Тарифы Услуги Сим-карты

Основные этапы построения информационной модели. Моделирование в информатике - это что такое? Виды и этапы моделирования

По мере развития человечества происходит структуризация и оптимизация наличных у нас данных и возможностей их использования. При этом ключевой является информационная модель. На сегодняшний день она является существенно недооценённым инструментов планирования. Чтобы сломать эту тенденцию, необходимо рассказывать аудитории о её возможностях, чем и займётся автор этой статьи.

Что называют информационной моделью? Описание и структура

Так называют модель объекта. Она представлена в виде информации, что описывает существенные для конкретного случая параметры и переменные, связи между ними, а также входы и выходы для данных, при подаче на которые можно влиять на получаемый результат. Их нельзя увидеть или потрогать. В целом они не имеют материального воплощения, поскольку строятся на использовании одной информации. Сюда относятся данные, что характеризуют состояния объекта, существенные свойства, процессы и явления, а также связь с внешней средой. Это процесс называется описанием информационной модели. Это самый первый шаг проработки. Полноценной информационной моделью является обычно сложная разработка, которая может иметь много структур, что в рамках статьи сведены в три основных типа:

  1. Описательная. Сюда относятся модели, которые создаются на естественных языках. Они могут иметь любую произвольную структуру, которая удовлетворит составляющего их человека.
  2. Формальная. Сюда относят модели, которые создаются на формальных языках (научных, профессиональных или специализированных). В качестве примеров можно привести такое: все виды таблиц, формул, граф, карт, схемы и прочих подобных структурных формаций.
  3. Хроматические. Сюда относят модели, которые были созданы с применением естественного языка семантики цветовых концептов, а также их онтологических предикатов. Под последними понимают возможность распознавания значений цветовых канонов и смыслов. В качестве примера хроматических моделей можно навести те, что были построены с использованием соответствующей теоретической базы и методологии.

Как видим, основной составляющей являются данные, их структура и процедура обработки. Развивая мысль, можно дополнить, что информационная модель является схемой, в которой описана суть определённого объекта, а также все необходимые для его исследования процедуры. Для более полного описания характеристик используют переменные. Они замещают атрибут цели, которая прорабатывается. И здесь имеет значительную важность структура информационной модели.

Давайте приведём пример. Описание веника и инструкция по его использованию является информационной моделью для уборщика. Но это не всё. Описание и технологический процесс изготовления веника, изложений в соответствующей документации, является информационной моделью и алгоритмом, по которому его делает производитель. Как видите, отражаются наиболее важные свойства объекта. В действительности, конечно, информационная модель – это лишь приближенное описание. В результате можно сказать, что эти данные, с помощью которых осуществляется познание реальности, являются относительно истинными.

Общая классификация

Какие информационные модели существуют? Классификация сформирована на основе самого определения:

  1. Зависимо от количества значений переменных они делятся на динамические и статистические.
  2. По способу описания бывают знаковыми, натурными, формализованными.
  3. Зависимо от особенностей конструирования переменных делятся на графовые, графические, идеографические, текстовые, алгоритмические, табличные.

Виды информационных моделей

Исследованию поддаётся как физический, так и идеальный объект анализа. Это приводит к тому, что существование одинаковых информационных моделей, к которым можно подойти с тем же самых набором инструментариев, нет. Поэтому приходится использовать отдельные подходы и что-то особенное, что позволит изучить или исследовать предметную область. На основании таких суждений принято выделять три виды информационных моделей:

  1. Математические. Благодаря им изучают явления и процессы, что являются представленными в виде наиболее общих математических закономерностей или абстрактных объектов, которых достаточно, чтобы выразить законы природы или внутренние свойства наблюдаемого. Также применяются для подтверждения правила логических рассуждений.
  2. Компьютерные. Используется для описания совокупности переменных, что представлены абстрактными типами данных и поданы в соответствии с выдвигаемыми требованиями среды обработки ЭОМ.
  3. Материальные. Так называют предметное отражение объекта, сохраняющее геометрические и физические свойства (глобус, игрушки, манекены). Также к материальным моделям относят химические опыты.

Типы информационных моделей

Поскольку они являются совокупностью информации, то часто характеризуют состояние и свойства объекта, явления, процесса и их взаимодействие с окружающим их миром. Зависимо от того, как они представлены и выражены, выделяют два типы информационных моделей:

  1. Вербальные. Они создаются как результат умственной деятельности человека и представляются в словесной форме или при помощи жестикуляции.
  2. Знаковые. Для их выражения используются рисунки, схемы, графики, формулы.

Что необходимо для их создания?

Информация, причём как можно более точная. Чем больше предоставленные данные отвечают реальным показателем, тем эффективней применяется модель на практике. Чтобы разработать модель, сначала проводится сбор всей возможной информации. Она отсеивается и остаётся та, что предоставляет наибольшую ценность для исследователя. Проводится анализ предоставляющей интерес информации, на основании которого она структурируется. И зависимо от целей исследователь из отдельных блоков данных строит необходимую модель. Потом проводится поиск ошибок и ликвидация противоречий. Когда этот шаг закончен, то разработка информационной модели тоже считается завершённой.

