Тарифы Услуги Сим-карты

Принцип работы ик пульта управления. Простая схема инфракрасного управления

Большая часть современной бытовой электронной аппаратуры имеет пульт дистанционного управления, использующий инфракрасное (ИК) излучение в качестве способа передачи информации. ИК канал передачи данных используется в некоторых устройствах системы " ", которую мы производим.

Принцип ИК передачи информации

Инфракрасное, или тепловое излучение - это электромагнитное излучение, которое испускает любое нагретое до определенной температуры тело. ИК диапазон лежит в ближайшей к видимому свету области спектра, в его длинноволновой части и занимает область приблизительно от 750 нм до 1000 мкм. Инфракрасное излучение составляет большую часть излучения ламп накаливания, около половины излучения Солнца. Оптические свойства веществ в инфракрасном излучении отличаются от их свойств в видимом свете. Например, некоторые стекла непрозрачны для инфракрасных лучей, а парафин, в отличие от видимого света, прозрачен для ИК излучения и используется для изготовления ИК линз. Для его регистрации используют тепловые и фотоэлектрические приемники и специальные фотоматериалы. Источником ИК лучей, кроме нагретых тел, наиболее часто используются твердотельные излучатели - , ИК лазеры, для регистрации применяются фотодиоды, форотезисторы или болометры. Некоторые особенности инфракрасного излучения делают его удобным для применения в устройствах передачи данных:

  • ИК твердотельные излучатели (ИК светодиоды) компактны, практически безинерционны, экономичны и недороги.
  • ИК приемники малогабаритны и также недороги
  • ИК лучи не отвлекают внимание человека в силу своей невидимости
  • Несмотря на распространенность ИК лучей и высокий уровень "фона", источников импульсных помех в ИК области мало
  • ИК излучение низкой мощности не сказывается на здоровье человека
  • ИК лучи хорошо отражаются от большинства материалов (стен, мебели)
  • ИК излучение не проникает сквозь стены и не мешает работе других аналогичных устройств

Все это позволяет с успехом использовать ИК способ передачи информации во многих устройствах. ИК передатчики и приемники находят применение в бытовой и промышленной электронике, компьютерной технике, охранных системах, системах передачи данных на большие расстояния по оптоволокну. Рассмотрим более подробно работу систем (пультов) управления бытовой электроники.

Пульт ИК управления при нажатии кнопки излучает кодированную посылку, а приемник, установленный в управляемом устройстве, принимает её и выполняет требуемые действия. Для того, чтобы передать логическую последовательность, пульт формирует импульсный пакет ИК лучей, информация в котором модулируется или кодируется длительностью или фазой составляющих пакет импульсов. В первых устройствах управления использовались последовательности коротких импульсов, каждый из которых представлял собою часть полезной информации. Однако в дальнейшем, стали использовать метод модулирования постоянной частоты логической последовательностью, в результате чего в пространство излучаются не одиночные импульсы, а пакеты импульсов определенной частоты. Данные уже передаются закодированными длительностью и положением этих частотных пакетов. ИК приемник принимает такую последовательность и выполняет демодулирование с получением огибающей. Такой метод передачи и приема отличается высокой помехозащищенностью, поскольку приемник, настроенный на частоту передатчика, уже не реагирует на помехи с другой частотой. Сегодня для приема ИК сигнала обычно применяется специальная микросхема, объединяющая фотоприемник, усилитель с полосовым фильтром, настроенным на определенную несущую частоту, усилитель с АРУ и детектор для получения огибающей сигнала. Кроме электрического фильтра, такая микросхема имеет в своем составе оптический фильтр, настроенный на частоту принимаемого ИК излучения, что позволяет в максимальной степени использовать преимущество светодиодного излучателя, спектр излучения которого имеет небольшую ширину. В результате таких технических решений, стало возможным принимать маломощный полезный сигнал на фоне ИК излучения других источников, бытовых приборов, радиаторов отопления и т.д. Работа современных устройств ИК управления достаточно надежна, а дальность составляет от нескольких метров до 40 и более метров, в зависимости от варианта реализации и уровня помех.

Передатчик ИК сигнала

Передатчик ИК сигнала, ИК пульт, чаще всего имеет питание от батарейки или аккумулятора. Следовательно его потребление должно быть максимально низким. С другой стороны, излучаемый сигнал должен быть значительной мощности для обеспечения большой дальности передачи. Такие противоположные по энергетическим затратам задачи успешно решаются способом передачи коротких импульсных кодированных пакетов. В промежутках между передачами пульт практически не потребляет энергии. Задача контроллера пульта - опрос кнопок клавиатуры, кодирование информации, модулирование опорной частоты и выдача сигнала на излучатель. Для изготовления пультов выпускаются различные специализированные микросхемы, однако для этих целей могут быть использованы и современные микроконтроллеры общего применения типа AVR или PIC. Основное требование к таким микроконтроллерам - это наличие режима сна с чрезвычайно низким потреблением и способность чувствовать нажатия кнопок в этом состоянии.

Излучатель ИК сигнала испускает инфракрасные лучи под действием тока возбуждения. Ток на излучатель обычно превышает возможности микроконтроллера, поэтому для формирования необходимого тока устанавливается простейший на одном транзисторе. Для снижения потерь, при выборе транзистора необходимо обратить внимание на его коэффициент усиления тока - β или h21. Чем выше этот коэффициент, тем выше эффективность устройства. Современные передатчики используют полевые или CMOS транзистоы, эффективность которых на используемых частотах можно считать предельной.

Приведенная схема не лишена недостатков, в частности при снижении уровня заряда батареи, мощность излучения будет падать, что приведет к снижению дальности. Для снижения зависимости от напряжения питания, можно использовать простейший стабилизатор тока.

Большинство передатчиков работают на частоте 30 - 50 кГц. Такой диапазон частот был выбран исторически при создании первых подобных устройств. Была выбрана область с наименьшим уровнем помех. Кроме того, принимались в расчет ограничения на элементную базу. В дальнейшем, по мере стандартизации и распространения аппаратуры с таким способом управления, переход на другие частоты стал нецелесообразным.

В целях увеличения импульсной мощности передатчика, а соответственно и его дальности, сигнал основной частоты отличается от меандра и имеет скважность 3 - 6. Таким образом повышается импульсная мощность с сохранением или даже уменьшением средней мощности. Импульсный ток светодиода выбирается исходя из его паспортных значений и может достигать одного и более Ампер. Импульсный ток в большинстве пультов ИК не превышает 100 мА. При этом, поскольку и опорная частота имеет малый коэффициент заполнения и длительность кодированной посылки не превышает 20-30 мс, средний ток при нажатой кнопке не превышает одного миллиампера. Повышение импульсного тока светодиода сопряжено с снижением эффективности и уменьшением срока службы. Современные инфракрасные светодиоды имеют эффективность 100-200 мВт излучаемой энергии при токе 50 мА. Допустимый средний ток не должен превышать 10-20 мА. Питание светодиода должно иметь RC фильтр, который снижает воздействие импульсной помехи на питание микроконтроллера. Спектр применяемых светодиодов для ИК пультов большинства бытовой аппаратуры имеет максимум в области 940 нм.

