Тарифы Услуги Сим-карты

Что такое магнитный контактор. Разница между контактором и пускателем. Эксплуатация контакторов и магнитных пускателей

С этой статьи мы начнем изучение магнитного пускателя и все, что с ним связано, а идею этой темы подсказал постоянный читатель сайта Сергей Кр.

Является коммутационным аппаратом и относится к семейству электромагнитных контакторов, позволяющий коммутировать мощные нагрузки постоянного и переменного тока, и предназначен для частых включений и отключений силовых электрических цепей.

Магнитные пускатели применяются в основном для пуска, останова и реверсирования трехфазных асинхронных электродвигателей, однако, из-за своей неприхотливости они прекрасно работают в схемах дистанционного управления освещением, в схемах управления компрессорами, насосами, кран-балками, тепловыми печами, кондиционерами, ленточными конвейерами и т.д. Одним словом, у магнитного пускателя обширная область применения.

Как таковой магнитный пускатель уже трудно встретить в магазинах, так как их практически вытеснили контакторы . Причем по своим конструктивным и техническим характеристикам современный контактор ничем не отличается от магнитного пускателя, а различить их можно только по названию. Поэтому, когда будете приобретать в магазине пускатель, обязательно уточняйте, что это — магнитный пускатель или контактор.

Мы рассмотрим устройство и работу магнитного пускателя на примере контактора типа КМИ – контактор малогабаритный переменного тока общепромышленного применения.

Принцип работы магнитного пускателя.

Принцип работы очень простой: напряжение питания подается на катушку пускателя, в катушке возникает магнитное поле, за счет которого вовнутрь катушки втягивается металлический сердечник, к которому закреплена группа силовых (рабочих) контактов, контакты замыкаются, и через них начинает течь электрический ток. Управление магнитным пускателем осуществляется кнопками «Пуск», «Стоп», «Вперед» и «Назад».

Устройство магнитного пускателя.

Магнитный пускатель состоит из двух частей: сам пускатель и блок контактов .

Хотя блок контактов и не является основной частью магнитного пускателя и не всегда он используется, но если пускатель работает в схеме где должны быть задействованы дополнительные контакты этого пускателя, например, реверс электродвигателя, сигнализация работы пускателя или включение дополнительного оборудования пускателем, то для размножения контактов, как раз, и служит блок контактов или, как его еще называют — приставка контактная .

Блок контактов или приставка контактная.

Внутри блока контактов (приставки контактной) встроена подвижная контактная система, которая жестко связывается с контактной системой магнитного пускателя и стает с ним как бы одним целым. Крепится приставка в верхней части пускателя, где для этого предусмотрены специальные полозья с зацепами .

Контактная система приставки состоит из двух пар нормально замкнутых и двух пар нормально разомкнутых контактов.

Чтобы идти дальше давайте сразу разберемся: что есть нормально замкнутый и нормально разомкнутый контакты. На рисунке ниже схематично показана кнопка с парой контактов под номерами 1-2 и 3-4 , которые закреплены на вертикальной оси. В правой части рисунка показано графическое изображение этих контактов, используемое на электрических принципиальных схемах.

Нормально разомкнутый (NO) разомкнут , то есть, не замкнут. На рисунке он обозначен парой 1–2 , и чтобы через него прошел ток контакт необходимо замкнуть .

Нормально замкнутый (NC) контакт в нерабочем состоянии всегда замкнут и через него может проходить ток. На рисунке такой контакт обозначен парой 3–4 , и чтобы прекратить прохождение тока через него, надо контакт разомкнуть .

Теперь, если нажать кнопку, то нормально разомкнутый контакт 1-2 замкнется , а нормально замкнутый 3-4 разомкнется . О чем показывает рисунок ниже.

Вернемся к блоку контактов.
В исходном состоянии, когда магнитный пускатель обесточен , нормально разомкнутые контакты 53NO–54NO и 83NO–84NO разомкнуты, а нормально замкнутые 61NC–62NC и 71NC–72NC замкнуты. Об этом говорит шильдик с номерами клемм контактов, расположенный на боковой стенке блока контактов, а стрелка показывает направление движения контактной группы.

Теперь, если на катушку пускателя подать напряжение питания, то сердечник потянет за собой контакты блока контактов и нормально разомкнутые замкнутся , а нормально замкнутые разомкнутся .

Фиксируется блок контактов на пускателе специальной защелкой. А чтобы блок снять, достаточно приподнять защелку и выдвигать блок в сторону защелки.

Магнитный пускатель состоит как бы из верхней и нижней части.

В верхней части находится подвижная контактная система, дугогасительная камера и подвижная половинка электромагнита, которая механически связана с группой силовых контактов подвижной контактной системы.

Нижняя часть пускателя состоит из катушки, возвратной пружины и второй половинки электромагнита. Возвратная пружина возвращает верхнюю половинку в исходное положение после прекращения подачи питания на катушку, тем самым, разрывая силовые контакты пускателя.

Обе половинки электромагнита набраны из Ш-образных пластин, сделанных из электромагнитной стали. Это наглядно видно, если вытащить нижнюю половинку электромагнита.

Катушка пускателя намотана медным проводом, и содержит N-ое количество витков, рассчитанное на подключение определенного питающего напряжения равного 24, 36, 110, 220 или 380 Вольт.

Ну и как происходит сам процесс.
При подаче напряжения питания в катушке возникает магнитное поле и обе половинки стремятся соединиться, образуя замкнутый контур. Как только отключаем питание, магнитное поле пропадает, и верхняя часть возвращается возвратной пружиной в исходное положение.

Теперь осталось разобраться с питанием и характеристиками.
На боковой стенке пускателя, так же, как и у блока контактов, нанесена информация об электрических параметрах пускателя и для удобства условно разделена на три сектора:

Сектор №1.

В первом секторе дана общая информация о пускателе и его область применения:

50Гц – номинальная частота переменного тока, при которой возможна бесперебойная работа пускателя;

Категория применения АС-3 – двигатели с короткозамкнутым ротором: пуск, отключение без предварительной остановки.
Например: этот пускатель можно использовать для запуска и останова асинхронных двигателей с короткозамкнутым ротором, используемых в лифтах, эскалаторах, ленточных конвейерах, элеваторах, компрессорах, насосах, кондиционерах и т.д.

Для характеристики коммутационной способности контакторов и пускателей переменного тока установлены четыре категории применения , являющиеся стандартными: АС1 , АС2 , АС3 , АС4 . Каждая категория применения характеризуется значениями токов, напряжений, коэффициентов мощности или постоянных времени, условиями испытаний и других параметров установленных ГОСТ Р 50030.4.1-2002.