Где применяются информационные модели?

Везде. Только такое обозначение не всегда применяется на практике из-за его излишней научности. Инструкции для компьютеров, телевизоров, телефонов, использованных бутылей воды, автомобильных аккумуляторов – вот лишь отдельные примеры. Информационной моделью является и технология производства комбайнов, тракторов, самолётов, грузовиков, прицепов, строений. Как видите, для неё есть применение и в быту, и в промышленности. Но сам термин «информационная модель» больше применяется в последней сфере из-за того, что здесь протекают более сложные процессы с участием большого количества людей.

Пример создания

Давайте попробуем детально проанализировать, что такое информационная модель. Это не так сложно, как может показаться. В качестве примера возьмём клавиатуру. Можно определить два направления относительно пользователя: описание и вопросы настройки. Во-первых, производительно пишет в аннотации, какой это хороший продукт, что он может, как с ним удобно работать. Анализирует передовые технологии, применённые при её создании, экологические преимущества и прочие подобные вещи. Главное – понравиться. Но лгать всё же не надо, поскольку это будет иметь нежелательные последствия.

Во-вторых, прорабатываются вопросы настройки. Можно ответить на них с помощью картинок на листке-вкладыше, где будет изображено, куда вставить разъём клавиатуры в компьютер. Также может прилагаться небольшой ремонтный комплект, инструкция по его использованию, особенности построение устройства, как его следует разбирать в случае возникновения определённых проблем – и ряд других вопросов, которые можно только продумать и дать ответ пользователям на них.

Особенности

Чем больше данных, тем описание информационной модели будет сложнее. Это две стороны медали: следует выбирать между точностью и функциональностью. Чтобы не перегибать палку или избежать слабой проработки вопроса следует заранее очертить задачи для проработки и глубину их разбора. Следует позаботиться обо всех имеющихся моментах, поскольку любая проблема, допущенная на этом этапе, в будущем только добавит работы и необходимость затраты денежных средств на устранение конфликта.

Изучение аспектов информационного моделирования

С научной точки зрения этим вопросом занимается кибернетика. Поэтому, если у вас есть желание углубить свои познания в этой области, запаситесь несколькими недавно вышедшими книгами и внимательно изучите их. Хотя можно и по-другому осведомиться, что такое простейшие информационные модели. Информатика может дать необходимый базис, но для получения всей полноты знаний нужна именно кибернетика. В её рамках можно будет ознакомиться не только с детализированными принципами моделирования, но и узнать про существующие разработки, а также возможности их применения.

Заключение

Информационная модель – это важный и полезный инструмент, если правильно его использоваться. При создании сложных систем (например, программного обеспечения) он позволяет проработать основные технические вопросы и устранить возможные не состыковки. В рамках статьи были размещены знания про то, какие информационные модели есть, как они создаются и другая полезная информация, что пригодится на практике.

На протяжении своей истории человечество использовало различные способы и инструменты для создания информационных моделей. В настоящее же время информационные модели обычно строятся и исследуются с использованием современных компьютерных технологий .

Компьютерное моделирование является одним из эффективных методов изучения сложных систем. Часто компьютерные модели проще и удобнее исследовать, они позволяют проводить вычислительные эксперименты, реальная постановка которых затруднена или может дать непредсказуемый результат.

Использование компьютера для исследования информационных моделей различных объектов и систем позволяет изучить их изменения в зависимости от значения тех или иных параметров.

Процесс разработки моделей и их исследования на компьютере можно разделить на несколько основных этапов:

1. Постановка задачи. Построение описательной информационной модели (выделение существенных параметров).

2. Создание формализованной модели (запись формул).

3. Построение компьютерной модели.

4. Компьютерный (вычислительный) эксперимент.

5. Анализ полученных результатов и корректировка исследуемой модели.

На первом этапе исследования объекта или процесса обычно строится описательная информационная модель. Важным моментом на этом этапе является определение цели моделирования. От выбранной цели зависит, какие характеристики исследуемого объекта считать существенными, а какие отбросить. В соответствии с поставленной целью может быть подобран инструментарий, определены методы решения задачи, формы отображения результатов.

На втором этапе создается формализованная модель, то есть описательная информационная модель записывается с помощью какого-либо формального языка. В такой модели с помощью формул, уравнений, неравенств и пр. фиксируются формальные соотношения между начальными и конечными значениями свойств объектов, а также накладываются ограничения на допустимые значения этих свойств. Кроме того, в соответствии с поставленной целью необходимо выделить параметры, которые известны (исходные данные) и которые следует найти (результаты).

На третьем этапе необходимо формализованную информационную модель преобразовать в компьютерную на понятном для компьютера языке.

Существуют два принципиально различных пути построения компьютерной модели :

Создание алгоритма решения задачи и его кодирование на одном из языков программирования;

Формирование компьютерной модели с использованием одного из приложений (электронных таблиц, СУБД и т. д.).

В процессе создания компьютерной модели полезно разработать удобный графический интерфейс, который позволит визуализировать формальную модель, а также реализовать интерактивный диалог человека с компьютером на этапе исследования модели.


Четвертый этап исследования информационной модели состоит в проведении компьютерного эксперимента.