Длительность единичного пакета опорной частоты для уверенного приема составляет не менее 12-15 и не более 200 периодов. При передаче кодированной посылки, передатчик формирует в начале преамбулу, которая представляет собой один или несколько пакетов опорной частоты и позволяет приемнику установить необходимый уровень усиления и фона. Данные в кодированной посылке передаются в виде нулей и единиц, которые определяются длительностью или фазой (расстоянием между соседними пакетами). Общая длительность кодировнной посылки чаще всего составляет от нескольких бит до нескольких десятков байт. Порядок следования, признак начала и количество данных определяется форматом посылки.

Приемник ИК сигнала

Приемник ИК сигнала как правило имеет в своем составе собственно приемник ИК излучения и микроконтроллер. Микроконтроллер раскодирует принимаемый сигнал и выполняет требуемые действия. Поскольку приемник в большинстве случаев устанавливается в аппаратуре с сетевым питанием, его потребление не существенно. Микроконтроллер чаще всего выполняет и другие сервисные функции в устройстве и является его центральным логическим устройством.

Приемник ИК излучения чаще всего выполняется в виде отдельного интегрального модуля, который располагается за передней панелью управляемой аппаратуры. В передней панели имеется прозрачное для ИК лучей окошко. Как правило, такая микросхема имеет три вывода – питание, общий и выход сигнала. Производители электронных компонентов предлагают приемники ИК сигналов различного типа и исполнения. Однако, принцип их работы схож. Внутри такая микросхема имеет:

  • фотоприемник - фотодиод
  • интегрирующий усилитель, выделяющий полезный сигнал на уровне фона
  • ограничитель, приводящий сигнал к логическому уровню
  • полосовой фильтр, настороенный на частоту передатчика
  • демодулятор - детектор, выделяющий огибающую полезного сигнала.

Корпус такого приемника выполняется из материала, выполняющего роль дополнительного фильтра, пропускающего ИК лучи определенной длины волны. Современные интегральные приемники позволяют принимать полезный сигнал на уровне фона, превышающего его в несколько десятков раз и при этом чувствовать посылки частоты, имеющие всего от 4 - 5 периодов.

Питание приемника излучения должно быть выполнено с RC фильтром для увеличения чувствительности. Микроконтроллер производит помеху широкого спектра на линиях питания, что может повлиять на работу приемника.

Форматы ИК передачи данных

Различные производители бытовой аппаратуры применяют в своих изделиях различные пульты ИК управления. Поскольку пульт должен общаться только с конкретным устройством, он формирует последовательность данных, уникальную для своего типа оборудования. Передаваемые данные содержат кроме собственно команды управления адрес устройства, проверочные данные и другую сервисную информацию. Более того, различные производители используют различные способы формирования последовательности данных и различные способы передачи логических состояний. Наиболее распространенные способы кодирования битов информации - это изменение длительности паузы между пакетами (метод интервалов) и кодирование сочетанием состояний (бифазный метод). Однако, встречаются способы кодирования бит информации длительностью, сочетанием длительности и паузы и т.д. Наиболее распространенные форматы передачи.

Среди устройств, предназначенных для дистанционного управления и контроля, устройства, использующие инфракрасное (ИК) излучение, занимают давнее и почетное место.

Например, первые пульты дистанционного управления на инфракрасных лучах появились в 1974 году благодаря фирмам Grundig и Magnavox, которые выпустили первый телевизор, оснащенный таким управлением. Датчики, использующие ИК-излучение, широко используются в автоматике.

Основным преимуществом устройств управления на ИК-лучах является их низкая чувствительность к электромагнитным помехам, а также то, что эти устройства сами не создают помех другим электронным устройствам. Как правило, ИК дистанционное управление ограничивается жилым или производственным помещением, а излучатель и приемник ИК излучения должны находиться в прямой видимости и быть направленными друг на друга.

Эти свойства определяют основную сферу применения рассматриваемых устройств – дистанционные управление бытовыми приборами и устройствами автоматики на небольших расстояниях, а также там, где требуется бесконтактное обнаружение пересечения линии прямолинейного распространения излучения.

Даже на заре своего возникновения устройства на ИК лучах были весьма просты в разработке и применении, в настоящее же время при использовании современной электронной базы такие устройства стали еще проще и надежнее. Как нетрудно заметить, даже мобильные телефоны и смартфоны оснащаются ИК-портом для связи и управления бытовой техникой по ИК-каналу, несмотря на широкое применение беспроводных технологий, таких как Bluetooth и Wi-Fi.

Компания Мастер Кит предлагает несколько модулей, работающих с использованием ИК-излучения, предназначенных для применения в проектах DIY.

Рассмотрим три устройства разной степени сложности и назначения. Для удобства основные характеристики всех устройств сведены в таблицу, расположенную в конце обзора.

  1. Инфракрасный барьер предназначен для применения в качестве датчика охранных систем, при спортивных соревнованиях в качестве фотофиниша, а также для дистанционного управления устройствами автоматики на расстоянии до 50 метров.

Устройство состоит из двух модулей – передатчика и приемника. Передатчик собран на сдвоенном интегральном таймере NE556 и формирует прямоугольные импульсы с заполнением частотой 36 кГц. Таймер имеет достаточно мощный токовый выход для того, чтобы непосредственно управлять подключенными к нему инфракрасными светодиодами.

Одиночным аналогом NE556 является знаменитый интегральный таймер NE555, который вот уже много десятков лет верой и правдой служит целой армии радиолюбителей для разработки электронных устройств. Изучить таймер на примерах 20 электронных схем, разработанных на основе этого таймера, можно с помощью набора-конструктора «Классика схемотехники» их серии Азбука электронщика. При сборке схем даже не потребуется паяльник; все они собираются на беспаечной макетной плате.

Излученный сигнал принимается приемником, основой которого является специализированная микросхема, детектируется пиковым детектором и поступает на усилитель тока на транзисторе, к которому подключено реле, позволяющее коммутировать ток до 10А.

Инфракрасный барьер, несмотря на простоту, является достаточно чувствительным устройством, и позволяет работать как на «просвет», так и на «отражение» и требует изготовления бленд для передатчика и приемника, устраняющих влияние переотраженных сигналов.

