для слота на 5 В ключ (перегородка) расположен на месте контактов 50, 51 (ближе к передней стенке корпуса); такие слоты отменены в PCI 3.0;
  • для слота на 3,3 В перегородка находится на месте контактов 12, 13 (ближе к задней стенке корпуса);
  • на универсальных слотах перегородок нет;
  • на краевых разъемах карт 5 В имеются ответные прорези только на месте контактов 50, 51; такие карты отменены в PCI 2.3;
  • на картах 3,3 В прорези только на месте контактов 12, 13;
  • на универсальных картах имеется оба ключа (две прорези).

Ключи не позволяют установить карту в слот с неподходящим напряжением питания. Карты и слоты различаются лишь питанием буферных схем, которое поступает с линий +V I/O:

  • на слоте «5 В» на линии +V I/O подается + 5 В;
  • на слоте «3,3 В» на линии +V I/O подается + (3,3–3,6) В;
  • на карте «5 В» буферные микросхемы рассчитаны только на питание + 5 В;
  • на карте «3,3 В» буферные микросхемы рассчитаны только на питание + (3,3– 3,6) В;
  • на универсальной карте буферные микросхемы допускают оба варианта питания и будут нормально формировать и воспринимать сигналы по спецификациям 5 или 3,3 В, в зависимости от типа слота, в который установлена карта (то есть от напряжения на контактах + V I/O).

На слотах обоих типов присутствуют питающие напряжения + 3,3, + 5, + 12 и –12 В на одноименных линиях. В PCI 2.2 определена дополнительная линия 3.3Vaux - «дежурное» питание + 3,3 В для устройств, формирующих сигнал PME# при отключенном основном питании.

ПРИМЕЧАНИЕ!

Выше приведены положения из официальных спецификаций PCI. На современных системных платах пока чаще всего встречаются слоты, по ключу являющиеся 5вольтовыми. Однако при этом напряжение на линиях +V I/O и уровни сигналов интерфейса являются 3,3-вольтовыми. В этих слотах нормально работают все современные карты с 5-вольтовыми ключами - их интерфейсные схемы работают при питании как 3,3, так и 5 В. Интерфейс с 5-вольтовым питанием может работать только на частоте до 33 МГц. «Настоящие» 5-вольтовые системные платы были только для процессоров 486 и первых моделей Pentium.

Наибольшее распространение получили 32-битные слоты, заканчивающиеся контактами A62/B62. 64-битные слоты встречаются реже, они длиннее и заканчиваются контактами A94/B94. Конструкция разъемов и протокол позволяют устанавливать 64-битные карты как в 64-битные, так и в 32-битные разъемы, и наоборот, 34-битные карты как в 32-битные, так и в 64-битные разъемы. При этом разрядность обмена будет соответствовать слабейшему компоненту.

Для сигнализации об установке карты и потребляемой ею мощности на разъемах PCI предусмотрено два контакта - PRSNT1# и PRSNT2#, из которых хотя бы один соединяется на карте с шиной GND. С их помощью система может определить присутствие карты в слоте и ее энергопотребление. Кодирование потребляемой мощности приведено в таблице; здесь приведены значения и для малогабаритных карт Small PCI.

Карты и слоты PCI-X по механическим ключам соответствуют 3,3-вольтовым картам и слотам; напряжение питания + V I/O для PCI-X Mode 2 устанавливается 1,5 В.

На рисунке изображены карты PCI в конструктиве PC/AT-совместимых компьютеров. Полноразмерные карты (Long Card, 107×312 мм) используются редко, чаще применяются укороченные платы (Short Card, 107×175 мм), но многие карты имеют и меньшие размеры. Карта имеет обрамление (скобку), стандартное для конструктива ISA (раньше встречались карты и с обрамлением в стиле MCA IBM PS/2). У низкопрофильных карт (Low Profile) высота не превышает 64,4 мм; их скобки также имеют меньшую высоту. Такие карты могут устанавливаться вертикально в 19-дюймовые корпуса высотой 2U (около 9 см).

Назначение выводов разъема карт PCI/PCI-X приведено в таблице ниже.

Ряд B Ряд A Ряд B Ряд A
-12В 1 TRST# GND/M66EN 1 49 AD9
TCK 2 +12 В GND/Ключ 5 В/MODE 2 50 GND/Ключ 5 В
GND 3 TMS GND/Ключ 5 В 51 GND/Ключ 5 В
TDO 4 TDI AD8 52 C/BE 0 #
+5 В 5 +5 В AD7 53 +3,3 В
+5 В 6 INTA# +3,3 В 54 AD6
INTB# 7 INTC# AD5 55 AD4
INTD# 8 +5 В AD3 56 GND
PRSNT1# 9 ECC 5 2 GND 57 AD2
ECC4 2 10 +V I/O AD1 58 AD0
PRSNT2# 11 ECC 3 2 +V I/O 59 +V I/O
GND/Ключ 3,3 В 12 GND/Ключ 3,3 В ACK 64 #/ ECC 1 60 REQ 64 #/ ECC 6
GND/Ключ 3,3 В 13 GND/Ключ 3,3 В +5 В 61 +5 В
ECC2 2 14 3.3Vaux 3 +5 В 62 +5 В
GND 15 RST# Конец 32-битного разъема
CLK 16 +V I/O Резерв 63 GND
GND 17 GNT# GND 64 C/BE 7 #
REQ# 18 GND C/BE 6 # 65 C/BE 5 #
+V I/O 19 PME# 3 C/BE 4 # 66 +V I/O
AD31 20 AD30 GND 67 PAR 64 /ECC 7 2
AD29 21 +3,3 В AD63 68 AD62
GND 22 AD28 AD61 69 GND
AD27 23 AD26 +V I/O 70 AD60
AD25 24 GND AD59 71 AD58
+3,3 В 25 AD24 AD57 72 GND
C/BE3# 26 IDSEL GND 73 AD56
AD23 27 +3,3 В AD55 74 AD54
GND 28 AD22 AD53 75 +V I/O
AD21 29 AD20 GND 76 AD52
AD19 30 GND AD51 77 AD50
+3.3 В 31 AD18 AD49 78 GND
AD17 32 AD16 +V I/O 79 AD48
C/BE 2 # 33 +3,3 В AD47 80 AD46
GND 34 FRAME# AD45 81 GND
IRDY# 35 GND GND 82 AD44
+3,3 В 36 TRDY# AD43 83 AD42
DEVSEL# 37 GND AD41 84 +V I/O
PCIXCAP 4 38 STOP# GND 85 AD40
LOCK# 39 +3,3 В AD39 86 AD38
PERR# 40 SMBCLK 5 AD37 87 GND
+3,3 В 41 SMBDAT 5 +V I/O 88 AD36
SERR# 42 GND AD35 89 AD34
+3,3 В 43 PAR/ECC0 AD33 90 GND
C/BE 1 # 44 AD15 GND 91 AD32
AD14 45 +3,3 В Резерв 92 Резерв
GND 46 AD13 Резерв 93 GND
AD12 47 AD11 GND 94 Резерв
AD10 48 GND Конец 64-битного разъема

Примечание!