Эксперимент - это опыт, который производится с объектом или моделью. Он заключается в выполнении некоторых действий и определении, как реагирует экспериментальный образец на эти действия.

Этап проведения компьютерного эксперимента включает две стадии:

Составление плана эксперимента;

Проведение исследования.

План эксперимента должен четко отражать последовательность работы с моделью. Первым пунктом такого плана всегда является тестирование модели. Тестирование - процесс проверки правильности построения модели. Для проверки правильности построения модели используется набор исходных данных, для которых конечный результат заранее известен. После тестирования, когда появляется уверенность в правильности построенной модели, можно переходить непосредственно к проведению исследования.

В плане должен быть предусмотрен эксперимент или серия экспериментов, удовлетворяющих целям моделирования. Каждый эксперимент должен сопровождаться осмыслением итогов, что служит основой анализа результатов моделирования и принятия решений.

Пятый этап состоит в анализе полученных результатов и корректировке исследуемой модели. Если результаты тестирования и экспериментов не соответствуют целям поставленной задачи, значит, на предыдущих этапах были допущены ошибки. Это может быть либо неправильная постановка задачи, либо слишком упрощенное построение информационной модели, либо неудачный выбор метода или среды моделирования, либо нарушение технологических приемов при построении модели. Если такие ошибки выявлены, то требуется корректировка модели, то есть возврат к одному из предыдущих этапов. Процесс повторяется до тех пор, пока результаты эксперимента не будут отвечать целям моделирования. Конечная цель моделирования - принятие решения, которое должно быть выработано на основе всестороннего анализа результатов моделирования.

Цель урока: организовать совместную учебную деятельность для формирования и развития исследовательских навыков учащихся; создать условия для освоения технологии моделирования.

Должны знать: основные этапы разработки и исследования моделей на компьютере.

Должны уметь: построить модель объекта или процесса согласно поставленной цели.

План работы

  1. Проверка домашнего задания.
  2. Объяснение новой темы.

Использование компьютера для исследования информационных моделей различных объектов и систем позволяет изучить их изменения в зависимости от значения тех или иных параметров. Процесс разработки моделей и их исследования на компьютере можно разделить на несколько основных этапов.

На первом этапе исследования объекта или процесса обычно строится описательная информационная модель . Такая модель выделяет существенные с точки зрения целей проводимого исследования параметры объекта, а несущественными параметрами пренебрегает.

На втором этапе создается формализованная модель, то есть описательная информационная модель записывается с помощью какого-либо формального языка. В такой модели с помощью формул, уравнений, неравенств и пр. фиксируются формальные соотношения между начальными и конечными значениями свойств объектов, а также накладываются ограничения на допустимые значения этих свойств.

Однако далеко не всегда удается найти формулы, явно выражающие искомые величины через исходные данные. В таких случаях используются приближенные математические методы, позволяющие получать результаты с заданной точностью.

На третьем этапе необходимо формализованную информационную модель преобразовать в компьютерную модель , то есть выразить ее на понятном для компьютера языке. Существуют два принципиально различных пути построения компьютерной модели:

1) построение алгоритма решения задачи и его кодирование на одном из языков программирования;
2) построение компьютерной модели с использованием одного из приложений (электронных таблиц, СУБД и пр.).

В процессе создания компьютерной модели полезно разработать удобный графический интерфейс, который позволит визуализировать формальную модель, а также реализовать интерактивный диалог человека с компьютером на этапе исследования модели.

Четвертый этап исследования информационной модели состоит в проведении компьютерного эксперимента. Если компьютерная модель существует в виде программы на одном из языков программирования, ее нужно запустить на выполнение и получить результаты.

Если компьютерная модель исследуется в приложении, например в электронных таблицах, можно провести сортировку или поиск данных, построить диаграмму или график и так далее.

Пятый этап состоит в анализе полученных результатов и корректировке исследуемой модели. В случае различия результатов, полученных при исследовании информационной модели, с измеряемыми параметрами реальных объектов можно сделать вывод, что на предыдущих этапах построения модели были допущены ошибки или неточности. Например, при построении описательной качественной моделимогут быть неправильно отобраны существенные свойства объектов, в процессе формализации могут быть допущены ошибки в формулах и так далее. В этих случаях необходимо провести корректировку модели, причем уточнение модели может проводиться многократно, пока анализ результатов не покажет их соответствие изучаемому объекту.

Вопросы для размышления

1. В каких случаях могут быть опущены отдельные этапы построения и исследования модели? Приведите примеры создания моделей в процессе обучения.

Практическая работа

На сегодняшнем уроке я предлагаю вам построить информационную модель качеств своей личности и исследовать её с целью определения профессиональных предпочтений.

(Раздаточный материал (Приложение 1) выдан учащимся в начале урока, на “Рабочем столе” компьютера находится Таблица 2)

1. Тип мышления

Все люди делятся на “левополушарных” (Л) и “правополушарных” (П). У “левополушарных” преобладает логический тип мышления. Они, в общем-то, оптимисты и считают, что большую часть своих проблем решат самостоятельно.