Пример применения инфракрасного барьера совместно с набором «Цифровая лаборатория» из уже упомянутой серии Азбука электронщика можно посмотреть .

  1. – это выключатель освещения с управлением от любого пульта дистанционного управления на инфракрасных лучах.

Модуль позволяет управлять освещением или другими электроприборами, используя любую кнопку пульта ДУ.

Как правило, на каждом пульте ДУ есть редко используемые или вовсе не используемые кнопки. Применив этот выключатель, вы сможете включать и выключать люстру, вентилятор и т.п. с того же пульта ДУ, с которого вы управляете телевизором или музыкальным центром.

При подаче питания модуль в течение 10 секунд «ждет» получения сигнала, соответствующего выбранной кнопке пульта, и по истечению этого времени «запоминает» нажатую кнопку. После этого для срабатывания реле модуля достаточно один раз нажать эту кнопку, при повторном нажатии реле выключится. Таким образом, реализуется режим управления типа «триггер». Модуль остается запрограммированным даже при отключении его питания.

Следует отметить, что модуль «помнит» свое последнее состояние при отключении питания.

В устройстве предусмотрен режим автоматического отключения нагрузки примерно через 12 часов после ее включения на случай, если нагрузку забыли выключить.

Реле модуля может коммутировать мощность до 1500 Вт.

  1. Комплект беспроводного управления по ИК-каналу имеет собственный пульт ДУ с 4-мя кнопками и 4 канала управления по 2000 Вт каждый.

Каждый из 4-х каналов дистанционного управления работает в режиме «кнопка», т.е. реле канала замкнуто, пока нажата соответствующая кнопка на пульте ДУ.

С помощью модуля можно организовать реверсивное управление двумя коллекторными электродвигателями, поскольку каждое реле имеет один нормально замкнутый (NC) и один нормально разомкнутый (NO) контакты с общим проводом.

Для удобства использования каждый канал оснащен светодиодом, индицирующим включение реле.

Пульт комплекта питается от элемента CR2032.

Управление нагрузкой с большей мощностью для всех рассмотренных устройств можно осуществить с помощью модулей расширения:

До 4000 Вт: подойдет модуль расширения ;

До 8000 Вт: подойдет модуль расширения .

Модули с инфракрасным управлением

Артикул

Название

Напряжение питания

Число каналов управления

Максимальная мощность нагрузки одного канала, Вт

Примеры применения

Инфракрасный барьер

12В постоянный

Охранные устройства; спортивные соревнования; робототехника; устройства автоматики

Выключатель освещения

12В постоянный;

220В переменный

Управление освещением, вентиляцией, отоплением

Комплект беспроводного управления

12В постоянный

Реверсивное управление коллекторными двигателями; 4-х канальное управление бытовыми приборами

Помните, как в мультфильме «трое из Простоквашино», мама дяди Федора сказала: «Я так устаю на работе, что даже телевизор смотреть не могу!» Видимо, эта фраза и является ответом на вопрос, почему вся современная бытовая аппаратура имеет инфракрасные пульты дистанционного управления (ПДУ) . Но, если разобраться, то все началось намного раньше.

ПДУ с проводами

Первыми работами по дистанционному управлению занимались немцы в конце 30-х годов двадцатого столетия, еще до начала Второй мировой войны. Объектом автоматизации был ламповый приемник. Пульт управления представлял собой отдельную металлическую панель с кнопками. Нажатие кнопки приводило к срабатыванию исполнительного механизма, - реле, электромагнита или двигателя. Соединение между таким ПДУ и приемником было выполнено многожильным кабелем, что все равно привязывало слушателя к определенному месту.

Подобные пульты были у советских ламповых телевизоров первого класса. Это была маленькая пластмассовая коробочка с регулятором громкости, соединенная с телевизором проводом. Кроме громкости такой пульт ничем управлять не мог. Но определенные удобства такой пульт, несомненно, создавал. Ведь тогда не было надоедливой рекламы и фильм приходилось смотреть от начала до конца.

Ультразвуковые ПДУ

Первый беспроводной пульт дистанционного управления обязан своим появлением на свет американцу Хассо Платтнеру. В 1972 году после ухода из IBM он организовал свою фирму и в целях налаживания деловых контактов и связей часто и много ездил по всему миру. На одной из встреч с руководством компании JVC произошел конфузный случай.

При обсуждении какой-то проблемы Платтнер встал и двинулся к телевизору, чтобы пальцем показать какую-то деталь на экране. Но, до экрана не дошел, споткнувшись о кабель дистанционного управления. Пролил коктейль на костюм и в сердцах сказал: «Разве нельзя было сделать переключение каналов по радиоволне?», чем вогнал японских компаньонов в краску. А уже ровно через год появился первый пульт на ультразвуковых лучах.

Принцип его действия заключался в подаче своей частоты при нажатии на каждую кнопку. Ультразвук улавливался микрофоном и усиливался усилителем, в которым использовалось несколько параллельных каналов с резонансными контурами. На выходах этих каналов появлялись управляющие напряжения. При таком способе кодирования каналов получалось не очень много.

Дальнейшее развитие электроники, в частности появление микросхем фирмы INTEL, позволило отказаться от подобного многочастотного кодирования. На одной ультразвуковой частоте за счет различных способов модуляции стало возможным передавать намного больше команд, чем при много частотном кодировании. Одним из первых аппаратов оснащенных ультразвуковым ПДУ был телевизор фирмы RCA. Кодирование команд осуществлялось при помощи широтно-импульсной модуляции (ШИМ).

Эти пульты имели целый ряд недостатков. В первую очередь большие габариты и мощность потребления. Это было связано с тем, что ультразвуковое излучение охотно поглощается предметами обихода, - одеждой, мягкой мебелью, коврами. Поэтому мощность излучения требовалось увеличивать, что сокращало срок службы батарей.

Рис. 1. Первые пульты дистанционного управления

Специализированные микросхемы для ПДУ

Дело пошло лучше после того, как фирма INTEL разработала свой первый микропроцессор 8080. Эту новую разработку взяли за основу фирмы GRUNDIG и MAGNAVOX, которые сделали первый специализированный микропроцессор. В этом случае процессором генерируется нужный код цифровой команды под воздействием нажатой кнопки. Таким образом специализированная микросхема для ПДУ есть не что иное, как с уже прошитой программой. Такие ПДУ назывались TELEPILOT.

ПДУ на ИК-лучах

Первый цветной телевизор с микропроцессорным управлением и пультом дистанционного управления (ПДУ) на ИК лучах был выпущен совместно фирмами GRUNDIG и MAGNAVOX уже в 1974 году. Уже в этой модели в углу экрана показывался номер переключающегося канала (система OSD). Эта система команд получила название ITT. Это был первенец фирмы GRUNDIG.