1 - Сигнал M66EN определен в PCI 2.1 только для слотов на 3,3 В.
2 - Сигнал введен в PCI-X 2.0 (прежде был резерв).
3 - Сигнал введен в PCI 2.2 (прежде был резерв).
4 - Сигнал введен в PCI-X (в PCI - GND).
5 - Сигналы введены в PCI 2.3. В PCI 2.0 и 2.1 контакты A40 (SDONE#) и A41 (SBOFF#) использовались для слежения за кэшем; в PCI 2.2 они были освобождены (для совместимости на системной плате эти цепи подтягивались к высокому уровню резисторами 5 кОм).

На слотах PCI имеются контакты для тестирования адаптеров по интерфейсу JTAG (сигналы TCK, TDI, TDO, TMS и TRST#). На системной плате эти сигналы задействованы не всегда, но они могут и организовывать логическую цепочку тестируемых адаптеров, к которой можно подключить внешнее тестовое оборудование. Для непрерывности цепочки на карте, не использующей JTAG, должна быть связь TDI–TDO.

На некоторых старых системных платах позади одного из слотов PCI встречается разъем Media Bus, на который выводятся сигналы ISA. Он предназначен для размещения на карте PCI звукового чипсета, предназначенного для шины ISA. Большинство сигналов PCI соединяются по чистой шинной топологии, то есть одноименные контакты слотов одной шины PCI электрически соединяются друг с другом. Из этого правила есть несколько исключений:

  • сигналы REQ# и GNT# индивидуальны для каждого слота, они соединяют слот с арбитром (обычно - мостом, подключающим эту шину к вышестоящей);
  • сигнал IDSEL для каждого слота соединяется (возможно, через резистор) с одной из линий AD, задавая номер устройства на шине;
  • сигналы INTA#, INTB#, INTC#, INTD# циклически сдвигаются по контактам, обеспечивая распределение запросов прерываний;
  • сигнал CLK заводится на каждый слот индивидуально от своего выхода буфера синхронизации; длина подводящих проводников выравнивается, обеспечивая синхронность сигнала на всех слотах (для 33 МГц допуск ± 2 нс, для 66 МГц - ± 1 нс).

Отключите компьютер от электросети. Выключите его и обесточьте - иными словами, отключите системный блок от электричества, вытащив из него соответствующий кабель. Впрочем, затем вам нужно будет отключить и все прочие кабели, которые подключены к системному блоку. Если компьютер вы использовали недавно, то есть смысл несколько минут подождать, пока тот не остынет.

  • Примечание: иные PCI-карты требуют предварительной установки драйверов на устройство, на это в наши дни редкость. Тем не менее, заглядывать в документацию по PCI-карте все равно надо.

Откройте корпус компьютера. PCI-слоты расположены на материнской плате, а добраться до нее можно лишь одним способом: открыв корпус системного блока. Для этого придется снять боковую крышку (правую, если смотреть на заднюю панель корпуса), а та, как правило, сидит на винтах (иногда встречаются модели корпусов, где надо сперва снять верх, но там все тоже на винтах).

  • Как правило, для откручивания тех винтов отвертка не нужна, хотя изредка все же без нее не обойтись.
  • Не кладите корпус на ковер или аналогичные поверхности. Статическое электричество, созданное трением, убьет платы быстро, незаметно и на раз.
  • Найдите PCI-слоты. Прямоугольные слоты напротив прямоугольных же отверстий (прикрытых заглушками) на корпусе - это как раз то, что нужно. Скорее всего, один или даже 2 PCI-слота (те, что ближе всего к процессору) будут заняты видеокартой. Свободным будут, соответственно, 1-2 слота, если только у вас уже не установлены какие-то другие платы.

    • Если найти PCI-слоты что-то не получается, возьмите руководство к материнской плате, там все будет написано.
  • Снимите заглушку напротив пустого PCI-слота. Место напротив каждого слота прикрыто такой заглушкой, чтобы в корпус не попадала пыль. Не бойтесь, заглушки в наше время выламывать уже не надо, они, как правило, на зажимах, а то и на одном-единственном зажиме. Главное на этом этапе - не ошибиться с заглушкой.

    • Не снимайте лишние заглушки, чтобы в корпус не подала лишняя пыль (а она там вся - лишняя).
  • Заземлитесь. Помните, что мы говорили про статику? Запомните: прежде чем лезть во внутренности компьютера, надо заземлиться. Если не заземляться, то есть риск убить статикой платы.

    • Электростатический браслет, который можно купить в магазине товаров для компьютеров, прекрасно подойдет (его надо будет надеть на руку). Впрочем, заземлиться можно и иначе - коснувшись чего-нибудь металлического.
  • Достаньте плату из коробки. Вытаскивайте ее аккуратно, не трогайте ни контуры, вытравленные на плате, ни контакты.

    Вставьте карту. Итак, приставьте карту контактами к PCI-слоту и надавите на нее, чтобы та вошла в слот. Применяйте силу с умом, не сломайте ничего! Затем обязательно проверьте, до конца ли встала карта.

    Закрепите карту. Тем же крепежом, который вы снимали, чтобы вытащить заглушку, теперь закрепите карту, да понадежнее, чтобы та не шаталась!

    • Карта будет находиться в горизонтальном положении, поэтому вопрос закрепления является куда более важным, чем то может показаться на первый взгляд.
  • Закройте корпус компьютера. Верните боковую панель на место, не забудьте про болты. Затем поставьте компьютер обратно и подключите к нему все, что вы перед этим отключили. Впрочем, если вы подключили плату, которая, скажем, добавляет новые USB-порты, то пока в них ничего не подключайте.