Iе 9А – номинальный рабочий ток. Это ток нагрузки, который в нормальном режиме работы может проходить через силовые контакты пускателя. В нашем примере этот ток составляет 9 Ампер.

Ith 25A – условный тепловой ток (t° ≤ 40°). Это максимальный ток, который контактор или пускатель может проводить в 8-часовом режиме так, чтобы превышение температуры его различных частей не выходило за пределы 40°С.

Сектор №2.

В этом секторе указана номинальная мощность нагрузки, которую могут коммутировать силовые контакты пускателя, и которая характеризуется категорией применения АС3 и измеряется в кВт (киловатт). Например, через контакты пускателя можно пропустить нагрузку мощностью 2,2 кВт, питающуюся переменным напряжением не более 230 Вольт.

Сектор №3.

Здесь показана электрическая схема пускателя: катушка и четыре пары нормально разомкнутых контактов – три силовых (рабочих) и один вспомогательный. От катушки через все контакты проходит пунктирная линия, которая указывает, что все четыре контакта замыкаются и размыкаются одновременно .

Напряжение питания 220В подается на катушку через контакты, обозначенные как А1 и А2 .

Современные магнитные пускатели выпускают с двумя однотипными контактами от одного вывода катушки. Их выводят с противоположных сторон, маркируют одинаковым буквенным и цифровым значением, и соединяют между собой проволочной перемычкой. В нашем случае это выводы с маркировкой А2 . Все это сделано для удобства монтажа схемы. И если придется собирать схемы с участием магнитного пускателя, используйте оба эти контакта.

Теперь осталось рассмотреть контактную группу пускателя. Здесь все просто.
Силовыми контактами являются три пары: 1L1–2T1 ; 3L2–4T2 ; 5L3–6T3 — к ним подключается нагрузка, которую Вы хотите запитывать через магнитный пускатель или контактор. Причем контакты 1L1 ; 3L2 ; 5L3 являются входящими – к ним подводится напряжение питания, а 2Т1 ; 4Т2 ; 6Т3 являются выходящими – к ним подключается нагрузка. Хотя разницы здесь нет — что куда, но это считается за правило, чтобы можно было разобраться в монтаже другому человеку, не производившему монтаж.

Последняя пара контактов 13НО–14НО является вспомогательной и эту пару используют для реализации в схеме самоподхвата пускателя. То есть, эта пара нужна, чтобы при включении в работу, например, двигателя, все время его работы не пришлось держать нажатой кнопку «Пуск». О самоподхвате мы поговорим в следующей части.

Ну и последнее, на что хотел обратить Ваше внимание, это на то, что современные пускатели, автоматические выключатели и УЗО теперь можно размещать в одном ящике и на одну дин рейку. Так что учитывайте это при выборе ящика.

Теперь я думаю Вам понятно назначение, устройство и работа магнитного пускателя , а во мы рассмотрим схемы подключения магнитного пускателя.
А пока досвидания.
Удачи!

Понравилась статья - поделитесь с друзьями:

36 комментариев

Контактор — это магнитное устройство, основанное на двухпозиционном способе работы, предназначенное для постоянных промежуточных (дистанционных) включений силовых гальванических цепей, при наличии стандартного режима работы.

В основном применяются одно- или двухполюсные устройства постоянного тока или трехполюсные — переменного тока. Частое число включений и выключений контакторов влечет за собой высокие требования к данному типу устройств (электрическая и механическая стойкость материала).

Контакторы содержат:

  • Контактную систему.
  • Электромагнитную систему.
  • Дугогасительную камеру.
  • Систему вспомогательных контактов, переключающих уровни сигнализации.

Принцип работы

В отличие от коммутационных контактных агрегатов, контакторы могут проводить токи лишь номинально, поскольку они не предназначаются для отключения цепи (как пример: короткого замыкания).

При помощи дополнительной цепи тока осуществляется управление устройством, проходящего по индуктивной катушке с напряжением от 24 до 220-380 вольт . С целью увеличения безопасности при эксплуатации изделия, общая величина тока должна быть несколько ниже уровня рабочего тока в проходящих цепях. Контактор не обладает механическим ресурсом для сдерживания контактов в активном положении, поэтому при отсутствии направляющего потока напряжения на индуктивной катушке, он размыкает цепь. Для сдерживания цепи в активном положении применяется система «автоподхвата» с применением двух открытых контактов (пример: использование программируемого логического контроллера).


Обычно контакторы используют для проводки электрических цепей переменного тока при работе до 650-660 В и силе тока до 1500 А.

Магнитный пускатель представляет собой электромеханическое устройство управления и распределения, назначение которого заключается в запуске электродвигателя, и обеспечения его непрерывного функционирования. Данное устройство работает как трансформированный (модифицированный) контактор, он может быть дополнен комплектующими элементами. Пускатели бывают наделены системой аварийного отключения при обрыве цепи, или одной из фаз питания электродвигателя.

Пускатель выполняет функцию изменения (переключения) направления реверсивной схемы, путем перемены фаз, для чего, с этой целью в устройство помещается еще один контактор.

С целью уменьшения выхода тока двигателя, применяют переключатель трехфазной системы снабжения электричеством.
Работа магнитного пускателя может быть как открытой, так и защищенной (со встроенной защитой электродвигателя).
Магнитные пускателя бывают реверсивными и модульными. Реверсивные производят обращение трехфазных электродвигателей с помощью чередования напряжения и представляют собой два соприкасателя (контактора), соединенные в одном устройстве электрической или механической блокировкой.Они исключают вероятность короткого замыкания (межфазного).

Модульные пускатели являются электромагнитными устройствами, созданными для установки в распределительные электрощиты модульных стандартных изделий с креплениями. Данные модели пускателей отличаются электробезопасностью, и бесперебойной работой.

Общие черты контактора и магнитного пускателя

Вышеупомянутые изделия являются дополняющими друг друга устройствами, с единым принципом работы в электрической цепи, то есть, используются для коммутации. Одинаково используются для запуска электродвигателей переменного тока, ввода-вывода уровней сопротивления. Магнитный пускатель и контактор имеют несколько контактов для управления — замкнутую и разомкнутую цепь.

Отличия контактора от магнитного пускателя

Пускатели используются для коммутации цепей слабого напряжения. Изделия также различаются по своим габаритам: контактор больше пускателя.