В дальнейшем исследованиями в области ПДУ занялась фирма PHILIPS, которая разработала систему команд RC-5. Новая система позволяла кодировать 2048 команд, что в 4 раза превысило количество команд в системе ITT. Несущая частота была выбрана 36КГц, что не мешало передачам европейских радиовещательных станций и работе пультов с ультразвуковыми передатчиками с частотой 30 и 40КГц, а также обеспечивала достаточную дальность приема.

Но электронная техника не стояла на месте, а как говорил один киногерой, - шла вперед семимильными шагами. Совершенствовались телевизоры, появились видеомагнитофоны и музыкальные центры, спутниковые тюнеры, проигрыватели CD и DVD и многое другое.

Для управления новой техникой потребовались и новые ПДУ, а соответственно пришлось разрабатывать новые микросхемы. Такие микросхемы разработали фирмы SIEMENS и THOMSON. Несущая частота новых ПДУ была тоже 36КГц, но использовался другой метод модуляции сигнала, - двухфазная модуляция. При такой модуляции несущая частота была более стабильна, что обеспечило повышение дальности, увеличение помехозащищенности и надежности работы.

Дальнейший вклад в дело развития систем ПДУ снова внесла фирма PHILIPS. В начале 90 годов прошлого века она объединила все лучшее, что было в системах RC-5 и SIEMENS. Получившийся продукт получил название «Объединенная система команд». Суть ее в следующем. ПДУ такой системы имеют функции «MENU 1» и «MENU 2». В каждой из этих функций одна и та же кнопка выполняет разные команды, и получается, что меньшим количеством кнопок можно выполнить большее число команд.

Впоследствии пульты управления проникли во многие другие области бытовой техники. ИК излучением в настоящее время управляются кондиционеры, вентиляторы, настенные тепловентиляторы, . Даже некоторые модели автомагнитол и цифровых фотоаппаратов имеют ПДУ.

При всем многообразии пультов и управляемых ими устройств, все они работают практически одинаково: инфракрасный светодиод ПДУ при нажатии кнопок излучает пачки инфракрасных импульсов (вспышек), которые принимаются фотоприемником («глазом») телевизора или другого устройства. Современный интегральный фотоприемник представляет собой устройство достаточно сложное, хотя по внешнему его виду этого не скажешь. Внешний вид фотоприемника показан на рисунке 2.

Рисунок 2. Фотоприемник

Приемник настроен на прием импульсов с несущей частотой 36КГц, что соответствует протоколу RC-5. Если вблизи фотоприемника просто включить, например, от батарейки, ИК светодиод, то его немигающее свечение на «глаз» никакого воздействия не окажет, даже если этот светодиод поднести вплотную к фотоприемнику. Также не оказывает воздействия дневной и искусственный свет. Такая избирательность обусловлена тем, что в цепи усиления сигнала фотоприемника имеется полосовой фильтр. Структурная схема фотоприемника показана на рисунке 3.

Рисунок 3. Структурная схема фотоприемника

Здесь не будет объясняться подробно протокол RC-5, поскольку на дальнейший рассказ, да собственно и на ремонт ПДУ, это незнание никак не повлияет. Желающие познакомиться с протоколом RC-5 более подробно могут найти его описание в интернете. Это уже тема для отдельной статьи.

Устройство ПДУ

При всем многообразии современных ПДУ все модели устроены практически одинаково. Основное различие чаще всего во внешнем виде, в дизайне устройства. Как было сказано в первой части статьи, основой современного ПДУ является специализированный микроконтроллер. Программа в МК записывается в процессе изготовления на заводе и в дальнейшем изменена быть не может. При включении в схему для такого МК требуется минимальное количество навесных деталей. Схема современного ПДУ показана на рисунке 4.

Рисунок 4. Схема современного пульта дистанционного управления

Основой всего устройства является микросхема U1типа SAA3010P. Хотя буквы могут быть и другими, что говорит о другой фирме производителе микросхемы. Но цифры все равно остаются 3010.

Как было сказано выше, навесных деталей практически нет. Прежде всего, это , хотя это не совсем точно. Его назначение - синхронизация внутреннего генератора микросхемы, что обеспечивает требуемые временные характеристики выходного сигнала.

В нижнем правом углу схемы показана матрица клавиш (KEY MATRIX). Ее строки подсоединены к выводам DR0…DR7, а столбцы, соответственно, к выводам X0…X7. При нажатии на любую кнопку замыкается одна пара столбец - строка, и на выходе микросхемы возникает импульсная последовательность соответствующая нажатой кнопке. Каждая кнопка выдает свою последовательность и никакую другую! Всего возможно подключить 8*8=64 кнопки, хотя практически может быть и меньше.

Выходной сигнал в виде импульсов напряжения поступает на затвор полевого транзистора VT1, который в свою очередь управляет работой ИК светодиода VD1. Алгоритм управления в данном случае очень простой: открылся транзистор - засветился светодиод, транзистор закрыт, - светодиод погас. В таком случае говорят, что транзистор работает в ключевом режиме. В результате таких вспышек формируются пакеты импульсов, соответствующие протоколу управления RC-5.

Питание схемы производится от двух гальванических элементов типа AA, энергии которых хватает не менее чем на год. Параллельно батарейкам стоит электролитический конденсатор C1, который шунтируя внутренне сопротивление батареек, продлевает срок их службы и обеспечивает нормальную работу ПДУ при несколько «подсевших» батарейках. Светодиод в импульсном режиме может потреблять ток до 1А.

После рассмотрения схемы ПДУ, кажется, можно сказать, что ломаться при таком простом устройстве абсолютно нечему, но это не так. Именно ПДУ чаще всего доставляет неприятности владельцу телевизора. О том, как отремонтировать ПДУ, какие его основные «болезни», а также, чем и как их вылечить будет рассказано во второй части статьи.

При создании системы домашней автоматизации обычно сложно обойтись только оригинальными исполнительными устройствами, особенно если речь идет о работе в сценариях мультимедиа и управлении климатом. Речь здесь может идти о телевизорах, проекторах, ресиверах, медиаплеерах, кондиционерах и другой технике. При этом не всегда есть возможность использовать «правильное» оборудование, имеющее поддержку фирменных интерфейсов управления. Чаше всего, этот вопрос связан с финансовыми соображениями.

В некоторых случаях можно рассчитывать на наличие последовательного интерфейса, который, при правильной реализации, позволяет эффективно интегрировать оборудование в систему благодаря наличию документированного набора команд и поддержке обратной связи, например, для проверки статуса устройства. В качестве адаптера в данном случае можно использовать описанные недавно устройства Global Cache, не забывая о том, что для каждого клиента потребуется индивидуальный канал управления.