    Если спросить, какой интерфейс следует использовать для твердотельного накопителя с поддержкой протокола NVMe, то любой человек (вообще знающий, что такое NVMe) ответит: конечно PCIe 3.0 x4! Правда, с обоснованием у него, скорее всего, возникнут сложности. В лучшем случае получим ответ, что такие накопители поддерживают PCIe 3.0 x4, а пропускная способность интерфейса имеет значение. Иметь-то имеет, однако все разговоры об этом начались только тогда, когда некоторым накопителям на некоторых операциях стало тесно в рамках «обычного» SATA. Но ведь между его 600 МБ/с и (столь же теоретическими) 4 ГБ/с интерфейса PCIe 3.0 x4 - просто пропасть, причем заполненная массой вариантов! А вдруг и одной линии PCIe 3.0 хватит, поскольку это уже в полтора раза больше SATA600? Масла в огонь подливают производители контроллеров, грозящиеся в бюджетной продукции перейти на PCIe 3.0 x2, а также тот факт, что у многих пользователей и такого-то нет. Точнее, теоретически есть, но высвободить их можно, лишь переконфигурировав систему или даже что-то в ней поменяв, чего делать не хочется. А вот купить топовый твердотельный накопитель - хочется, но есть опасения, что пользы от этого не будет совсем никакой (даже морального удовлетворения от результатов тестовых утилит).

    Но так это или нет? Иными словами, нужно ли действительно ориентироваться исключительно на поддерживаемый режим работы - или все-таки на практике можно поступиться принципами ? Именно это мы сегодня и решили проверить. Пусть проверка будет быстрой и не претендующей на исчерпывающую полноту, однако полученной информации должно оказаться достаточно (как нам кажется) хотя бы для того, чтобы задуматься... А пока вкратце ознакомимся с теорией.

    PCI Express: существующие стандарты и их пропускная способность

    Начнем с того, что́ представляет собой PCIe и с какой скоростью этот интерфейс работает. Часто его называют «шиной», что несколько неверно идеологически: как таковой шины, с которой соединены все устройства, нет. На деле имеется набор соединений «точка-точка» (похожий на многие другие последовательные интерфейсы) с контроллером в середине и присоединенными к нему устройствами (каждое из которых само по себе может быть и концентратором следующего уровня).

    Первая версия PCI Express появилась почти 15 лет назад. Ориентация на использование внутри компьютера (нередко - и в пределах одной платы) позволила сделать стандарт скоростным: 2,5 гигатранзакции в секунду. Поскольку интерфейс последовательный и дуплексный, одна линия PCIe (x1; фактически атомарная единица) обеспечивает передачу данных на скоростях до 5 Гбит/с. Однако в каждом направлении - лишь половина от этого, т. е. 2,5 Гбит/с, причем это полная скорость интерфейса, а не «полезная»: для повышения надежности каждый байт кодируется 10 битами, так что теоретическая пропускная способность одной линии PCIe 1.x составляет примерно 250 МБ/с в каждую сторону. На практике нужно еще передавать служебную информацию, и в итоге правильнее говорить о ≈200 МБ/с передачи пользовательских данных. Что, впрочем, на тот момент времени не только покрывало потребности большинства устройств, но и обеспечивало солидный запас: достаточно вспомнить, что предшественница PCIe в сегменте массовых системных интерфейсов, а именно шина PCI, обеспечивала пропускную способность в 133 МБ/с. И даже если рассматривать не только массовую реализацию, но и все варианты PCI, то максимумом были 533 МБ/с, причем на всю шину, т. е. такая ПС делилась на все подключенные к ней устройства. Здесь же 250 МБ/с (поскольку и для PCI приводится обычно полная, а не полезная пропускная способность) на одну линию - в монопольном использовании. А для устройств, которым нужно больше, изначально была предусмотрена возможность агрегирования нескольких линий в единый интерфейс, по степеням двойки - от 2 до 32, т. е. предусмотренный стандартом вариант х32 в каждую сторону мог передавать уже до 8 ГБ/с. В персональных компьютерах х32 не использовался из-за сложности создания и разведения соответствующих контроллеров и устройств, так что максимумом стал вариант с 16 линиями. Использовался он (да и сейчас используется) в основном видеокартами, поскольку большинству устройств столько не требуется. Вообще, немалому их количеству и одной линии вполне достаточно, но некоторые применяют с успехом и х4, и х8: как раз по накопительной теме - RAID-контроллеры или SSD.

    Время на месте не стояло, и около 10 лет назад появилась вторая версия PCIe. Улучшения касались не только скоростей, но и в этом отношении был сделан шаг вперед - интерфейс начал обеспечивать 5 гигатранзакций в секунду с сохранением той же схемы кодирования, т. е. пропускная способность удвоилась. И еще раз она удвоилась в 2010 году: PCIe 3.0 обеспечивает 8 (а не 10) гигатранзакций в секунду, но избыточность уменьшилась - теперь для кодирования 128 бит используется 130, а не 160, как ранее. В принципе, и версия PCIe 4.0 с очередным удвоением скоростей уже готова появиться на бумаге, но в ближайшее время в железе мы ее массово вряд ли увидим. На самом деле и PCIe 3.0 до сих пор в массе платформ используется совместно с PCIe 2.0, потому что и производительность последней для многих сфер применения просто... не нужна. А где нужна - работает старый добрый метод агрегации линий. Только каждая из них стала за прошедшие годы вчетверо быстрее, т. е. PCIe 3.0 х4 - это PCIe 1.0 x16, самый быстрый слот в компьютерах середины нулевых. Именно этот вариант поддерживают топовые контроллеры SSD, и именно его рекомендуется использовать. Понятно, что если такая возможность есть - много не мало. А если ее нет? Будут ли возникать какие-то проблемы, и если да, то какие? Вот с этим-то вопросом нам и предстоит разобраться.