Следующие отличие заключается в конструкции: контакторы имеют мощные силовые контакты, и наделены дугогасителями. Пускатели не имеют дугогасительных камер, а силовые контакты гораздо слабее. Отличаются устройства и по своему назначению: магнитные пускатели используются в целом для подачи электрического питания на приборы (светильники, электроприемники), а контакторы предназначаются для коммутации совершенно любой силовой цепи.

Глава 20

КОНТАКТОРЫ И МАГНИТНЫЕ ПУСКАТЕЛИ

§ 20.1. Назначение контакторов и магнитных пускателей

Наиболее распространенным потребителем электриче­ской энергии является электродвигатель. Примерно 2/3 всей выра­батываемой в стране электроэнергии потребляется электродвига­телями. Основным коммутационным аппаратом, осуществляющим подключение электродвигателя к питающей сети, является кон­тактор. Электромагнитный контактор представляет собой выклю­чатель, приводимый в действие с помощью электромагнита. По сути дела, это мощное электромагнитное реле, контактный узел которого способен замыкать и размыкать силовые цепи с токами в десятки и сотни ампер при напряжениях в сотни вольт. При та­ких электрических нагрузках необходимо принятие специальных мер по гашению дуги. Поэтому по сравнению с обычными элект­ромагнитными реле электромагнитные контакторы имеют дугогасительные устройства и более мощные электромагнит и контакт­ные узлы. Кроме силовых (мощных) контактов! имеются и блоки­ровочные контакты, используемые в цепях управления для целей автоматики. Различают контакторы постоянного и переменного тока. Для автоматического пуска, остановки и реверса электродви­гателей применяют магнитные пускатели. Они представляют со­бой комплектные электрические аппараты, включающие в себя электромагнитные контакторы, кнопки управления, реле защиты и блокировки.

Контакторы и магнитные пускатели используются и для вклю­чения других мощных потребителей электроэнергии: осветительпых и нагревательных установок, преобразовательного и техно­логического электрического оборудования.

К этой же группе электрических силовых аппаратов следует отнести автоматические выключатели, которые также предназна­чены для подключения к питающей сети мощных электропотре­бителей. Замыкание их контактов производится не с помощью электромагнита, а вручную. Автоматически они производят лишь выключение нагрузки, защищая ее от перегрузок по току. Если контакторы и магнитные пускатели способны работать при час­тых включениях и отключениях, то автоматические выключатели обычно применяют при включениях па продолжительное время. В типовые схемы электропривода обычно входят автоматический выключатель (питающий и силовые, и управляющие цепи) и маг­нитный пускатель (осуществляющий непосредственную коммута­цию для пуска, остановки и реверса электродвигателя).

§ 20.2. Устройство и особенности контакторов

Принцип действия контакторов такой же, как и у эле­ктромагнитных реле. Поэтому и устройство их во многом сходно. Главное отличие заключается в том, что контакты контакторов коммутируют большие токи. Поэтому они выполняются более мас­сивными, требуют больших усилий, между ними при разрыве воз­никает дуга, которую необходимо погасить.

Основными узлами контактора являются электромагнитный механизм, главный (силовой) контактный узел, дугогасительная система, блокировочный контактный узел.

Электромагнитный механизм осуществляет замыкание и раз­мыкание контактов. При подаче напряжения на втягивающую катушку электромагнита якорь притягивается к сердечнику, а ме­ханически связанные с ним подвижные контакты замыкают сило­вую цепь и выполняют необходимые переключения в цепи управ­ления.

Магнитные системы контакторов в зависимости от характера движения якоря и конструкции различают на поворотные и пря-моходовые. Магпитопровод контактора поворотного типа устроен аналогично клапанному реле. Для устранения залипапия якоря используют немагнитные прокладки. Для замыкания силовых кон­тактов требуются значительно большие усилия, чем развиваемые в реле. Поэтому электромагнитный механизм контактора выполня­ется более мощным и массивным. При срабатывании контактора происходит довольно значительный удар якоря о сердечник. Час­тично этот удар принимает на себя немагнитная прокладка; кро­ме того, магнитную систему амортизируют пружиной, которая так­же уменьшает вибрацию контактов.

Магнитопровод контактора прямоходного типа имеет обычно Ш-образпую форму. В этом случае для устранения заливания яко­ря делают зазор между средними стержнями сердечника и якоря. Втягивающая катушка обычно обеспечивает включение и удержание якоря в притянутом положении. Но иногда использу­ют две катушки: мощную включающую и менее мощную удержи­вающую. В этом случае контактор во включенном состоянии по­требляет меньше электроэнергии, поскольку включающая катушка находится под током только короткое время. Размыкание контак­тов происходит за счет отключающей пружины при снятии напря­жения с катушки контактора. Втягивающая катушка должна обе­спечивать надежное срабатывание контактора при снижении на­пряжения до 0,85. По нагреву катушка должна выдерживать повышение напряжения до 1,05

В контакторах с поворотным якорем наибольшее распростра­нение получили линейные перекатывающиеся контакты (см. рис. 16.5). В примоходных контактах применяются мостиковые кон­тактные системы (см. рис. 16.4). Контактный мостик имеет не­большую массу и выполняется самоустанавливающимся, что сни­жает вибрацию контактов. Для предотвращения вибрации кон­тактная пружина создает предварительное нажатие, равное при­мерно половине конечной силы нажатия.

У контакторов для длительного режима работы на поверх­ность медных контактов обычно напаивается металлокерамическая или серебряная пластинка. Контакты иногда могут выпол­няться из меди, если образующаяся пленка окисла па рабочей поверхности контактов периодически снимается их самоочисткой. Дугогасительная система контакторов постоянного тока обыч­но выполняется в виде камеры с продольными щелями, куда дуга вытесняется с помощью магнитной силы. Дугогасительная систе­ма контакторов переменного тока обычно имеет вид камеры со стальными дугогасительными пластинами и двойным разрывом дуги в каждой фазе.

Блокировочные или вспомогательные контакты применяются для переключений в цепях управления и сигнализации, поэтому они имеют такое же конструктивное выполнение, как и контакты реле.

§ 20.3. Конструкции контакторов

Как правило, род тока в цепи управления, которая пи­тает катушку контактора, совпадает с родом тока главной цепи. Поэтому контакторы постоянного тока, предназначенные для включения двигателей постоянного тока, имеют электромагнитный механизм, питаемый постоянным током. Соответственно контак­торы переменного тока, предназначенные для включения двигате­лей (или другой нагрузки) переменного тока, имеют электромагнитный механизм, питаемый переменным током. Бывают и исклю­чения. Известны, например, случаи, когда катушки контакторов переменного тока получают питание от цепи постоянного тока.