Определенная надежда есть на реализацию управления через IP-сеть в новых моделях, но сейчас в описанной ситуации часто приходится иметь дело с управлением по ИК. Инфракрасные пульты управления сегодня являются стандартным способом для взаимодействия с мультимедийным оборудованием. Они просты в использовании и недороги в изготовлении, однако имеют и определенные недостатки.

Первым из них является необходимость наличия прямой видимости от пульта до приемника. Второй - отсутствие возможности индивидуальной адресации устройств (если, например, используется несколько одинаковых усилителей). С этим проблемами можно справиться установкой ИК-передатчика непосредственно на окошко приемника требуемого устройства, как это реализовано у Global Cache. Третьим, важность которого в бюджетных решениях спорна, назовем отсутствие обратной связи. Четвертым, пожалуй, наиболее существенным, является отсутствие в большинстве случаев документированной базы ИК-кодов.

Для решения последней проблемы применяется несколько способов, которые также сложно считать идеальными. Первый вариант - использование «обучающего» устройства для записи кодов с существующего пульта ДУ. Второй - работа с подготовленной заранее базой данных кодов.

Недостаток первого способа - невозможность получения отсутствующих на пульте команд. Чаще всего эта проблема встречается в мультимедийных инсталляциях, когда требуется обеспечить переключение ресивера или телевизора на какой-то определенный вход для коммутации и отображения необходимого сигнала. С учетом широкого набора входов, многие устройства сегодня имеют только одну или две кнопки для его выбора перебором. При этом обеспечить гарантированное «попадание» на нужный вход при любых начальных условиях невозможно. Эту задачу можно решать разными способами, например запоминанием входа или установкой дополнительных коммутаторов с «правильным» управлением, но это неудобно или дорого. Аналогичное замечание касается и управления питанием, где практически всегда есть только функция «переключить питание», а не отдельные кнопки включения и выключения. Еще одним нюансом в описываемом сценарии является погрешность при измерении, поскольку частота модуляции не фиксирована и приемник пытается определить ее по входящему сигналу, так что даже одна команда, записанная несколько раз, может иметь разные коды.

Не менее проблематична работа и с готовыми базами кодов. Часто они используют сортировку не по конкретной модели устройства или пульта, а в виде производитель-тип оборудования-набор кодов. При этом последних может быть более десятка, что потребует много времени на подбор и не гарантирует успешного результата.

Правда наличие подобных баз предоставляет богатую информацию для анализа существующих у производителя возможных модификаций команд. Здесь также упомянем о существовании различных вариантов записи ИК-команд и специализированные утилиты для конвертации форматов. Идеальным вариантом в данном случае стоит считать именно описание команд в оригинальном бинарном формате, а не в виде «оцифровок». К сожалению, встречается он достаточно редко.

Отметим, что управление кондиционерами имеет свои особенности, связанные с наличием одновременных регулировок нескольких рабочих параметров, что еще больше затрудняет их управление через ИК-порт.

Стоит заметить, что гарантировать наличие описанных выше функций, выходящих за рамки штатного ИК-пульта управления конечно никто не будет. Однако современный уровень унификации при изготовлении электронных устройств дает надежду на поддержку не представленных на пульте команд.

Таким образом, мы видим, что для реализации требуемых функций потребуется приложить серьезные усилия и при определенном везении все может получиться, но гарантий, к сожалению, нет никаких. В этом материале мы на конкретных примерах расскажем о решении данной задачи. Надеемся, что эта информация окажется полезной для наших читателей.

Global Cache iTach Flex

В данном материале мы использовали устройство iTach Flex из последнего поколения компактных адаптеров Global Cache. Модель существует в версиях для подключения к проводной сети и Wi-Fi.

Устройство для варианта Wi-Fi, который мы тестировали, имеет корпус с размерами всего 31×65×13 мм (не считая разъемов кабелей), что позволяет установить его где угодно. Модификация с RJ-45 будет немного крупнее из-за разъема.

Корпус изготовлен из черного пластика. Беспроводная антенна встроенная. Присутствует специальная металлическая рамка для крепления. Она устанавливается на одном или двух шурупах, а адаптер просто защелкивается на ней.

На корпусе есть светодиодный индикатор статуса, кнопка для подключения к беспроводной сети по WPS и сброса настроек, а также окошко ИК-приемника для обучения. С одного из торцов установлен вход питания (стандартный microUSB) и многофункциональный миниджек 3,5 мм для подключения кабелей Flex Link.

Благодаря последнему элементу, модель получилась уникально универсальной. На настоящий момент поддерживаются следующие варианты: последовательный порт, один ИК-передатчик, один ИК-бластер, три ИК-передатчика (один может быть бластером).

Как и ранее рассмотренного семейства iTach, ИК-бластер предназначен для использования на большом расстоянии (в комнате) и может оправлять команды на разные устройства. А обычный ИК-передатчик предназначен для крепления на окошке приемника конкретного устройства. Ожидается реализация поддержки управления сухими контактами и подключения сенсоров. В этом материале мы подключали к адаптеру ИК-бластер, поскольку управлять нужно было несколькими устройствами в комнате.

Для управления можно использовать как знакомый по iTach вариант TCP с отправкой команд на определенный порт, а также новый HTTP API. Установка основных параметров работы осуществляется через встроенный веб-сервер.

Отметим, что Global Cache имеет собственную онлайн-базу ИК-кодов, отсортированных по производителю и записанных в виде команд для отправки на их собственные адаптеры.

Телевизор LG серии LM66x 2012 года выпуска

Модель оборудована большим количеством видеовходов, поддерживает 3D и подключение к сети, имеет порты USB. На штатном пульте управления присутствует одна кнопка для включения/выключения питания и одна кнопка открытия меню для переключения источников. В последнем случае потребуется подтверждение операции, а в случае наличия подключения к сети в списке будут присутствовать и медиасерверы, что делает невозможным «слепую» установку на заданный вход.

Минимальный набор требований к телевизору в составе домашнего кинотеатра - включение и выключение питания разными командами и установка на определенный вход. Дополнительно можно говорить о реализации просмотра эфирного телевидения, где будут нужны выбор канала и регулировка громкости.

Для начала используем встроенный в iTach Flex датчик для записи кодов штатного пульта. Все кнопки нам сейчас не потребуются, достаточно определиться только с основными. После запуска программы iLearn и подключения к адаптеру необходимо поднести пульт к приемнику и нажимать кнопки

Теперь можно проанализировать результаты. Как мы видим, каждая команда, если не учитывать необходимой для самого адаптера части «sendir,1:1,1,37914,1,1,», имеет префикс «341,170,», далее идут тридцать две пары чисел и замыкает команду суффикс «22,1520,341,85,22,3700». В данном случае, нас будут интересовать как раз данные пары чисел. Они кодируют команду в двоичном формате, где «22,21,» обозначает «0», а «22,63,» обозначает «1», причем первым идет младший бит. Заметим, что из-за особенностей оцифровки некоторые числа могут немного отличаться, например «20» вместо «21» или «65» вместо «63». Но сути это не меняет и удобнее сразу привести все к одинаковому виду поиском и заменой.