    Методика тестирования

    Провести тесты с разными версиями стандарта PCIe несложно: практически все контроллеры позволяют использовать не только поддерживаемый ими, но и все более ранние. Вот с количеством линий - сложнее: нам хотелось непосредственно протестировать и варианты с одной-двумя линиями PCIe. Используемая нами обычно плата Asus H97-Pro Gamer на чипсете Intel H97 полного набора не поддерживает, но кроме «процессорного» слота х16 (который обычно и используется) на ней есть еще один, работающий в режимах PCIe 2.0 х2 или х4. Вот этой тройкой мы и воспользовались, добавив к ней еще и режим PCIe 2.0 «процессорного» слота, дабы оценить, есть ли разница. Все-таки в этом случае между процессором и SSD посторонних «посредников» нет, а вот при работе с «чипсетным» слотом - есть: собственно чипсет, фактически соединяющийся с процессором тем же PCIe 2.0 x4. Можно было добавить еще несколько режимов работы, но основную часть исследования мы все равно собирались провести на другой системе.

    Дело в том, что мы решили воспользоваться случаем и заодно проверить одну «городскую легенду», а именно поверие о полезности использования топовых процессоров для тестирования накопителей. Вот и взяли восьмиядерный Core i7-5960X - родственника обычно применяемого в тестах Core i3-4170 (это Haswell и Haswell-E), но у которого ядер в четыре раза больше. Кроме того, обнаруженная в закромах плата Asus Sabertooth X99 нам сегодня полезна наличием слота PCIe x4, на деле способного работать как х1 или х2. В этой системе мы протестировали три варианта х4 (PCIe 1.0/2.0/3.0) от процессора и чипсетные PCIe 1.0 х1, PCIe 1.0 х2, PCIe 2.0 х1 и PCIe 2.0 х2 (во всех случаях чипсетные конфигурации отмечены на диаграммах значком (c) ). Есть ли смысл сейчас обращаться к первой версии PCIe, с учетом того, что вряд ли найдется хоть одна плата с поддержкой только этой версии стандарта, способная загрузиться с NVMe-устройства? С практической точки зрения - нет, а вот для проверки априори предполагаемого соотношения PCIe 1.1 х4 = PCIe 2.0 х2 и подобных оно нам пригодится. Если проверка покажет, что масштабируемость шины соответствует теории, значит, и неважно, что нам не удалось пока получить практически значимые способы подключения PCIe 3.0 x1/х2: первый будет идентичен как раз PCIe 1.1 х4 или PCIe 2.0 х2, а второй - PCIe 2.0 х4. А они у нас есть.

    В плане ПО мы ограничились только Anvil’s Storage Utilities 1.1.0: разнообразные низкоуровневые характеристики накопителей она измеряет неплохо, а ничего другого нам и не нужно. Даже наоборот: любое влияние других компонентов системы является крайне нежелательным, так что низкоуровневая синтетика для наших целей безальтернативна.

    В качестве «рабочего тела» мы использовали Patriot Hellfire емкостью 240 ГБ . Как было установлено при его тестировании, это не рекордсмен по производительности, но его скоростные характеристики вполне соответствуют результатам лучших SSD того же класса и той же емкости. Да и более медленные устройства на рынке уже есть, причем их будет становиться все больше. В принципе, можно будет повторить тесты и с чем-нибудь более быстрым, однако, как нам кажется, необходимости в этом нет - результаты предсказуемы. Но не станем забегать вперед, а посмотрим, что же у нас получилось.

    Результаты тестов

    Тестируя Hellfire, мы обратили внимание на то, что максимальную скорость на последовательных операциях из него можно «выжать» лишь многопоточной нагрузкой, так что это тоже надо принимать во внимание на будущее: теоретическая пропускная способность на то и теоретическая, что «реальные» данные, полученные в разных программах по разным сценариям, будут больше зависеть не от нее, а от этих самых программ и сценариев - в том случае, конечно, когда не помешают обстоятельства непреодолимой силы:) Как раз такие обстоятельства мы сейчас и наблюдаем: выше уже было сказано, что PCIe 1.x x1 - это ≈200 МБ/с, и именно это мы и видим. Две линии PCIe 1.x или одна PCIe 2.0 - вдвое быстрее, и именно это мы и видим. Четыре линии PCIe 1.x, две PCIe 2.0 или одна PCIe 3.0 - еще вдвое быстрее, что подтвердилось для первых двух вариантов, так что и третий вряд ли будет отличаться. То есть в принципе масштабируемость, как и предполагалось, идеальная: операции линейные, флэш с ними справляется хорошо, так что интерфейс имеет значение. Флэш перестает справляться хорошо на PCIe 2.0 x4 для записи (значит, подойдет и PCIe 3.0 x2). Чтение «может» больше, но последний шаг дает уже полутора-, а не двукратный (каким он потенциально должен быть) прирост. Также отметим, что заметной разницы между чипсетным и процессорным контроллером нет, да и между платформами тоже. Впрочем, LGA2011-3 немного впереди, но на самую малость.

    Все ровно и красиво. Но шаблоны не рвет : максимум в этих тестах составляет лишь немногим больше 500 МБ/с, а это вполне по силам даже SATA600 или (в приложении к сегодняшнему тестированию) PCIe 1.0 х4 / PCIe 2.0 х2 / PCIe 3.0 х1 . Именно так: не стоит пугаться выпуску бюджетных контроллеров под PCIe х2 или наличию лишь такого количества линий (причем версии стандарта 2.0) в слотах М.2 на некоторых платах, когда больше-то и не нужно. Иногда и столько не нужно: максимальные результаты достигнуты при очереди в 16 команд, что для массового ПО не типично. Чаще встречается очередь с 1-4 командами, а для этого обойтись можно и одной линией самого первого PCIe и даже самым первым SATA. Впрочем, накладные расходы и прочее имеют место быть, так что быстрый интерфейс полезен. Однако излишне быстрый - разве что не вреден.

    А еще в этом тесте по-разному ведут себя платформы, причем с единичной очередью команд - принципиально по-разному. «Беда» вовсе не в том, что много ядер - плохо. Они тут все равно не используются, разве что одно, и не настолько, чтоб вовсю развернулся буст-режим. Вот и имеем разницу где-то в 20% по частоте ядер и полтора раза по кэш-памяти - она в Haswell-E работает на более низкой частоте, а не синхронно с ядрами. В общем, топовая платформа может пригодиться разве что для вышибания максимума «йопсов» посредством максимально многопоточного режима с большой глубиной очереди команд. Жаль только, что с точки зрения практической работы это совсем уж сферическая синтетика в вакууме:)

    На записи положение дел принципиально не изменилось - во всех смыслах. Но, что забавно, на обеих системах самым быстрым оказался режим PCIe 2.0 х4 в «процессорном» слоте. На обеих! И при многократных проверках/перепроверках. Тут уж поневоле задумаешься, нужны ли эти ваши новые стандарты или лучше вообще никуда не торопиться...