Устройство контактора постоянного тока показано на рис. 20.1. Электромагнитный механизм поворотного типа состоит из сердеч­ника / с катушкой 2, якоря 3 и возвратной пружины 4. Сердеч­ник 1 имеет полюсный наконечник, необходимый для увеличения

Рис. 20.1. Контактор посто- Рис. 20.2. Дугогасительная

янного тока камера с электромагнит-

ным дутьем

магнитной проводимости рабочего зазора электромагнита. Немаг­нитная прокладка 5 служит для предотвращения залипания яко­ря. Силовой контактный узел состоит из неподвижного 6 и по­движного 7 контактов. Контакт 7 шарнирно закреплен на рычаге 8, связанном с якорем 8 и прижатом к нему нажимной пружиной 9. Подвод тока к подвижному контакту 7 выполнен гибкой медной
лентой 10. Замыкание главных контактов 6 и 7 происходит с проскальзыванием и перекатыванием, что обеспечивает очистку кон­тактных поверхностей от окислов и нагара. При срабатывании электромагнитного механизма кроме главных контактов переклю­чаются вспомогательные контакты блокировочного контактного уз­ла 11. При размыкании главных контактов 6 и 7 между ними возникает электрическая дуга, ток которой поддерживается за счет ЭДС самоиндукции в обмотках отключаемого электродвига­теля. Для интенсивного гашения электрической дуги служит ду­гогасительная камера 12. Она имеет дугогасительную решетку в виде тонких металлических пластин, которые разрывают дугу на короткие участки. Пластины интенсивно отводят теплоту от дуги и гасят ее. Однако при большой частоте включения контактора пластины не успевают остывать и эффективность дугогашения падает.

Для вытеснения дуги в сторону дугогасителыюй решетки мож­но использовать электромагнитную силу, так называемое магнит­ное дутье. На рис. 20.2 показана дугогасительная камера с уз­кой щелью и магнитным дутьем. Щелевая камера образована дву­мя стенками /, выполненными из изоляционного материала. Си­стема магнитного дутья состоит из катушки 2, включенной после­довательно с главными контактами и размещенной на сердечнике 3. Для подвода магнитного поля в зону образования дуги служат ферромагнитные щеки 4. В результате взаимодействия электриче­ского тока дуги с магнитным полем появляется сила F, которая растягивает дугу и вытесняет ее в щелевую камеру между стенками 1. За счет усиленного отвода теплоты стенками камеры дуга быстро гаснет.

При последовательном включении главных контактов и катуш­ки магнитного дутья направление силы F остается постоянным при любом направлении тока в силовой цепи, поскольку сила F пропорциональна квадрату тока (ведь магнитное поле создается этим же током). Поэтому магнитное дутье можно использовать и в контакторах переменного тока.

Контакторы переменного тока отличаются от контакторов по­стоянного тока, прежде всего тем, что они, как правило, выпол­няются трехполюсиыми. Основное назначение контакторов пере­менного тока - включение трехфазных асинхронных электродви­гателей. Поэтому они имеют три главных (силовых) контактных узла. Все три главных контактных узла работают от общего эле­ктромагнитного приводного механизма клапанного типа, который поворачивает вал с установленными на нем подвижными контак­тами. С этим же приводом связаны вспомогательные контакты. Главные контактные узлы имеют систему дугогашения с магнит­ным дутьем и дугогасителной щелевой камерой или дугогаси­телной решеткой. В контакторах быстрее всего изнашиваются главные контакты, поскольку они подвергаются интенсивной эро­зии (как говорится, контакты выгорают). Для увеличения общего срока службы контакторов предусматривается возможность сме­ны контактов.

Наиболее сложным и трудным этапом работы контактов является процесс их размыкания. Именно в этот момент контакты оп­лавляются, между ними возникает дуга. Для облегчения работы главных контактов при размыкании выпускаются контакторы пе­ременного тока с полупроводниковым блоком. В этих контакторах параллельно главным замыкающим контактам включают по два тиристора (управляемых полупроводниковых диода). Во включен­ном положении ток проходит через главные контакты, поскольку тиристоры находятся в закрытом состоянии и ток не проводят. При размыкании контактов схема управления на короткое время открывает тиристоры, которые шунтируют цепь главных контак­тов и разгружают их от тока, препятствуя возникновению элект­рической дуги. Такие комбинированные тиристорные контакторы выпускаются на токи в сотни ампер. Поскольку тиристоры рабо­тают в кратковременном режиме, они не перегреваются и не нуж­даются в радиаторах охлаждения.

Коммутационная износостойкость комбинированных контакто­ров составляет несколько миллионов циклов, в то время как глав­ные контакты обычных контакто­ров постоянного и переменного то­ка выдерживают обычно 150-200 тыс. включений.

Для управления электродвига­телями переменного тока неболь­шой мощности применяют прямоходовые контакторы с мостиковыми контактными узлами. Благодаря двукратному разрыву цепи и облег­ченным условиям гашения дуги пе­ременного тока в этих контакторах не требуются специальные дугогасительные камеры с магнитным дутьем, что существенно уменьшает их габаритные размеры.

Рис. 20.3. Контактор переменного тока

Электромагнитный привод контактора переменного тока малой мощности (рис. 20.3) имеет Ш-образный сердечник 1 и якорь 2, собранные из пластин электротехнической стали. Часть полюсов сердечника охвачена короткозамкнутым витком, что предотвра­щает вибрацию якоря, вызванную снижением силы электромаг­нитного притяжения до нуля при прохождении переменного сину­соидального тока через нуль. Катушка 3 контактора охватывает сердечник и якорь, она и создает намагничивающую силу в маг­нитной системе контактора. На якоре 2 закреплены подвижные контакты 4 мостикового типа, что повышает надежность отклю­чения за счет двукратного размыкания. В пластмассовом корпусе установлены неподвижные контакты 5 и 6. Пружина 7 возвраща­ет контакты 4 в исходное положение. В трехфазном контакторе - три контактные пары, отделенные друг от друга пластмассовыми перемычками 8. Главные контакты имеют металлокерамические накладки и защищены крышкой. Вспомогательные контакты на рис. 20.3 не показаны.

§ 20.4. Магнитные пускатели

Магнитный пускатель - это комплектное устройство, предназначенное главным образом для пуска трехфазных асин­хронных двигателей. Основной составной частью магнитного пускателя является трехполюсный контактор переменного тока. Кро­ме того, контактор имеет кнопки управления и тепловые реле.