Если Вы “левополушарный”, то, как правило, без особого труда вступаете в контакт с людьми. В работе и житейских делах больше полагаетесь на расчет, чем на интуицию. Испытываете больше доверия к информации, полученной из печати, чем к собственным впечатлениям.

Вам легче даются виды деятельности, требующие логического мышления. Если профессия, к которой вы стремитесь, требует именно логических способностей, то вам повезло. Вы можете стать хорошим математиком, преподавателем точных наук, конструктором, организатором производства, программистом ЭВМ, пилотом, водителем, чертежником... продолжите этот список сами.

2. “Правополушарный” – это означает, что вы человек художественного склада. Представитель этого типа склонен к некоторому пессимизму. Предпочитаете полагаться больше на собственные чувства, чем на логический анализ событий, и при этом зачастую не обманывае тесь. Не очень общителны, но зато можете продуктивно работать даже в неблагоприятных условиях (шум, различные помехи и т. п.). Вас ожидает успех в таких областях деятельности, где требуются способности к образному мышлению, – художник, актер, архитектор, врач, воспитатель.

3. Перед человеком, в равной степени сочетающим в себе признаки логического и художественного мышления, открывается широкое поле деятельности. Зоны его успеха там, где требуется умение быть последовательным в работе и одновременно образно, цельно воспринимать события, быстро и тщательно продумывать свои поступки даже в экстремальной ситуации. Управленец и испытатель сложных технических систем, лектор и полководец – все эти профессии требуют гармоничного взаимодействия противоположных типов мышления.

Свою принадлежность к художникам или мыслителям можно выявить и по некоторым биологическим признакам. Проведем несложный экспресс-анал из.

А. Переплетите пальцы рук. Сверху оказался большой палец левой руки (Л) или правой (П)? Запишите результат.

Б. Сделайте в листе бумаги небольшое отверстие и посмотрите сквозь него двумя глазами на какой-либо предмет. Поочередно закрывайте то один, то другой глаз. Предмет смещается, если вы закрываете правый глаз или левый?

В. Станьте в “позу Наполеона”, скрестив руки на груди. Какая рука оказалась сверху?

Г. Попробуйте изобразить “бурные аплодисменты”. Какая ладонь сверху?

Теперь посмотрим, что у вас получилось.

ПППП – обладатель такой характеристики консервативен, предпочитает общепринятые формы поведения.

ПППЛ – темперамент слабый, преобладает нерешительность.

ППЛП – характер сильный, энергичный, артистический. При общении с таким человеком не помешают решительность и чувство юмора.

ППЛЛ – характер близок к предыдущему типу, но более мягок, контактен, медленнее привыкает к новой обстановке. Встречается довольно редко.

ПЛПП – аналитический склад ума, основная черта – мягкость, осторожность. Избегает конфликтов, терпим и расчетлив, в отношениях предпочитает дистанцию.

ПЛПЛ – слабый тип, встречается только среди женщин. Характерны подверженность различным влияниям, беззащитность, но вместе с тем способность идти на конфликт.

ПЛЛП – артистизм, некоторое непостоянство, склонность к новым впечатлениям. В общении смел, умеет избегать конфликтов и переключаться на новый тип поведения, Среди женщин встречается примерно вдвое чаще, чем среди мужчин.

ПЛЛЛ – а этот тип, наоборот, более характерен для мужчин. Отличается независимостью, непостоянством и аналитическим складом ума.

ЛППП – один из наиболее распространенных типов. Он эмоционален, легко контактирует практически со всеми, Однако недостаточно настойчив, подвержен чужому влиянию.

ЛППЛ – похож на предыдущий тип, но еще менее настойчив, мягок и наивен. Требует особо бережного отношения к себе.

ЛПЛП – это самый сильный тип характера. Настойчив, энергичен, трудно поддается убеждению. Несколько консервативен из-за того, что нередко пренебрегает чужим мнением.

ЛПЛЛ – характер сильный, но ненавязчивый. Внутренняя агрессивность прикрыта внешней мягкостью. Способен к быстрому взаимодействию, но взаимопонимание при этом отстает.

ЛЛПП – характерны дружелюбие, простота, некоторая разбросанность интересов.

ЛЛПЛ – простодушие, мягкость, доверчивость – вот его основные черты. Очень редкий тип, у мужчин практически не встречается.

ЛЛЛП – эмоциональность в сочетании с решительностью приводит к непродуманным поступкам. Энергичен.

ЛЛЛЛ – обладает способностью по-новому взглянуть на вещи. Ярко выраженная эмоциональность сочетается с индивидуализмом, упорством и некоторой замкнутостью.

Внесите, пожалуйста, в таблицу №2 , находящуюся на “Рабочем столе” полученные характеристики.

Как вы заметили, сочетание ЛЛЛЛ соответствует художественному типу, а ПППП присуще мыслителям. Но поскольку в чистом виде эти типы встречаются нечасто, то остальные сочетания в какой-то мере отражают существующее многообразие психологических структур. Впрочем, предложенная классификация – лишь первый шаг к познанию самого себя. Сделаем следующий.