    При работе с блоками разного размера теоретическая идиллия разбивается о то, что повышение скорости интерфейса все же имеет смысл. Результирующие цифры такие, что хватило бы пары линий PCIe 2.0, но реально в таком случае производительность ниже, чем у PCIe 3.0 х4, пусть и не в разы. И вообще тут бюджетная платформа топовую «забивает» в куда большей степени. А ведь как раз такого рода операции в основном в прикладном ПО и встречаются, т. е. эта диаграмма - наиболее приближенная к реальности. В итоге нет ничего удивительного, что никакого «вау-эффекта» толстые интерфейсы и модные протоколы не дают. Точнее, переходящему с механики - дадут, но ровно такой же, какой ему обеспечит любой твердотельный накопитель с любым интерфейсом.

    Итого

    Для облегчения восприятия картины по больнице в целом мы воспользовались выдаваемым программой баллом (суммарным - по чтению и записи), проведя его нормирование по «чипсетному» режиму PCIe 2.0 x4: на данный момент именно он является наиболее массово доступным, поскольку встречается даже на LGA1155 или платформах AMD без необходимости «обижать» видеокарту. Кроме того, он эквивалентен PCIe 3.0 x2, который готовятся освоить бюджетные контроллеры. Да и на новой платформе AMD АМ4, опять же, именно этот режим как раз можно получить без влияния на дискретную видеокарту.

    Итак, что мы видим? Применение PCIe 3.0 x4 при наличии возможности является, безусловно, предпочтительным, но не необходимым: NVMe-накопителям среднего класса (в своем изначально топовом сегменте) он приносит буквально 10% дополнительной производительности. Да и то - за счет операций в общем-то не столь уж часто встречающихся на практике. Для чего же в данном случае реализован именно этот вариант? Во-первых, была такая возможность, а запас карман не тянет. Во-вторых, есть накопители и побыстрее, чем наш тестовый Patriot Hellfire. В-третьих, есть такие области деятельности, где «атипичные» для настольной системы нагрузки - как раз вполне типичные. Причем именно там наиболее критично быстродействие системы хранения данных или, по крайней мере, возможность сделать ее часть очень быстрой. Но к обычным персональным компьютерам это все не относится.

    В них, как видим, и использование PCIe 2.0 x2 (или, соответственно, PCIe 3.0 х1) не приводит к драматическому снижению производительности - лишь на 15-20%. И это несмотря на то, что потенциальные возможности контроллера в этом случае мы ограничили в четыре раза! Для многих операций и такой пропускной способности достаточно. Вот одной линии PCIe 2.0 уже недостаточно, поэтому контроллерам имеет смысл поддерживать именно PCIe 3.0 - и в условиях жесткой нехватки линий в современной системе это будет работать неплохо. Кроме того, полезна ширина х4 - даже при отсутствии поддержки современных версий PCIe в системе она все равно позволит работать с нормальной скоростью (пусть и медленнее, чем могло бы потенциально), если найдется более-менее широкий слот.

    В принципе, большое количество сценариев, в которых узким местом оказывается собственно флэш-память (да, это возможно и присуще не только механике), приводит к тому, что четыре линии третьей версии PCIe на этом накопителе обгоняют одну первой примерно в 3,5 раза - теоретическая же пропускная способность этих двух случаев различается в 16 раз. Из чего, разумеется, не следует, что нужно спешно бежать осваивать совсем медленные интерфейсы - их время ушло безвозвратно. Просто многие возможности быстрых интерфейсов могут быть реализованы лишь в будущем. Или в условиях, с которыми обычный пользователь обычного компьютера никогда в жизни непосредственно не столкнется (за исключением любителей меряться известно чем). Собственно, и всё.

    PCI Express vs. PCI
    Вести со звуковых фронтов

    Когда нам ждать звуковых карт на PCIe?

    Наши читатели задаются вопросом задержки выхода PCI Express звуковых карт. Цитата из форума: «На новых материнских платах обычные PCI слоты в дефиците, а встроенный звук слишком посредственный. Чего там производители тянут? Вроде времени прошло уже немало, где PCI Express карты

    Действительно, спецификация PCI Express была объявлена ещё в середине 2002 года. PCIe призвана сменить шину PCI, бывшую общепринятым стандартом для карт расширения в течение более чем десятка лет.

    Основные отличия PCI Express от PCI:

    1. PCI Express — шина последовательная, а не параллельная. Основные преимущества — снижение стоимости, миниатюризация, лучшее масштабирование, более выгодные электрические и частотные параметры (нет необходимости синхронизировать все сигнальные линии);
    2. Спецификация разделена на стек протоколов, каждый уровень которого может быть усовершенствован, упрощен или заменен, не сказываясь на остальных;
    3. В спецификации заложены возможности горячей замены карт;
    4. В спецификации заложены возможности создания виртуальных каналов, гарантирования пропускной полосы и времени отклика, сбора статистики QoS (Quality of Service);
    5. В спецификации заложены возможности контроля целостности передаваемых данных (CRC);
    6. В спецификации заложены возможности управления питанием.

    Реально из устройств на рынке доступны лишь видеокарты, где большая пропускная способность может найти наилучшее применение. Слот для видеокарты PCIe 16x имеет наибольшую скорость и подсоединен к северному мосту чипсета. Однако даже внедрение видеокарт прошло с большими проблемами. Из-за отсутствия спроса и весьма невысокого прироста производительности по сравнению с AGP производители понесли убытки. И это учитывая полное отсутствие альтернативы, в виду того что слот AGP в новых PCIe чипсетах был убран.

    Что говорить о периферийных слотах PCIe 1x для карт расширения, таких как звуковые карты, модемы, TV-тюнеры и прочее? Для них мало того, что присутствуют слоты PCI, но и отсутствуют потенциальные преимущества для перехода на новую шину. Стоит ли удивляться, что наученные опытом гигантов видеокарто-строения, производители периферии, имеющие более скромные бюджеты и возможности для маневра, не стали рисковать и бросаться выпускать PCIe карты. Всё же PCIe 16х для видео — это одно, а PCIe 1x для периферии — совсем другое. Все помнят судьбу изобретённых Intel неполноценных разъемов для звуковух/модемов/сетевых плат AMR, CNR, ACR.