Декодирование команды дает нам четыре байта. Подобный вариант, называемый обычно «протоколом NEC», используется достаточно часто и представляет собой сочетание двух байт адреса, одного байта команды и его повтора в инверсном виде («0» заменяются на «1» и наоборот).

В частности для нашего примера мы получаем: 04 FB 44 BB, 04 FB 02 FD, 04 FB 03 FC. Интересно, что здесь второй байт адреса является инверсным для первого. Далее есть два варианта: зная адрес, составить строки для каждого из возможных значений команды и проверить их на устройстве - или поискать готовые команды в сети. Второй подход приводит нас на сайт , где мы можем обнаружить документ производителя с подробным описанием команд управления телевизорами близких по году выпуска серий. Сравнение таблицы в нем с нашими записями показывает идеальное совпадение по записанным командам. Теперь нужно найти коды для требуемых нам операций и перекодировать их в обратном направлении в команды для iTach Flex. Например, из 04 FB C4 3B и 04 FB C5 3A мы получаем соответственно
«sendir,1:1,1,38004,1,1,341,171,22,21,22,21,22,65,22,21,22,21,22,21,22, 21,22,21,22,65,22,65,22,21,22,65,22,65,22,65,22,65,22,65,22,21,22,21,22, 65,22,21,22,21,22,21,22,65,22,65,22,65,22,65,22,21,22,65,22,65,22,65,22, 21,22,21,22,1523,341,86,22,3800»
и
«sendir,1:1,1,38004,1,1,341,171,22,21,22,21,22,65,22,21,22,21,22,21,22, 21,22,21,22,65,22,65,22,21,22,65,22,65,22,65,22,65,22,65,22,65,22,21,22, 65,22,21,22,21,22,21,22,65,22,65,22,21,22,65,22,21,22,65,22,65,22,65,22, 21,22,21,22,1523,341,86,22,3800».

Заключительный этап - проверка работоспособности команд. Он также поможет, если в найденной таблице есть неоднозначное соответствие. Для этой задачи используем программу iTest.

Для удобства и ускорения процесса мы установили около ТВ IP-камеру, что позволило наблюдать за процессом прямо с экрана компьютера. Проверка показала, что задача была полностью выполнена. Результат, записанный в обычном текстовом формате, можно скачать .

Отметим, что использование готовых баз могло и не дать результата. Например, в базе Global Cache для телевизоров LG представлено семь наборов команд, причем явных пунктов для переключения на заданный вход HDMI в них нет. Хотя, скорее всего, один из представленных вариантов выбора входа мог бы и сработать.

Комплект домашнего кинотеатра Onkyo HTX-22HD

Эта задача явно будет посложнее - модель достаточно старая и не очень популярная, особенно в «серьезных» инсталляциях. Однако со своей задачей многоканального ресивера для медиаплеера вполне справляется и сегодня. Как и с описанным выше телевизором здесь есть несколько задач - отдельные команды для включения и выключения питания, выбор конкретного входа и регулировка громкости. С последним проблемы нет - можно просто скопировать коды для этих кнопок. Но для управления питанием используется одна кнопка пульта, а для выбора входа - две кнопки для перехода к следующему и предыдущему входу. Также могут быть потенциально интересны функции выбора режима обработки многоканального звука.

Сначала стоит прояснить ситуацию со входами. В этом устройстве, как и на многих других в данном классе, физическому входу в настройках ресивера устанавливается соответствие подключенному оборудованию. Заводское состояние выглядит следующим образом:

Вход Функция
Coaxial Digital In CD
HDMI 1 VCR/DVR
HDMI 2 CBL/SAT
Line 1 Tape
Line 2 Tuner
Optical Digital In 1 DVD
Optical Digital In 2 Game/TV

Теперь, как и с телевизором, запишем некоторые или все команды существующего пульта через приемник в iTach Flex. Здесь мы тоже видим характерное начало в строках - «sendir,1:1,1,38095,1,1,» как параметры отправки пакета и «341,171,» как префикс. Далее идут знакомые тридцать две пары чисел протокола NEC, а вот суффиксы встречаются разные. Сложно понять, насколько это существенно, но, на всякий случай запишем и их в рабочую таблицу.

В случае Onkyo мы имеем два байта адреса и один байт команды, который повторяется в инвертированном виде четвертым байтом пакета. Адрес, вероятно, как-то связан с суффиксом, а всего на основных кнопках пульта мы смогли насчитать три адреса - D2 06, D2 07 и D2 08.

Вариант прямого перебора в подобных условиях явно требует слишком много времени. Так что попробуем снова обратиться к упомянутому выше сайту с информацией о кодах разных производителей, для телевизора это очень помогло. К сожалению, в найденных на этом ресурсе файлах не удалось найти упоминания именно нашей модели ресивера, да и похожих адресов в таблице на первый взгляд не было.

Анализ данных показал, что если сравнивать только команды и не учитывать адрес, то можно найти сходство. Например, для увеличения громкости используется команда 02, для уменьшения - 03, а для отключения звука - 05. В таблице с теми же адресами, что и управление громкостью нашлась команда включения питания (04). Модификация оцифрованной строки с адресом D2 06 на эту команду (нужно исправить всего пару чисел) показала, что мы на правильном пути - ресивер включался и не менял своего состояния при повторной отправке, будучи уже включенным. Команда выключения питания в документе имела другой адрес. Так что мы подставили команду 47 в строку команды , имеющую адрес D2 07 и отличающийся суффикс. Это тоже сработало.

Таким образом, до нахождения команд перехода на нужный вход оставалось совсем немного. Однако, еще раз внимательно просмотрев найденный документ, на одном из листов была обнаружена таблица, указывающая на то, что приемник и пульт могут иметь альтернативные заменяемые списки адресов из определенных наборов. Сделано это, видимо, для возможности управления однотипными устройствами в одном помещении. Так что после замены наших адресов на D2 6D, D2 6C, D2 AC мы смогли проверить соответствие оцифрованным данным и найти все необходимые команды для переключения на нужный вход. После этого, с учетом разных суффиксов, была составлена таблица команд для данного устройства. Скачать ее можно по ссылке . Отметим, что логические названия входов в ней были заменены на физические исходя из заводских настроек.