2. Контактность

Не так уж много на земле профессий, позволяющих обходиться без общения с людьми. Поэтому вы поступите правильно, если обратите внимание на такие качества, как общительность, контактность. Они полезны не только обаятельным кинозвездам, но и каждому, кто хочет с толком использовать свой дар речи. Поэтому поставим вопрос таким образом: куда вы обращены – к людям или к себе? С кем бы вы предпочли общаться – с самим собой или с другими?

Если хотите определить свой психологический тип по отношению к окружающим, то оцените приведенные высказывания в баллах от 0 до 4, затем подсчитайте сумму.

  1. Я легко сближаюсь с людьми.
  2. У меня много знакомых, с которыми я охотно встречаюсь.
  3. Я разговорчивый человек.
  4. Я непринужденно чувствую себя с незнакомыми людьми
  5. Мне стало бы неприятно, если бы надолго исчезла возможность общения. -
  6. Когда мне надо что-то узнать, я предпочитаю спросить, а не копаться в книгах.
  7. Мне удается оживить скучную компанию.
  8. Я говорю быстро.
  9. Когда я надолго оторван от людей, мне очень хочется поговорить с кем-нибудь.

1–12 баллов. Интроверт. Обращенный в себя, он с трудом вступает в контакт, в компании способен нагнать на всех тоску. Такой человек ориентирован в основном на собственные чувства, сдержан, застенчив, общению предпочитает книгу. В решениях серьезен, эмоциям не доверяет, любит порядок. Пессимистичен, и поэтому вряд ли из него получится хороший педагог или организатор. По темпераменту обычно флегматик или меланхолик.

13–24 балла. Амбаверт. Для него характерны спокойные, ровные отношения с людьми, ответственность за свои поступки. Именно такими качествами обладают, как правило, лучшие руководители, педагоги – словом, все, чья работа требует умения общаться с людьми.

25–36 баллов. Экстраверт. Словоохотливый, общительный оптимист, любит каверзные вопросы, острые шутки. Общение с кем бы то ни было для него не проблема, и тут он прекрасный импровизатор. Все у него получается легко и непринужденно. Но не менее легко относится и к собственным обязательствам, и поэтому хозяином своего слова его можно назвать лишь с иронией. Несдержан, потому что не считает нужным контролировать эмоции и чувства. Такой человек обычно холерик или сангвиник.

Приложение 2 ), находящуюся на “Рабочем столе” полученные характеристики.

3. Склонности и предпочтения

Специальные методики помогают выявлять способности и склонности человека быстро и в широком диапазоне. Таких методик уже сотни, но все равно их недостаточно. Ведь далеко не все области человеческой деятельности настолько простоты, что к ним можно сформулировать четкие, однозначные требования. Тем не менее известный психолог Е. А. Климов разделил все профессии на пять групп: к первой он отнес профессии типа “человек – природа” (например, лесовод, агроном, биолог), ко второй – “человек – техника” (слесарь, механизатор, монтажник), к третьей – “человек – человек” (педагог, медсестра, администратор), к четвертой – “человек – знаковая система” (стенографистка, оператор ЭВМ, математик), к пятой – “человек – художественный образ” (ювелир, фотограф, художник).

Ответив на следующие вопросы, вы можете определить, какой тип профессий предпочитаете. Нравится ли вам занятие, о котором говорится в левой части вопроса (колонка а), или нет? Что для Вас предпочтительнее? Выберите вариант ответа.

Таблица 1

а б
1 Ухаживать за животными Обслуживать машины, приборы
2 Лечить больных Составлять компьютерные программы
3 Следить за качеством книжных иллюстраций, плакатов Следить за состоянием и развитием растений
4 Обрабатывать материалы (дерево, ткань, металл) Рекламировать, продавать товары
5 Обсуждать научно-популярные статьи Обсуждать пьесы, концерты
6 Выращивать животных Помогать товарищам в работе, спорте
7 Настраивать музыкальные инструменты Управлять трактором, тепловозом
8 Давать людям информацию (в справочном бюро, на экскурсии) Оформлять выставки, участвовать в подготовке концертов
9 Ремонтировать вещи, изделия Искать и справлять ошибки в текстах, рисунках
10 Лечить животных Выполнять вычисления, расчеты
11 Выводить новые сорта растений Конструировать машины, проектировать дома
12 Разбирать споры между людьми, убеждать, разъяснять Разбираться в чертежах, схемах
13 Наблюдать за работой художественной самодеятельности Изучать жизнь микробов
14 Налаживать медицинские приборы Оказывать людям медицинскую помощь
15 Составлять отчеты о наблюдаемых явлениях Художественно описывать события
16 Делать лабораторные анализы в больнице Осматривать больных, назначать лечение
17 Красить стены, расписывать изделия Монтировать здания, собирать машины
18 Организовывать культпоходы, экскурсии Участвовать в концертах, спектаклях
19 Изготовлять детали, строить здания Чертить, копировать карты
20 Бороться с болезнями растений Работать на компьютере

Выбранные варианты ответов обведите, пожалуйста, в таблице 3

10б 11а 11б 12а 126 13а 13б 14а 14б 15а 15б 16а 16б 17а 176 18а 186 19а 19б 20а 20б

В двух колонках “попаданий” окажется больше всего, они покажут Ваши предпочтения в деятельности.