    Мотивация пользователей ослаблена ещё одним фактором. Современные чипсеты и основанные на них материнские платы предлагают обширные встроенные возможности: AC"97/HDA-звук, 100 Мбит/1 Гбит сеть, RAID массив, 8 портов USB2.0. Что ещё нужно рядовому пользователю? Категория энтузиастов, скорее всего, озаботится наличием PCI слотов в материнской плате, чтобы не идти на бессмысленные траты. Особенно если это касается тех устройств, которым с запасом хватает PCI. Для звука есть также альтернатива — USB и FireWire устройства.

    Можно лишь пожалеть покупателей, в очередной раз купивших «мегагерцы» и оказавшихся в ситуации с отсутствием свободных слотов PCI. Но это неизбежная участь тех, кто бежит впереди паровоза и безоглядно покупает что-то «на будущее» — оплачивать прогресс из своего кошелька и наживать язву, чертыхаясь на проблемы, глюки и обвиняя крупные компании в мировом заговоре. Приверженцы PCIe поневоле живут надеждами на скорое появление периферии под новую шину.

    В сфере аудио у многих была надежда на появление под PCIe нового поколения звуковых карт Creative. Но разработка X-Fi под шину PCI длилась более 5 лет. По заявлению производителя, попытки адаптации под PCIe вызвали технические затруднения, в частности, с latency (время задержки звука на буферизацию и обработку), так что в ближайшее время выход карт под новую шину не ожидается. Что касается опасений в отношении упущенной прибыли от потенциальных продаж несуществующих пока PCIe карт, Creative не успевает отгружать в магазины карты X-Fi с шиной PCI. Уже несколько месяцев подряд новые карты в дефиците и раскупаются моментально.

    С технической стороны последовательная шина с той же частотой имеет большую latency, чем параллельная, так как отсутствуют служебные сигнальные линии, посему для звуковых задач, где важнее не пиковая скорость при пересылке гигабайт, а быстрый доступ на малых объемах, подходит хуже. К сожалению, в сети сложно найти тесты сравнения именно карт PCIe 1x vs. PCI. Рекламные заявления о превосходстве шины PCIe во всём сложно принимать на веру.

    Независимая энциклопедия Wikipedia говорит следующее: «PCIe посылает все управляющие команды, включая прерывания, по тем же линиям, что и данные. Последовательный протокол нельзя разделить на отдельные части, так что latency сравнима с PCI. <...> Спецификация PCIe называет эти чередующиеся данные «полосы данных» <...> такие данные не обязательно уменьшают latency на небольших пакетах данных, передаваемых по шине».

    Почему некоторые считают PCI морально устаревшим интерфейсом для звуковых карт, так и не удается понять. Из спецификаций ясно одно: существующие звуковые устройства не ограничены параметрами PCI. Обычно за недостатком аргументов, основанных на достоверных фактах, дискуссия перерастает в религиозную войну.

    Ведущий английский журнал профессионального звукового оборудования Sound on Sound в декабрьском номере 2005 года провел круглый стол с представителями проаудио производителей и задал им подобные вопросы. Мы публикуем часть дискуссии в русском переводе (полную версию на английском языке можно прочесть на сайте упомянутого журнала).

    Поддержка PCI Express

    PC со слотами PCI Express доступны на рынке более года, но пока ни одного аудио интерфейса PCI Express не анонсировано. Что вы думаете о способностях новой шины, ожидается ли разработка новых продуктов с поддержкой PCI Express?

    Матиас Карстенс, RME: Устройство шины PCI Express намного сложнее, чем в случае PCI. Без сомнений индустрии проаудио потребуется год или больше для исследований и производства образцов. Согласно некоторым источникам, рано или поздно готовые решения появятся.

    PCI имеет все необходимое для обычных нужд. PCI Express будет полезна только для профессионального мультитрекового использования, когда лимитирующим фактором будет шина. Например, при использовании нескольких карт HDSP MADI (каждая имеет 64 входа/выхода), ожидается, что PCI Express значительно поможет. Поэтому неудивительно, что у нас в планах портировать карту MADI на PCI Express, но точная дата пока неизвестна.

    Интересно отметить, что первые PCI Express Firewire карты сейчас доступны. Первые тесты показывают, что все работает как обычно. Это хороший знак, потому как в случае полной непригодности PCI Express (например, постоянные щелчки, несмотря на высокую пропускную способность) никто бы в аудио мире не удивился. Дальнейшие тесты с несколькими устройствами Firefaces, работающими на 192 кГц, будут необходимы для выявления предела использования PCI Express для аудио целей. Если новая шина подойдет лучше (а пока все Firewire интерфейсы основаны на PCI), внедрение PCI Express пойдет быстрее.

    Клаус Райтмюллер, ESI: Шина PCI Express как минимум такая же продвинутая и гибкая, как и PCI или PCI-X. Однако они несовместимы. Это на сегодня представляет большие затруднения для производителей железа. В любом случае, PCI Express, несомненно, в планах ESI Professional в будущих разработках.

    Мило Стрит, Echo: Мы пока оцениваем шину PCI Express и, вероятно, будем производить продукты с её поддержкой в будущем. Одно потенциальное преимущество над PCI заключается в качестве обслуживания и возможности управления полосой пропускания. В теории это может позволить иметь меньшую latency, чем PCI, что уже лучше, чем Firewire или USB.

    Брет Костин, M-Audio: PCI Express обещает увеличенную полосу пропускания, но наши пользователи пока вполне довольны продуктами на Firewire, USB and PCI. Малая часть из сегодняшних компьютеров имеет дополнительные PCI Express слоты для аудио, а поддержки PCI Express среди производителей звуковых чипов, кажется, пока нет.

    Фил Палмер, Edirol: У нас пока нет планов в отношении PCI Express. Edirol/Roland возглавил разработку USB-интерфейсов для PC и Mac. Мы и сейчас плотно работаем с Apple над Firewire продуктами. Мы чувствуем, что концентрация на этих технологиях — это лучший способ произвести передовые продукты. Протокол PCI Express пока еще слишком новый и, как и все высоко-скоростные технологии, скорее всего, изначально предназначен для определенного рода непрерывной однонаправленной передачи данных, что характерно для дисковых контроллеров и графических карт.