Схема включения трехфазного асинхронного двигателя с короткозамкнутым ротором показана на рис. 20.4. Для пуска элект­родвигателя М нажимается кнопка SB1 («Пуск»). Через катушку контактора КМ проходит ток, электромагнит контактора срабатывает, и замыкаются все его контакты, которые на схеме обоз­начаются теми же буквами КМ. Силовые контакты КМ подклю-

Рис. 20.4. Схема включения трех- Рис. 20.5. Конструкция неревер-

фазного асинхронного электро- сивного магнитного пускателя

двигателя с магнитным пускате­лем

чают на трехфазное напряжение обмотку электродвигателя М. Параллельно кнопке SB1 подсоединены блокировочные контак­ты КМ. Так как они замкнулись, то после отпускания кнопки SB1 катушка контактора получает питание по этим контактам. Сле­довательно, для включения электродвигателя не надо все время держать кнопку нажатой: достаточно ее один раз нажать и от­пустить. Для остановки электродвигателя служит кнопка SB2 («Стоп»), при нажатии которой разрывается цепь питания кон­тактора КМ. Для защиты электродвигателя от перегрева служат тепловые реле FP1 и FP2, чувствительные элементы которых включаются в две фазы электродвигателя, а размыкающие кон­такты, обозначенные теми же буквами, включены в цепь пита­ния катушки контактора КМ. Для защиты самой схемы управле­ния служат плавкие предохранители FV. На схеме показан также рубильник Р, который обычно замкнут. Его размыкают лишь в том случае, когда собираются проводить ремонтные работы. По­добная схема является типовой, она применяется во всех случаях, когда не требуются изменение направления вращения (реверс) электродвигателя и интенсивное (принудительное) торможение.

На рис. 20.5 показана конструкция нереверсивного магнитно­го пускателя, который смонтирован в ящике с открывающейся крышкой. Электромагнитный механизм 1 контактора при сраба­тывании перемещает три подвижных контакта 2, размещенных в дугогасительных камерах. Одновременно переключаются блокиро­вочные контакты 3. Последовательно с двумя главными контакт­ными узлами включены тепловые реле 4.

Кнопки «Пуск» и «Стоп» обычно находятся вне ящика пуска­теля, они размещены на пульте управления под рукой у рабочего. Кнопка «Стоп» имеет красный цвет. Реверсивная схема включе-

Рис. 20.6. Схема включения трехфазного асинхронного элек­тродвигателя с реверсивным магнитным пускателем

ония трехфазного асинхронного двигателя показана на рис. 20.6. Для того чтобы реверсировать (изменить направление вращения) трехфазный асинхронный двигатель, необходимо изменить поря­док чередования фаз на обмотке статора. Например, если для прямого вращения фазы подключались в последовательности ABC, то для обратного вращения необходима последовательность АСВ. Поэтому в состав реверсивного магнитного пускателя входят два контактора: KB для вращения вперед и КН для вращения назад. Кроме того, реверсивный магнитный пускатель имеет три кнопки управления и тепловые реле. В ряде случаев в комплект магнит­ного пускателя входят пакетный переключатель и плавкие предохранители. Схема (рис. 20.6) работает следующим об­разом.

Для включения электродвигателя М в прямом направлении не­обходимо нажать кнопку SB1 («Вперед»). При этом срабатывает контактор KB и своими силовыми контактами подключает к трех­фазной сети обмотки электродвигателя. Одновременно блокировочные контакты KB разрывают цепь питания катушки контакто­ра КН, чем исключается возможность одновременного включения обоих контакторов. Для включения электродвигателя в обратном направлении необходимо нажать кнопку SB2 («Назад»). В этом случае срабатывает контактор КН и своими силовыми контактами подключает к трехфазной сети обмотки электродвигателя. После­довательность соединения фаз теперь иная, чем при срабатывании контактора KB: две фазы из трех поменялись местами. При сра­батывании контактора КН его блокировочные контакты разрыва­ют цепь питания катушки контактора КВ. Нетрудно видеть, что при одновременном включении контакторов KB и КН произошло бы короткое замыкание двух линейных проводов трехфазной сети друг на друга. Для того чтобы исключить такую аварию, и нуж­ны блокировочные размыкающиеся контакты контакторов KB и КН. Следовательно, если подряд нажать обе кнопки (SB1 и SB2), то включится только тот контактор, кнопка которого была нажа­та раньше (пусть даже на мгновение).

Для реверса электродвигателя надо предварительно нажать кнопку SB3 («Стоп»). В этом случае блокировочные контакты подготавливают цепь управления для нового включения. Для на­дежной работы необходимо, чтобы силовые контакты контактора разомкнулись раньше, чем произойдет замыкание блокировочных контактов в цепи другого контактора. Это достигается соответст­вующей регулировкой положения блокировочных контактов по хо­ду якоря электромагнитного механизма контактора. Для блоки­ровки кнопок SB1 и SB2 используются замыкающиеся блокиро­вочные контакты соответствующего контактора, подключенные па­раллельно кнопке.

Необходимо исключить одновременное срабатывание обоих контакторов, для чего используют двойную или даже тройную блокировку. Для этой цели в схеме рис. 20.6 применяют двухцепные кнопки SB1 и SB2. Например, кнопка SB1 при нажатии за­мыкает свои контакты в цепи контактора KB и разрывает свои контакты в цепи контактора КН. Аналогично работает двухцепная кнопка SB2. Кроме того, реверсивные магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препят­ствующим одновременному срабатыванию электромагнитов кон­такторов. Контакты тепловых реле FP1 и FP2, включенные в две фазы обмотки электродвигателя, отключают цепь питания катушек обоих контакторов при длительном протекании большого тока, чтобы не допустить перегрева обмоток. Для защиты схемы уп­равления служат плавкие предохранители FV.

Магнитные пускатели и контакторы выбирают по номинально­му току электродвигателя с учетом условий эксплуатации. В про­мышленности применяются магнитные пускатели серий ПМЕ и ПМЛ с прямоходовыми контакторами и серии ПАЕ с подвижной системой поворотного типа.


Автоматический выключатель предназначен для вклю­чения и отключения электрических цепей и электрооборудования, а также для защиты от больших токов, возникающих при корот­ких замыканиях и перегрузках. В отличие от магнитного пускате­ля автоматический выключатель не может использоваться для автоматических систем, использующих электрические управляющие сигналы. Он также не обеспечивает ре­верса электродвигателя. Автоматический выключатель часто используют для про­должительного включения нереверсируемых электродвигателей. Может он также использоваться вместо рубильника в схе­мах с магнитным пускателем (см. рис. 20.4 и 20.6).