Медиаплеер Dune HD

С учетом того, что данная серия плееров поддерживает управление по сети (на сайте производителя приводится информация о API), от ИК-пульта в данном случае могут потребоваться только функции раздельного включения и выключения. Здесь производитель сделал подарок, опубликовав с разделе поддержки соответствующий документ, добавив в него необходимые команды включения и выключения с кодами 00 BF 5F A0 и 00 BF 5F A1 соответственно. Заметим, что работа второй команды зависит от настройки режима выключения плеера. Устройство может или переходить в спящий режим (с сохранением работоспособности сетевых функций) или выключаться полностью (до подачи ИК-команды на включение).

После оцифровки нескольких кнопок пульта в iTach Flex можно получить требуемое «окружение» для наших кодов - приставку «sendir,1:1,1,38186,1,1,342,170,» и суффикс «22,1547,342,85,22,3800». Результат после добавления непосредственных команд можно посмотреть в отдельном текстовом файле .

Использование команд в iRiduim

После нахождения требуемых кодов, попробуем использовать их в проекте автоматизации. В первом примере мы взяли продукт iRidium . Несмотря на то, что он имеет встроенную базу кодов Global Cache, по описанным выше причинам рекомендуется использовать именно новые найденные и проверенные коды.

Для удобства работы с командами можно создать собственную (пользовательскую) базу данных для требуемых устройств. Это позволит использовать их в нескольких проектах. При создании устройств в новой базе вы указываете название, производителя, тип и комментарий. После этого можно запрограммировать для устройства любое число команд. При этом заносить в параметры нужно не весь код, а только основную часть после частоты, числа повторов и смещения. Эти параметры будут указываться уже в свойствах передатчика Global Cache. Отметим, что, несмотря на формально немного отличающуюся частоту, все три устройства успешно работали при указании общего значения 38000.

После составления дизайна проекта с кнопками и другими элементами можно приступить к программированию действий. Проще всего это делать перетаскиванием команды из дерева устройств проекта на кнопки. Для реализации функций непрерывной регулировки (например, громкости), нужно использовать не только действие «Press», но и «Hold». Заметим, что для ИК управления реализовать быструю установку уровня громкости слайдером не получится, поскольку обратной связи от управляемого устройства в системе нет, как и возможности в виде параметра указать нужный уровень. А вот для RS-232 подобный сценарий в некоторых случаях может быть реализуем.

В данном проекте мы использовали простейший вариант удаленного управления - каждая кнопка соответствует своей команде. Но система iRidium позволяет реализовать и более сложные сценарии, например можно назначить одной кнопке включение сценария «Просмотр кинофильма», включающий соответствующее управление светом, включение всех участвующих в сценарии устройств (и отключение мешающих), необходимую коммутацию входов и выходов, открытие всплывающего окна управления медиаплеером.

В качестве такого варианта используем загруженные с сайта iRidium образцы интерфейса и панелей управления плеером Dune. После их объедения в одном проекте, настроим вызов меню управления плеером с одной из основных страниц. Причем в скрипт запуска добавим соответствующие ИК-команды для включения и настройки аудио-видео оборудования.

Кроме того, учитывая, что звук у нас декодируется и выводится через ресивер, для удобства управления с одной страницы можно заменить команды управления громкостью с плеера на ресивер. Как мы писали выше, обратной связи здесь нет, так что остается только относительное управление кнопками «громче» и «тише».

Заключение

Использование ИК-канала для управления аудио/видеотехникой и другим оборудованием может являться единственным способом автоматизировать работу с ним, особенно в недорогом сегменте. Несмотря на очевидные недостатки этого метода, основным из которых в данном случае является отсутствие обратной связи, данный метод вполне работоспособен и позволяет реализовать достаточно гибкие сценарии. В целом, никаких сложностей в реализации описанных вариантов, не считая поиска требуемых кодов, мы не встретили.

Процесс поиска и составления требуемых команд способен превратиться в запутанный исследовательский процесс. Существенную помощь здесь оказывают интернет-ресурсы, на которых собирается информация об используемых ИК-кодах. Анализ представленных данных и поиск аналогий часто позволяет с относительно небольшими затратами найти необходимые для реализации проекта команды.

В качестве управляющего адаптера можно использовать как упомянутые в материале готовые устройства Global Cache, так и другие аналогичные модели, например собранные самостоятельно на основе микроконтроллеров, проекты для которых широко представлены в интернете. Что касается интеграции в систему управления, то наиболее удобным представляется вариант работы по компьютерной сети, но в некоторых ситуациях будет достаточно и локальных подключений через USB или последовательный порт. Сетевой вариант, в частности, интересен тем, что может быть использован с различным программным обеспечением, например в составе решений Fibaro и через интернет.

(перевод с английского)

Инфракрасные лучи - самый дешевый способ для удаленного управления устройством в невидимом диапазоне света. Практически все аудио и видео устройства управляются ИК лучами. В связи с широким распространением используемых необходимых компонентов, ИК управление стало очень дешевым, что делает его идеальным у любителей использовать для собственных проектов.
Я объясню теорию работы ИК-пульта дистанционного управления, и некоторые из протоколов, которые используются в потребительской электронике.

Инфракрасный на самом деле нормальный свет с определенным цветом. Мы, люди не можем видеть этот цвет, потому что его длина волны 950нм, что ниже видимого спектра. Это одна из причин, почему ИК-свет выбран для удаленных целей управления, мы хотим использовать, но мы не заинтересованы видеть этот свет. Другая причина в том, что ИК управление довольно легко сделать, и поэтому дешевы в производстве. Хотя мы, люди не видим инфракрасный свет, излучаемый из пульта дистанционного управления не означает, что мы не можем сделать его видимым.

Видеокамера или цифровой фотоаппарат может "видеть" инфракрасный свет, как вы можете увидеть в этой картине. Если у вас есть веб-камера вам повезло, наведите пульт дистанционного управления, нажмите любую кнопку, и вы увидите мерцающий индикатор. К сожалению, вокруг нас еще очень много источников инфракрасного света. Солнце - яркий источник их всех, но есть такие как: лампы, свечи, система центрального отопления, и даже наше тело излучает инфракрасный свет. На самом деле все, что излучает тепло, также излучает инфракрасный свет. Поэтому мы должны принять некоторые меры предосторожности, чтобы гарантировать, что наши ИК сообщения приходили к получателю без ошибок.

Модуляции

Модуляция необходима для того, чтобы наш сигнал выделялся на фоне шума. С модуляцией сигнал ИК мигает с определенной частотой. ИК-приемник будет настроен на эту частоту, поэтому он может игнорировать все остальное.