    Марио Мичел, Terratec: Звуковые PCI системы Terratec Producer всегда основаны на специализированных чипах контроллеров на шине PCI, таких как VIA1712(24). До сегодняшнего дня мы не слышали о стандартных чипах звуковых PCI Express контроллеров, поэтому у нас нет никаких планов. В любом случае, PCI Express нужно в основном для гигантского количества аудиоканалов (как, например, 64 канала у MADI). Мы не планируем выпускать такие устройства в ближайшем будущем.

    Питер Пек, Yamaha: Yamaha не может комментировать какие-либо новые разработки, которые ведутся. Мы сосредоточены на разработке продуктов mLAN, так как потребности наших пользователей более чем удовлетворены возможностями шины IEEE1394. В данный момент нет острой необходимости бросаться разрабатывать PCI Express, тогда как уже есть такое количество входов и выходов через mLAN, что превышает большинство запросов для работы со звуком. Однако… никогда не говори никогда!

    Джим Купер, MOTU: Как ведущий производитель звуковых интерфейсов, MOTU
    серьезно приглядывается ко всем новым интерфейсным технологиям.

    Смерть PCI карт

    С анонсом PCI Express и популярностью интерфейсов на USB и Firewire, многие музыканты начинают предполагать, что звуковые карты на PCI сродни вымирающему виду. Как вы думаете, сколько времени потребуется для полного исчезновения интерфейса PCI, как это произошло в случае с предыдущим стандартом ISA?

    Клаус Райтмюллер, ESI: На текущий момент, решения на шинах PCI и PCI-X наиболее рентабельны, как в высшем сегменте, где требуется множество аудио каналов (например, наша серия MaXiO), так и на рынке устройств начального уровня (такие продукты, как Juli@ или ESP1010). Шина PCI позволяет реализовать решения с наивысшим соотношением цена/качество, что пока невозможно для устройств на USB или Firewire по той же цене, или с тем же качеством. Даже по этой причине, мы продолжим видеть PCI аудиоустройства в течение продолжительного времени в будущем. В конечном счете, PCI Express заменит PCI и ещё более упрочит себя в роли решения, более предпочтительного, чем Firewire и уж точно USB.

    Джим Купер, MOTU: Текущие системы MOTU на PCI все ещё более производительны, чем Firewire или USB продукты, даже на шинах второго поколения Firewire B (800 Мбит/с) и USB 2.0 (480 Мбит/с). И наши продажи подтверждают это. PCI системы MOTU всё ещё весьма привлекательны для многих пользователей — в основном для high-end покупателей, которым нужно высочайшее качество АЦП/ЦАП, насколько только возможно, большое количество каналов, различные форматы интерфейсов, низкая latency и широкомасштабное межинтерфейсное микширование, предоставляемое нашей серией продуктов PCI424. Мы полагаем, что система PCI424 является самой лучшей системой, среди доступных в продаже.

    Брет Костин, M-Audio: Скорее, это будет двумя годами позже. Производительность звуковых карт ISA и PCI сильно отличалась, так как последние имели серьезные преимущества над ISA. Сегодняшние преимущества не так значительны, в результате продвижение идет недостаточно агрессивно для внедрения новой технологии.

    Марио Мичел, Terratec: Наши разработки сосредоточены на USB 1.1/2.0 и IEEE1394 Firewire 400/800. Мы не планируем новых PCI систем в ближайшем будущем, и будем обновлять драйвера и софт для существующих PCI продуктов ещё долгое время. Мы будем продавать наши PCI системы столько, сколько покупатели будут готовы их покупать, и я уверен, что стабильные продажи PCI устройств сохранятся в ближайшие 2-3 года.

    Фил Палмер, Edirol: Сложно предсказывать, но я полагаю, что PCI продукты сохранятся до тех пор, пока производители не перестанут устанавливать PCI слоты в компьютерах.

    Матиас Карстенс, RME: Как минимум 5 последующих лет. IMHO.

    Мило Стрит, Echo: Преимущества PCI Express над PCI для аудио не такие значительные, как это было в случае превосходства PCI над ISA. Наверное, PCI будет существовать, пока PCI слоты не исчезнут с материнских плат (это заняло несколько лет в случае ISA), так что покупаемые сегодня звуковые PCI интерфейсы останутся пригодными надолго. Однако можно ожидать, что большинство производителей со временем или перейдут на PCI Express, или будут поддерживать только последовательные интерфейсы.

    Питер Пек, Yamaha: По моему опыту, музыкантам больше нравится гибкость внешних устройств — с возможностью переносить железо на другой компьютер без вскрытия корпуса. Далее, с увеличением использования ноутбуков для музыкального продакшена, внешние устройства окажутся ещё более привлекательными для покупателя. Эта гибкость позволяет продлить срок службы внешнего устройства по сравнению с внутренними картами и отработать большие деньги. Это еще один фактор, который ставит шину PCI под удар.

    Спасибо Sound on Sound за интересное интервью. Совершенно недавно о первом появлении звукового PCIe интерфейса, правда, только под Mac.

    Digidesign предлагает две равноправные версии своей профессиональной аудио-продакшн системы Pro Tools|HD. Производитель стремится обеспечить совместимость с максимально возможным количеством компьютеров, оборудованных шинами PCI, PCI-X и PCIe, поэтому продолжает выпускать существующую версию под PCI и анонсирует новую версию под PCI Express.

    Предполагается выпуск Pro Tools|HD версии PCIe для нового ряда Apple Power Mac G5. Так как новые компьютеры Power Mac G5 имеют лишь три разъема PCIe, первоначально поддержка PCIe-версии Pro Tools|HD ограничено установкой максимум трех карт. Если требуется большее число карт, необходимо воспользоваться Digidesign Expansion|HD (стоимостью $2400), исполненном во внешнем 4U модуле адаптером расширения с шин PCI, PCI-X, PCIe на 6 слотов PCI.

    Варианта для платформы Windows в настоящий момент не имеется. Digidesign планирует протестировать и адаптировать PCIe систему для Windows-компьютеров, как только на этой платформе станет стандартом как минимум три свободных PCIe слота в каждой машине. До этого момента можно без проблем использовать PCI версию.

    PCIe-совместимые системы Pro Tools|HD имеют ту же цену, что и PCI решения. Digidesign предлагает специальную программу апгрейда Pro Tools LE или Pro Tools TDM до систем Pro Tools|HD на шинах PCI, PCIe. Также имеется программа замены PCI версии на PCIe.