Устройство автоматического воздуш­ного выключателя (автомата) показано на рис. 20.7. С помощью рукоятки / про­изводится включение и отключение ав­томата. В состоянии, показанном на ри­сунке, автомат отключен, и подвижный контакт 2 не замкнут с неподвижным контактом 3. Для включения автомата следует взвести пружину 6, при этом ру­коятка / перемещается вниз и повора­чивает деталь 4, которая своим нижним концом входит в зацепление с зубом удерживающего рычага 5.

Теперь авто­мат готов к включению. Для его вклю­чения рукоятку 1 перемещают вверх.

Пружина 6 займет такое положение, что шарнирно соединенные рычаги 7 и 8 перемещаются вверх по отношению к тому положе­нию, когда они находятся на одной прямой. Автомат включится: цепь тока создается через контакты 2 и 3, разделители 9 и 10.

Автоматическое отключение автомата происходит при сраба­тывании разделителей. При длительных токовых перегрузках сра­батывает тепловой биметаллический расцепитесь 10, свободный конец, которого перемещается вниз, поворачивая рычаг 5 по часо­вой стрелке. Зуб рычага расцепляется с деталью 4, которая пово­рачивается, а рычаги 7 и 8 проходят мертвое положение. Усилие пружины 6 направлено вниз, под его действием размыкаются кон­такты 2 и 3. Отключение при максимально допустимом токе про­исходит под действием электромагнитной силы , выводящей зуб рычага 5 из зацепления с деталью 4. Если произошло автомати­ческое отключение нагрузки, то рукоятка 1 остается в верхнем положении. Ручное отключение автомата происходит при перемещении ру­коятки 1 вниз. Возникающая при размыкании контактов 2 и 3 электрическая дуга гасится с помощью дугогасительной решет­ки 11.

Автоматы могут снабжаться расцепителями минимального на­пряжения, отключающими автомат при напряжении всети ниже допустимого значения. Для дистанционного управления автомати­ческим выключателем могут использоваться специальные их кон­струкции, дополненные электромагнитным приводом рукоятки 1.

Выпускаемые промышленностью автоматические выключатели типов АК, АП, АЕ имеют от 1 до 3 пар силовых контактов. Они предназначены для цепей с напряжением от 110 до 500 В при то­ках в десятки ампер. Время автоматического отключения состав­ляет 0,02-0,04 с.

Министерство образования и науки РФ

Федеральное агентство по образованию

Департамент образования Кировской области

ГОУ НПО профессиональное училище № 5

Письменная экзаменационная работа

Тема: «Магнитные пускатели, контакторы».

Выпускник: Касимов Андрей Игоревич

Группа № 21

Руководитель работы

Бакулин Николай Анатольевич

г. Киров 2010 год


ВВЕДЕНИЕ

В промышленности и мелкомоторном секторе, гражданском и коммерческом строительстве, задачи связанные с пуском и остановкой электродвигателей, а также с дистанционным управлением электрическими цепями возложены на контакторы и магнитные пускатели. Данные устройства применяются там, где необходимы частые пуски либо коммутация электрических устройств с большими токами нагрузки.

Для начала установим: чем это оборудование отличается друг от друга:

Контактор - это дистанционно управляемый коммутационный аппарат, позволяющий коммутировать мощные (в том числе индуктивные) нагрузки как переменного, так и постоянного тока.

Отличительной особенностью электромагнитных контакторов, по сравнению с близкими к ним электромагнитными реле является то, что контакторы разрывают электрическую цепь в нескольких точках одновременно, в то время как электромагнитные реле обычно разрывают цепь только в одной точке.

Контакторы – это аппараты дистанционного действия, предназначенные для частых включений и отключений силовых электрических цепей при нормальных режимах работы.

Электромагнитный контактор представляет собой электрический аппарат, предназначенный для коммутации силовых электрических цепей. Замыкание или размыкание контактов контактора осуществляется чаще всего с помощью электромагнитного привода.

Общепромышленные контакторы классифицируются:

· по роду тока главной цепи и цепи управления (включающей катушки) - постоянного, переменного, постоянного и переменного тока;

· по числу главных полюсов - от 1 до 5;

· по номинальному току главной цепи - от 1,5 до 4800 А;

· по номинальному напряжению главной цепи: от 27 до 2000 В постоянного тока; от 110 до 1600 В переменного тока частотой 50, 60, 500, 1000, 2400, 8000, 10 000 Гц;

· по номинальному напряжению включающей катушки: от 12 до 440 В постоянного тока, от 12 до 660 В переменного тока частотой 50 Гц, от 24 до 660 В переменного тока частотой 60 Гц;

· по наличию вспомогательных контактов - с контактами, без контактов.

Контакторы также различаются по роду присоединения проводников главной цепи и цепи управления, способу монтажа, виду присоединения внешних проводников и т.п.

На сегодняшний день существует огромный выбор контакторов и пускателей всех типов для всех возможных видов электроустановок.

Контакторы КМ – модульные контакторы, применяемые в основном в системах управления и автоматизации жилых, офисных, промышленных и прочих помещениях для управления и коммутации осветительных, обогревательных и вентиляционных и прочих инженерных систем. Применяются в сетях с напряжением до 380В переменного тока частотой 50Гц. Главные достоинства контактора КМ – малошумная коммутация, высокая коммутационная мощность и долговечность, свободный от фона переменного тока магнитный привод.

Контакторы серии КМЭ – малогабаритные контакторы, предназначенные для дистанционного пуска, остановки и реверсирования трехфазных асинхронных двигателей с короткозамкнутым ротором в сетях переменного тока частотой 50/60Гц с напряжением до 660В (категория применения АС-3) и для дистанционного управления электрическими цепями в которых ток включения равен номинальному току нагрузки (категория АС-1).


Контакторы этой серии отличают: компактные размеры, широкий ассортимент исполнений и катушек управления, большой выбор дополнительных устройств и возможность реализации реверсивного варианта управления, простота в обслуживании и эффективность работы.

Контакторы серии КТЭ – также используются для использования в схемах управления трехфазных асинхронных электродвигателей с короткозамкнутым ротором в сетях с напряжением до 660В. Могут использоваться для включения и отключения таких систем как: нагревательных установок, освещения, насосных систем, печей, вентиляции и т.д. В ассортименте компании как одиночные нереверсивные контакторы, так и блочные реверсивные контакторы.

реверсивный контактор нереверсивный контактор


Контакторы КТ-6000

Применяются для включения и отключения приемников электрической энергии с номинальным напряжением до 660В переменного тока частотой 50Гц. Сфера применения – включение мощных электрических машин в аппаратуре автоматического включения резерва (АВР). Изготавливаются только в открытом исполнении с естественным воздушным охлаждением. Выпускаются в трехполюсном исполнении на номинальные токи от 100 до 630А, категория применения АС3.