Внесите, пожалуйста, в таблицу 2 (см. Приложение 2 ) , находящуюся на “Рабочем столе” полученные характеристики.

Теперь, когда вы более или менее твердо определили, какой тип профессии вам больше по душе, пора подумать и о необходимых качествах, которые понадобятся вам в будущем.

Домашнее задание: выделить в проделанной работе этапы моделирования и на основе полученных данных составить список предпочтительных профессий и смоделировать свой профессиональный образ.

Совет: не относитесь к полученным результатам слишком серьезно.

Используемая литература:

  1. Угринович Н. Информатика и ИКТ. Базовый курс. Учебник для 9 класса. – М.: БИНОМ, 2006.
  2. Жариков Е., Крушельницкий Е. Для тебя и о тебе. – М.: Просвещение,1991.

1) Первым этапом любого исследования является постановка задачи, которая определяется заданной целью.

Задача формулируется на обычном языке. По характеру постановки все задачи можно разделить на две основные группы. К первой группе можно отнести задачи, в которых требуется исследовать, как изменятся характеристики объекта при некотором воздействии на него, "что будет, если?…". Вторая группа задач: какое надо произвести воздействие на объект, чтобы его параметры удовлетворяли некоторому заданному условию, "как сделать, чтобы?..".

2) Второй этап - анализ объекта. Результат анализа объекта - выявление его составляющих (элементарных объектов) и определения связей между ними.

3) Третий этап - разработка информационной модели объекта. Построение модели должно быть связано с целью моделирования. Каждый объект имеет большое количество различных свойств. В процессе построения модели выделяются главные, наиболее существенные, свойства, которые соответствуют цели.

Все то, о чем говорилось выше - это формализация.

Формализация - это процесс выделения и перевода внутренней структуры объекта в определенную информационную структуру - форму.

Построив информационную модель, человек использует ее вместо объекта-оригинала для изучения свойств этого объекта, прогнозирования его поведения и пр. Прежде чем строить какое-то сложное сооружение, например мост, конструкторы делают его чертежи, проводят расчеты прочности, допустимых нагрузок. Таким образом, вместо реального моста они имеют дело с его модельным описанием в виде чертежей, математических формул.

Моделирование любой системы невозможно без предварительной формализации. По сути, формализация - это первый и очень важный этап процесса моделирования.

Построение и использование компьютерных моделей

В наиболее общем виде процесс построения и использования компьютерных моделей можно представить как последовательность этапов:

1) Постановка задачи

a) Описание задачи

b) Цель моделирования

c) Анализ объекта

2) Разработка модели

a) Информационная модель

b) Знаковая модель

c) Компьютерная модель

3) Компьютерный эксперимент

4) Анализ результатов моделирования (результат соответствует цели/результат не соответствует цели).

Каждый раз при решении конкретной задачи такая схема может подвергаться некоторым изменениям: какой-то блок может быть убран или усовершенствован. Все этапы определяются поставленной задачей и целями моделирования.

3D Моделирование

Трехмерная модель - это воссозданная на базе рабочей проектной документации точная геометрическая копия объекта

3D графика - это создание объемной модели при помощи специальных компьютерных программ. На основе чертежей, рисунков, подробных описаний или любой другой графический или текстовой информации, 3D дизайнер создает объемное изображение. В специальной программе модель можно посмотреть со всех сторон (сверху, снизу, сбоку), встроить на любую плоскость и в любое окружение.

Трехмерная графика может быть любой сложности. Вы можете создать простую трехмерную модель, с низкой детализацией и упрощенной формы. Или же это может быть более сложная модель, в которой присутствует проработка самых мелких деталей, фактуры, использованы профессиональные приемы (тени, отражения, преломление света и так далее). Конечно, это всерьез влияет на стоимость готовой трехмерной модели, однако позволяет расширить применение трехмерной модели.

Преимуществ у трехмерного моделирования перед другими способами визуализации довольно много. Трехмерное моделирование дает очень точную модель, максимально приближенную к реальности. Современные программы помогают достичь высокой детализации. При этом значительно увеличивается наглядность проекта. Выразить трехмерный объект в двухмерной плоскости не просто, тогда как 3D визуализации дает возможность тщательно проработать и что самое главное, просмотреть все детали. Это более естественный способ визуализации.

В трехмерную модель очень легко вносить практически любые изменения. Вы можете изменять проект, убирать одни детали и добавлять новые. Ваша фантазия практически ни чем не ограничена, и вы сможете быстро выбрать именно тот вариант, который подойдет вам наилучшим образом. моделирование вербальный компьютерный формализация

Однако трехмерное моделирование удобно не только для клиента. Профессиональные программы дают множество преимуществ и изготовителю. Из трехмерной модели легко можно выделить чертеж каких-либо компонентов или конструкции целиком. Несмотря на то, что создание трехмерной модели довольно трудоемкий процесс, работать с ним в дальнейшем гораздо проще и удобнее чем с традиционными чертежами. В результате значительно сокращаются временные затраты на проектирование, снижаются издержки.