На картинке вы можете видеть слева передатчик модулирующий сигнал с помощью ИК-светодиода. Сигнал регистрируется в приемнике на другой стороне. В последовательной коммуникации мы обычно говорим о "маркерах" и "пространстве". "Пространство" - период при отсутствии сигналов с передатчика. Никакой свет не излучается в это время. После простоя "маркеры" ИК импульсов идут в определенном частотном диапазоне. Частоты между 30 кГц и 60 кГц обычно используются в бытовой электронике. На выходе приемника "пространство" представлено высоким логическим уровнем. "Маркер" представляет низкий уровень. Пожалуйста, отметьте, что "маркеры" и "пространство" не 1-ы и 0-и, которые необходимо передать. Реальные отношения между "маркерами" и "пространства" и единиц и нулей зависят от используемого протокола. Больше информации об этом может быть найдено на страницах, которые описывают протоколы.

Передатчик

Передатчики это обычно пульты с батареями. Он должен потреблять мало энергии, как это возможно, и ИК-сигнал должен быть как можно более надежным, чтобы достичь приемлемой дистанцний управления. Предпочтительно она должна быть ударопрочной.
Многие чипы предназначены для использования в качестве ИК-передатчиков. Старые чипы были предназначены для лишь одного из нескольких ныне используемых протоколов. В нынешнее время очень низкое потребление у микроконтроллеров, позволяет использовать в ИК-передатчиках, а также они являются более гибкими в использовании. Если не нажата кнопка они находятся в режиме сна, в котором низкий ток потребления. Процессор "просыпается" для того чтобы передать соответствующую команду ИК только при нажатии клавиши.
Кварцевые кристаллы редко используются в таких пультах. Они очень хрупкие и, как правило, легко ломаются, когда пульт падает. Керамические резонаторы гораздо более подходящие, потому что они могут выдерживать большие физические перегрузки. Тот факт, что они менее точны, совсем не важен.
Ток через светодиод (или светодиодов) может варьироваться от 100 мА и до более 1А! Для того чтобы получить приемлемую дистанцию управления светодиодный ток должен быть как можно выше. Тут выбирается компромисс между параметром светодиода, срок службы батареи и максимальной дистанции. Светодиодные токи могут быть высокими, потому что управляющие импульсы светодиодов очень короткие. Средняя мощность излучения светодиода не должна превышать максимального значения. Вы также должны добиться того, чтобы максимально быстрый взгляд тока для светодиодных не был превышен. Все эти параметры можно найти в спецификации светодиодов.

Простая транзисторная схема, которая может быть использована для светодиодов. Транзистор с подходящим hFE и скорость переключения должны быть подобраны для этой схемы.
Значение резистора может быть рассчитана с использованием закона Ома. Помните, что номинальное падение напряжения на ИК-светодиод около 1,1В.
Стандартный драйвер, описанный выше, имеет один недостаток. Утечка напряжения батареи, при котором ток через светодиод будет уменьшаться, а это приведет к сокращению дистанции управления.

Чтобы избежать этого в цепи эмиттера последовательно ставят 2 диода. При серии импульсов на базе транзистора напряжение будет ограничено до 1,2В. База-эмиттер транзистора вычитает 0,6В, что, в результате амплитуда составит 0,6В на эмиттере. Расчет тока через светодиод прост - снова применяя закона Ома.

Приемник

Сейчас много разных приемников существует на рынке. Наиболее важные критерии выбора частоты модуляции используется и наличие в продаже.

На картинке выше вы можете видеть типичный блок-схема такого ИК-приемник. Не беспокойтесь, если вы не понимаете частей, все построено в одном электронном компоненте. Полученный ИК-сигнал с фотодиода обнаружения (на левой стороне диаграммы). Этот сигнал усиливается и ограничивается в первых 2-х этапах. Ограничителем выступает АРУ, чтобы получить постоянный уровень импульса, независимо от расстояния до пульта. Далее с AРУ сигнал поступает на полосовой фильтр (BPF). Полосовой фильтр настроен на частоту модуляции пульта. Общий диапазон частот от 30 кГц до 60 кГц для потребительской электроники. Следующий этап: детектор, интегратор и компаратор. Цель этих трех блоков для обнаружения присутствия частоты модуляции. Эта частота модуляции представляет выход компаратора как низкий сигнал.
Как я уже говорил ранее, все эти блоки интегрированы в единый электронный компонент. Есть много различных производителей этих компонентов на рынке. Устройства доступны в нескольких версиях, каждая из которых настроены на определенную частоту модуляции.
Обратите внимание, что усилитель установлен на очень высокий коэффициент усиления. Поэтому система считывает очень легко. Подключение большого конденсатора, по крайней мере 22мФ, к питанию приемника является обязательным. Некоторые даташиты рекомендуют ставить сопротивление 330 Ом последовательно с источником питания для дальнейшего отделить питания от остальной части схемы.

Есть несколько производителей ИК-приемников на рынке. Siemens, Vishay Telefunken и являются основными поставщиками в Европе. Siemens имеет свой SFH506-хх серии, где хх обозначает частоту модуляции 30, 33, 36, 38, 40 или 56кГц. Telefunken производили свои TFMS5xx0 и TK18xx серии, где хх еще раз указывает на частоту модуляции устройства. Похоже, что эти компаненты уже устарели. Они заменяются Vishay TSOP12xx, TSOP48xx и TSOP62xx.
Sharp, Xiamen Hualian и Japanese Electric - 3 ведущих азиатских компаний в сфере ИК устройств. Sharp производит устройства с очень загадочными именами, как: GP1UD26xK, GP1UD27xK и GP1UD28xK, где х, связанные с частотной модуляцией. Hualian имеет свои HRMxx00 серии, как и HRM3700 HRM3800. Japanese Electric имеет ряд устройств, которые не включают частоту модуляции в наименовании детали. PIC12043LM настроен на 36.7kHz, и PIC12043LM настроен на 37.9kHz.

Конец?

На этом мы завершаем теории операции для ИК систем дистанционного управления, предназначенный для использования в бытовой электронике. Я понимаю, что существуют другие способы для реализации ИК-контроля, но я ограничусь лишь описанием выше. Один из вопросов, не освещенных здесь является безопасность. Безопасность не имеет никакого значения, если мне надо управлять только своими видеомагнитофоном или телевизором. Но когда дело доходит до открытия двери или автомобиля, то ключевой сигнал должен быть уникальным! Может быть, я расскажу этому вопросу позже, но не сейчас.
Я также понимаю, что мой небольшой перечень производителей далек от завершения. Вряд ли возможно перечислить всех производителей здесь. Вы можете отправить мне по электронной почте, если у вас есть сведения о других протоколов, которые вы считаете необходимо добавить на страницы.
Эта страница только описание основных теории работы ИК-пультов дистанционного управления. Он не описывает протоколы, которые участвуют в общении между передатчиком и приемником. Существуют разные протоколы, разработаные разными производителями.