НАЗНАЧЕНИЕ контактора

Контакторы бывают трех видов: постоянного тока, контакторы переменного тока и контакторы постоянно-переменного тока.

Контакторы постоянного тока предназначены для коммутации цепей постоянного тока и, как правило, приводятся в действие электромагнитом постоянного тока.

Контакторы постоянного тока применяются для включения и отключения приемников электрической энергии в цепях постоянного тока; в электромагнитных приводах высоковольтных выключателей; в устройствах автоматического повторного включения.

Контакторы постоянного тока выпускаются в основном на напряжение 22 и 440 В., токи до 630 А., однополюсные и двухполюсные.

Контакторы переменного тока применяются для управления асинхронными трехфазными двигателями с короткозамкнутым ротором, для выведения пусковых резисторов, включения трехфазных трансформаторов, нагревательных устройств, тормозных электромагнитов и других электротехнических устройств.

Контакторы переменного тока предназначены для коммутации цепей переменного тока. Электромагниты этих цепей могут быть как переменного, так и постоянного тока.

КОНСТРУКЦИЯ контактора

Схема контактора постоянного тока представлена на рис. 330.


Контактор состоит из следующих основных узлов: главных контактов, дугогасительной системы, электромагнитной системы, вспомогательных контактов.

Конструктивно контакторы состоят из электромагнитной системы, состоящей из сердечника? (электромагнита, магнитопровода) (7), якоря (8), катушки (3) и крепежных деталей (1,2); системы главных контактов (4,5); дугогасительной системы (токоведущая связь (6).

Дугогасительная система обеспечивает гашение электрической дуги, возникающей при размыкании главных контактов.

Главные контакты осуществляют замыкание и размыкание силовой цепи. Они должны быть рассчитаны на длительное проведение номинального тока и на производство большого числа включений и отключений при большой их частоте. Нормальным считают положение контактов, когда втягивающая катушка контактора не обтекается током и освобождены все имеющиеся механические защелки. Главные контакты могут выполняться рычажного и мостикового типа. Рычажные контакты предполагают поворотную подвижную систему, мостиковые – прямоходовую.

Дугогасительные камеры контакторов постоянного тока построены на принципе гашения электрической дуги поперечным магнитным полем в камерах с продольными щелями. Магнитное поле в подавляющем большинстве конструкций возбуждается последовательно включенной с контактами дугогасительной катушкой.

Дугогасительная система обеспечивает гашение электрической дуги, которая возникает при размыкании главных контактов. Способы гашения дуги и конструкции дугогасительных систем определяются родом тока главной цепи и режимом работы контактора.

Электромагнитная система контактора обеспечивает дистанционное управление контактором, т. е. включение и отключение. Конструкция системы определяется родом тока и цепи управления контактора и его кинематической схемой.

Электромагнитная система контактора может рассчитываться на включение якоря и удержание его в замкнутом положении или только на включение якоря. Удержание же его в замкнутом положении в этом случае осуществляется защелкой.

Отключение контактора происходит после обесточивания катушки под действием отключающей пружины, или собственного веса подвижной системы, но чаще пружины.

Вспомогательные контакты. Производят переключения в цепях управления контактора, а также в цепях блокировки и сигнализации. Они рассчитаны на длительное проведение тока не более 20 А, и отключение тока не более 5 А. Контакты выполняются как замыкающие, так и размыкающие, в подавляющем большинстве случаев мостикового типа.

Контакторы переменного тока выполняются с дугогасительными камерами с деионной решеткой. При возникновении дуга движется на решетку, разбивается на ряд мелких дуг и в момент перехода тока через ноль гаснет.


Электрические схемы контакторов, состоящие из функциональных токопроводящих элементов (катушки управления, главных и вспомогательных контактов), в большинстве случаев имеют стандартный вид и отличаются лишь количеством и видом контактов и катушек.

Важными параметрами контактора являются номинальные рабочие ток и напряжения.

Номинальный ток контактора - это ток, который определяется условиями нагрева главной цепи при отсутствии включения или отключения контактора. Причем, контактор способен выдержать этот ток три замкнутых главных контактах в течение 8 часов, а превышение температуры различных его частей не должно быть больше допустимой величины.

Чем отличается контактор от пускателя?

В промышленности, коммерческом и гражданском строительстве любые задачи, связанные с запуском и остановкой двигателей, оборудованных дистанционным управлением, решают контакторы и пускатели. Эти устройства применяются там, где постоянно требуются частые пуски или же коммутация электрооборудования с большими токами нагрузки. Рассмотрим, что это за устройства и чем они между собой отличается.

Что такое контактор и пускатель

Контактор - это исполнительный механизм, представляющий собой блок быстродействующих переключателей (т.е. контактных групп). Он может быть самостоятельным устройством или входить в состав другого оборудования. Контактор - коммутационный аппарат, управляемый дистанционно, который предназначен для частых коммутаций электроцепей при номинальных (нормальных) режимах функционирования. Замыкание или размыкание контактов обычно осуществляется при помощи электромагнитного привода. Отличительной особенностью контакторов, в сравнении с электромагнитными реле, выполняющими приблизительно те же функции, является то, что они разрывают электрическую цепь одновременно в нескольких местах, а электромагнитные реле разрывают цепь обычно только в одной точке.

Пускатель (магнитный) - это модифицированный контактор, имеющий дополнительное оборудование (обычно это тепловое реле, плавкие предохранители, дополнительная контактная группа либо автомат для запуска электрического двигателя).

Разница между контактором и пускателем

Контакторы бывают трех видов: переменного тока, постоянного тока, иногда постоянно-переменного тока.

Устройства постоянного тока используют для включения и выключения приемников электроэнергии в электрических цепях постоянного тока в устройствах повторного автоматического включения, в приводах высоковольтных выключателей. Данное оборудование (однополюсные и двухполюсные аппараты) предназначено для работы с напряжением от 22 до 440 В и силой тока до 630 А.

Контактор постоянного тока МК 2-20Б-У3 63А

Устройства переменного тока используют для включения пусковых резисторов, нагревательных устройств, для управления трехфазным асинхронным электродвигателем с короткозамкнутым ротором, для запуска трехфазных трансформаторов, тормозных электромагнитов и др. Аппараты переменного тока разработаны для коммутации электроцепей переменного тока.