Специальные программы дают возможность интеграции с любым другим профессиональным программным обеспечением, например, с приложениями для инженерных расчетов, программами для станков или бухгалтерскими программами. Внедрение подобных решений на производстве дает существенную экономию ресурсов, значительно расширяет возможности предприятия, упрощает работу и повышает ее качество.

Программы для трехмерного моделирования:

Существует довольно большое количество самых разных программ для 3D моделирования. Так, одной из популярных программ, которые специально разработаны для создания трехмерной графики и дизайна интерьеров, является программа 3D Studio MAX. Она позволяет реалистично визуализировать объекты самой разной сложности. Кроме того, "3D Studio MAX" дает возможность компоновать их, задавать траектории перемещений и в конечном итоге даже создавать полноценное видео с участием трехмерных моделей. Хотя такая работа, конечно же, требует у специалиста серьезных навыков, а также больших компьютерных ресурсов, в первую очередь объемов памяти и быстродействие процессора.

Другой широко используемой программой является AutoCAD. Она также используется для трехмерного моделирования и визуализации, профессионального архитектурно-строительного проектирования, постоянно дополняется новыми возможностями. Довольно большое количество программ могут быть интегрированы с базовым ядром "AutoCAD". Например, приложение для визуализации в таких областях, как вентиляция, трубопроводы, электрика и так далее. Если программу "3D Studio MAX" больше предпочитают дизайнеры и аниматоры, то программой "AutoCAD" в основном пользуются профессиональные архитекторы для реализации сложных проектов.

Рисунок 3.Модель кабинета, выполненная в программе 3D Studio MAX

Практическая работа №14

Выполнил студент группы №___________Ф.И.______________________

Тема Конструирование программ на основе разработки алгоритмов процессов различной природы.

Цель: познакоситься с понятиями модели и моделирование, научиться создавать компьютерные модели.

Теоретические сведения

Модель - это искусственно создаваемый объект, заменяющий некоторый объект реального мира (объект моделирования) и воспроизводящий ограниченное число его свойств. Понятие модели относится к фундаментальным общенаучным понятиям, а моделирование - это метод познания действительности, используемый различными науками.

Объект моделирования - широкое понятие, включающее объекты живой или неживой природы, процессы и явления действительности. Сама модель может представлять собой либо физический, либо идеальный объект. Первые называются натурными моделями, вторые - информационными моделями. Например, макет здания - это натурная модель здания, а чертеж того же здания - это его информационная модель, представленная в графической форме (графическая модель).

В экспериментальных научных исследованиях используются натурные модели, которые позволяют изучать закономерности исследуемого явления или процесса. Например, в аэродинамической трубе моделируется процесс полета самолета путем обдувания макета самолета воздушным потоком. При этом определяются, например, нагрузки на корпус самолета, которые будут иметь место в реальном полете.

Информационные модели используются при теоретических исследованиях объектов моделирования. В наше время основным инструментом информационного моделирования является компьютерная техника и информационные технологии.

Компьютерное моделирование включает в себя прогресс реализмом информационной модели на компьютере и исследование с помощью этой модели объекта моделирования - проведение вычислительного эксперимента.

Формализация
К предметной области информатики относятся средства и методы компьютерного моделирования. Компьютерная модель может быть создана только на основе хорошо формализованной информационной модели. Что же такое формализация?

Формализация информации о некотором объекте - этоее отражение в определенной форме. Можно еще сказать так: формализация - это сведение содержания к форме. Формулы, описывающие физические процессы, - это формализация этих процессов. Радиосхема электронного устройства - это формализация функционирования этого устройства. Ноты, записанные на нотном листе, - это формализация музыки и т.п.

Формализованная информационная модель - это определенные совокупности знаков (символов), которые существуют отдельно от объекта моделирования, могут подвергаться передаче и обработке. Реализация информационной модели на компьютере сводится к ее формализации в форматы данных, с которыми "умеет" работать компьютер.

Но можно говорить и о другой стороне формализации применительно к компьютеру. Программа на определенном языке программирования есть формализованное представление процесса обработки данных. Это не противоречит приведенному выше определению формализованной информационной модели как совокупности знаков, поскольку машинная программа имеет знаковое представление. Компьютерная программа - это модель деятельности человека по обработке информации, сведенная к последовательности элементарных операций, которые умеет выполнять процессор ЭВМ. Поэтому программирование на ЭВМ есть формализация процесса обработки информации. А компьютер выступает в качестве формального исполнителя программы.

Этапы информационного моделирования

Построение информационной модели начинается с системного анализа объекта моделирования (см. "Системный анализ" ). Представим себе быстро растущую фирму, руководство которой столкнулось с проблемой снижения эффективности работы фирмы по мере ее роста (что является обычной ситуацией) и решило упорядочить управленческую деятельность.

Первое, что необходимо сделать на этом пути, - провести системный анализ деятельности фирмы. Системный аналитик, приглашенный в фирму, должен изучить ее деятельность, выделить участников процесса управления и их деловые взаимоотношения, т.е. объект моделирования анализируется как система. Результаты такого анализа формализуются: представляются в виде таблиц, графов, формул, уравнений, неравенств и пр. Совокупность таких описаний есть теоретическая модель системы.