    На сайте Digidesign приведен интересный FAQ, из которого можно понять, что: Digidesign не собирается прекращать выпуск PCI версии в обозримом будущем, PCIe решения требуют для работы программный пакет Digidesign Pro Tools HD версии 7.1, более трех карт PCIe установить никак не удастся, решений расширения PCIe-to-PCIe не существует.

    Напомним, система Pro Tools|HD в обоих вариантах с одной картой HD Core (PCI) или Accel Core (PCIe) обеспечивает 32 канала вход/выход, 96 аудио дорожек и предлагается по цене $7995. Две карты предлагают вдвое более высокую функциональность по цене $10995. Три карты обойдутся в $13995.

    Поздравляем поклонников шины PCIe — лед тронулся!

    Участник круглого стола Sound On Sound, Матиас Карстенс из RME, после анонса Pro Tools|HD PCIe так прокомментировал ситуацию: «Естественно мы добавим PCI Express версии существующих продуктов в нашу линейку». По его мнению, первые анонсы должны состояться в следующем году на Frankfurt Musikmesse. «Используя последние технологии FPGA , мы сможем полностью реализовать все существующие наработки RME. Например, HDSP 9652, где технология FPGA полностью воплощена в текущей модели. Эта карта не имеет Steady Clock, и также отсутствует инверсия фазы и опциональное усиление +6dB в микшере Total Mix. В версии PCI Express мы можем добавить эти функции. Мы также сделаем PCI Express версию выпускаемой интерфейсной HDSP карты для пользователей Digiface и Multiface, но она будет функционально идентична PCI модели, для совместимости с внешними устройствами».

    Пока что у RME нет планов предложить пользователям возможность апгрейда PCI карт на PCI Express, и Матиас отметил, что анонс PCIe продукта для платформы Apple не повлиял на планы его компании по продвижению PCI Express продуктов на рынок. Причина, почему другие производители не анонсируют PCI Express карты, может быть в том, что нет сопутствующих решений для внедрения новой шины, таких как мосты «PCIe-to-PCI», или готовые чипы контроллеров, как Via Envy24, которые повсеместно используются в массовых PCI звуковых картах и интерфейсах. А подобных решений нет из-за отсутствия на них спроса. Получаем замкнутый круг, разомкнуть который, очевидно, под силу лишь лидерам рынка, остальные подтянутся. Слово за производителями чипов.

    Привет всем, кого интересует то, что такое PCI разъём. Думаю, таких много, потому что этот стандарт используется до сих пор, несмотря на выход современных аналогов. Если ваш компьютер уже не молод, скорее всего, вы тоже имеете дело с PCI.

    Эта статья поможет вам разобраться в его особенностях и отличиях от модификации «Express», о которой, быть может, вы слышали, так как она сейчас широко распространена.

    Знакомство с термином

    Упомянутая выше аббревиатура расшифровывается как Peripheral component interconnect, что в дословном переводе с английского означает взаимосвязь периферийных компонентов. Хоть это словосочетание не отображает физическое воплощение PCI, все же выбрано не безосновательно.

    Как вы понимаете, «мозг» компьютера включает в себя разные устройства (аудио-, видео-, сетевую плату и пр.), т. н. периферийные компоненты. Большинство из них подсоединятся к материнской плате.

    Для взаимосвязи между девайсами и материнской используются специальные электронные магистрали, проще говоря, шины. Таковой как раз и является PCI. На деле это длинный слот расширения, расположенный на материнке, куда может вставляться видеокарта, и пр.

    О контроллере

    Есть еще такое понятие как PCI-контроллер Simple communications или Management Engine Interface, который обеспечивает взаимодействие драйверов установленных на компе программ и дров материнки. Иногда после переустановки системы в Диспетчере устройств рядом с этим пунктом загорается желтый треугольник.

    В этом случае следует скачать драйвера на официальном сайте Intel или другом надежном ресурсе и установить их. Ведь данный интерфейс контролирует температуру, вращение кулеров, режимы сна и пр.

    История

    За создание и поддержку интерфейса отвечает предприятие PCI Special Interest Group, основанное в 1992 году под началом корпорации Intel. Тогда же вышел в свет первый его вариант, выпущенный специально для реализации функционала процессоров Pentium, Pentium Pro и 486.

    В следующем году появилась следующая модель 2.0, а еще через 3 года - 2.1, которая была на пике популярности. Правда, через 2 года компьютерная графика вышла на новый уровень, и PCI перестала отвечать его требованиям. Тогда видеокарты стали подключать через новый на тот момент разъем .

    Тем не менее, рассматриваемый нами интерфейс не утрачивал своих позиций вплоть до 2005 года. За это время вышло множество его поколений, но не думаю, что вы хотите забивать ими голову. Тем более что для рядового пользователя отличия между ними незначительны или непонятны.

    Характеристики PCI

    Основные параметры порта, о которых стоит знать:

    • Частота - 33,33 или 66,66 мегагерц, пересылка информации осуществляется синхронно;
    • Разрядность - как обычно, 32 либо 64 бита;
    • Адресное пространство памяти и портов ввода-вывода одинаковое - 4 байта (32 бита);
    • Другое пространство адресов (конфигурационное) в расчете на 1 функцию составляет 256 байт;
    • Максимальная скорость модели на 32 бита и 33 МГц составляет 133 мегабайта за секунду;
    • Напряжение - 3,3 или 5 Вольт;
    • Имеется функция Multiply bus master, то есть несколько контроллеров винчестеров могут действовать на одной шине сразу.

    Разница с PCI-Express

    Это современная модификация предшественника. В ее основе лежит программная модель PCI, однако существенно повышена производительность. Большинство устройств в настоящее время выпускаются именно с этим интерфейсом.


    Первое отличие между ними состоит в том, что устаревший вариант - параллельный, а новый - последовательный. Это значит, что во втором случае действует двунаправленное соединение, которое может включать в себя несколько линий (от x1 до x32). Чем их больше, тем выше скорость работы.

    Как бы там ни было, пропускная способность современной шины будет выше, чем у устаревшего собрата. Для сравнения: у PCI с частотой 66 МГц она составляет 266 Мб/с, а у PCI-E 3-го поколения на 16 линий - 32 Гб/с.

    Теперь вам известны основные аспекты о PCI.

    Советую не останавливаться на этой информации и получить новые знания из других статей нашего блога.