Следующий этап формализации - теоретическая модель переводится в формат компьютерных данных и программ. Для этого" используется либо готовое программное обеспечение, либо привлекаются программисты для его разработки. В конечном итоге получается компьютерная информационная модель, которая будет использоваться по своему назначению.

Для примера с фирмой с помощью компьютерной модели может быть найден оптимальный вариант управления, при котором будет достигнута наивысшая эффективность работы фирмы согласно заложенному в модель критерию (например, получение максимума прибыли на единицу вложенных средств).

Классификация информационных моделей может основываться на разных принципах. Если классифицировать их по доминирующей в процессе моделирования технологии, то можно выделить математические модели, графические модели, имитационные модели, табличные модели, статистические модели и пр. Если же положить в основу классификации предметную область, то можно выделить модели физических систем и процессов, модели экологических (биологических) систем и процессов, модели процессов оптимального экономического планирования, модели учебной деятельности, модели знаний и др. Вопросы классификации важны для науки, т.к. они позволяют сформировать системный взгляд на проблему, но преувеличивать их значение не следует. Разные подходы к классификации моделей могут быть в равной мере полезны. Кроме того, конкретную модель отнюдь не всегда можно отнести к одному классу, даже если ограничиться приведенным выше списком.

Остановимся на этой классификации подробнее и поясним ее на примерах.

Моделируя движение кометы, вторгшейся в Солнечную систему, мы описываем ситуацию (предсказываем траекторию полета кометы, расстояние, на котором она пройдет от Земли и т.д.), т.е. ставим чисто описательные цели. У нас нет никаких возможностей повлиять на движение кометы, что-то изменить в процессе моделирования.

В оптимизационных моделях мы можем воздействовать на процессы, пытаясь добиться какой-то цели. В этом случае в модель входит один или несколько параметров, доступных нашему влиянию. Например, меняя тепловой режим в зернохранилище, мы можем стремиться подобрать такой, чтобы достичь максимальной сохранности зерна, т. е. оптимизируем процесс.

Часто приходится оптимизировать процесс по нескольким параметрам сразу, причем цели могут быть весьма противоречивыми. Например, зная цены на продукты и потребность человека в пище, организовать питание больших групп людей (в армии, летнем лагере и др.) как можно полезнее и как можно дешевле. Ясно, что эти цели, вообще говоря, совсем не совпадают, т.е. при моделировании будет несколько критериев, между которыми надо искать баланс. В этом случае говорят о многокритериальных моделях.

Игровые модели могут иметь отношение не только к детским играм (в том числе и компьютерным), но и к вещам весьма серьезным. Например, полководец перед сражением в условиях наличия неполной информации о противостоящей армии должен разработать план, в каком порядке вводить в бой те или иные части и т.п., учитывая возможную реакцию противника. В современной математике есть специальный раздел – теория игр, изучающий методы принятия решений в условиях неполной информации.

Наконец, бывает, что модель в большой мере подражает реальному процессу, т.е. имитирует его. Например, моделируя динамику численности микроорганизмов в колонии, можно рассматривать совокупность отдельных объектов и следить за судьбой каждого из них, ставя определенные условия для его выживания, размножения и т.д. При этом иногда явное математическое описание процесса не используется, заменяясь некоторыми словесными условиями (например, по истечении некоторого отрезка времени микроорганизм делится на две части, а другого отрезка – погибает). Другой пример – моделирование движения молекул в газе, когда каждая молекула представляется в виде шарика, и задаются условия поведения этих шариков при столкновении друг с другом и со стенками (например, абсолютно упругий удар); при этом не нужно использовать никаких уравнений движения.

Можно сказать, что чаще всего имитационное моделирование применяется в попытке описать свойства большой системы при условии, что поведение составляющих ее объектов очень просто и четко сформулировано. Математическое описание тогда производится на уровне статистической обработки результатов моделирования при нахождении макроскопических характеристик системы. Такой компьютерный эксперимент фактически претендует на воспроизведение натурного эксперимента. На вопрос же «зачем это делать?» можно дать следующий ответ: имитационное моделирование позволяет выделить «в чистом виде» следствия гипотез, заложенных в наши представления о микрособытиях, очистив их от неизбежного в натурном эксперименте влияния других факторов, о которых мы можем даже не подозревать. Если же такое моделирование включает и элементы математического описания событий на микроуровне, и если исследователь при этом не ставит задачу поиска стратегии регулирования результатов (например, управления численностью колонии микроорганизмов), то отличие имитационной модели от дескриптивной достаточно условно; это, скорее, вопрос терминологии.

Еще один подход к классификации математических моделей подразделяет их на детерминированные и стохастические (вероятностные). В детерминированных моделях входные параметры поддаются измерению однозначно и с любой степенью точности, т.е. являются детерминированными величинами. Соответственно, процесс эволюции такой системы детерминирован. В стохастических моделях значения входных параметров известны лишь с определенной степенью вероятности, т.е. эти параметры являются стохастическими; соответственно, случайным будет и процесс эволюции системы. При этом, выходные параметры стохастической модели могут быть как величинами вероятностными, так и однозначно определяемыми.