Магнитные пускатели обычно используют для дистанционного управления асинхронными трехфазными электрическими двигателями с короткозамкнутым ротором. Пускатель электромагнитный - это комбинированное электромеханическое устройство управления и распределения, предназначенное для запуска и разгона до номинальной скорости двигателя, а также для обеспечения его бесперебойной работы, защиты подключенных цепей и электродвигателя от рабочих перегрузок и отключения питания. Пускатели магнитные, оборудованные ограничителями перенапряжений, применяются в системах управления, использующих микропроцессорную технику. Пускатели работают с переменным напряжением от 24 до 660 Вольт и частотой в 50-60 Герц или с постоянным напряжением от 34 до 440 В.

Контактор и магнитный пускатель, отличия

Этот спор во многом напоминает аналогичный о том, что появилось раньше: курица или яйцо. Так вот тема эта, как оказалось, не только вечна, но многогранна.

Казалось бы, существуют два разных электротехнических изделия, имеющие разные названия. Но функции выполняют схожие, да и малопонятны, собственно, критерии различия контактора от пускателя. Попробуем всё же разобраться.

Немалая заслуга в том, что сейчас грань между контактором и магнитным пускателем практически незаметна, лежит, прежде всего, на производителях.

Некоторые устройства в каталогах продукции и действительно бывает сложно идентифицировать. На практике магнитный пускатель 3-ей величины нередко, также называют контактором.

Характерная сила тока для пускателя, как правило, не превышает 40 А. Иначе говоря, область выше этого значения – это уже удел контакторов. Справочная литература (особенно, фундаментальная) даёт чёткую дифференциацию таких устройств.

Магнитный пускатель – это низковольтное устройство с тремя контактами для подключения к трёхфазной сети. Электромагнитный контактор, в свою очередь, предназначен для напряжения до 650 вольт и представляет собой магнитную катушку и силовую группу контактов.

Таким образом, магнитный пускатель можно считать своеобразным усовершенствованным контактором, законченным устройством, совокупностью контактных групп и дополнительного оборудования. Как-то: тепловое реле, кнопки управления, автомат защиты.

Однако, даже если мы возьмём за основу факт наличия в конструкции пускателя теплового реле и кнопок управления, то ясности точно не добавится.

Потому как сейчас некоторыми производителями выпускаются магнитные пускатели, не укомплектованные кнопками управления и тепловыми реле. Поэтому, устанавливать какую-то четкую грань, по большому счету, не имеет особого смысла.

На практике всё определяет стоимость и назначение устройства. Потребитель выбирает товар под свои нужды и потребности. А как его назвать, пускатель, контактор (иногда, даже «автомат запуска двигателя») – это уже прерогатива производителей и отличие устройств состоит лишь в их названии.

Разъединители высоковольтные

Основные отличия между контактором и пускателем

В профессиональных кругах существует достаточно спорная тема. Вот, казалось бы, есть два одинаковых устройства, они выполняют одинаковые функции, однако называются контактор и пускатель. В чем же их отличия и есть ли оно вообще? С этим стоит разобраться.

Сама грань различия просто так не заметна и является делом производителей. Бывают случаи, когда в каталоге некоторые устройства действительно очень тяжело идентифицировать. А магнитный пускатель третьей величины вообще иногда называют контактором.

Характерная сила тока чаще не превышает 40 Ампер. Другими словами, если данный показатель выше, за дело должен браться контактор. Полное описание, а также четкую дифференциацию этих двух устройств может дать только фундаментальная справочная профильная литература.

Что такое магнитный пускатель, а что такое контактор?

Пускатель магнитный – это низковольтное устройство с тремя контактами и подключается к трехфазной сети. А электромагнитный контактор – это устройство, предназначенное для напряжения до 650 Вольт, и состоящее из магнитной катушки с силовыми группами контактов.

Отсюда можно сделать вывод, что пускатель – это усовершенствованный контактор, законченное устройство, с контактными группами и дополнительным оборудованием. Например, тепловое реле, автомат защиты или кнопки управления.

Но даже если взять за основу факт о том, что в его конструкции возможно наличие теплового реле и кнопок управления, все равно особой ясности добиться очень трудно.

Тем более, сейчас существуют производители, которые выпускают пускатели магнитные, которые не укомплектованы тепловым реле и кнопками управления. Вот почему установка четкой грани будет практически бессмысленна.

Различия только в названии

А вот на практике все проще. Здесь определяющим фактором является стоимость и назначение устройства. Товар выбирается под нужды и возможности потребителя. А его название, это уже удел производителей. И различия заключаются лишь в названии устройств.

Пускатели и контакторы

Описание категории Пускатели и контакторы

Пускатели и контакторы – устройства, предназначенные для дистанционного замыкания и размыкания цепи, при подаче управляющего напряжения на магнитную катушку управления. После подачи напряжения на электромагнитную катушку, цепь замыкается, после отключения напряжения, основная цепь размыкается. Сфера использования включение, выключение электродвигателей. насосов, вентиляторов и иных потребителей электрического тока..

Чем пускатель отличается от контактора – на данный момент единого мнения по этому поводу нет. На наш взгляд основное отличие в наличии теплового реле. Если есть тепловое реле устройство относим к классу пускателей, без реле - контакторов. Так как большинство контакторов в процессе эксплуатации могут быть доукомплектованное тепловым реле, то разница небольшая. Второй вариант – назначение устройства, пускатели служат для управления электродвигателей и электропривода (насосы, вентиляторы), контакторы для управления включением и выключением прочего оборудования

Классификация и основные характеристики магнитных пускателей.

Пускатели – звезда треугольник обеспечивает включение электродвигателей путем включения питания по схеме звезда, с переходом на треугольник, что уменьшает пусковые токи, и защищает электрооборудование и кабеля от больших пусковых токов. При частом включении двигателей обеспечивает экономию электроэнергии

Дополнительные устройства

  • Тепловое реле РТТ, РТЛ, РТЛУ – устанавливается на контакторы, пускатели и обеспечивает защиту электродвигателя от токов перегрузки и перекоса фаз.
  • Промежуточные реле РПЛ, РПЛУ – устанавливаются на монтажную панель и служат дополнительным управляющим устройством для работу контакторов
  • Дополнительные контактные основания ПКЛ ПКЛУ, – устанавливаются на корпус и служат для увеличения вспомогательных контактов
  • Ограничители напряжения (варисторы и RC цепочки) для защиты микроэлектроники от бросков напряжения.
  • Приставки времени ПВЛ – предназначены для задержки выключения, выключения пускателя, контактора после подачи управляющего сигнала на контакты магнитной катушки.

Spy Заслуженный форумчанин

Взводатор:

Отличия только в названии.

Нажмите, чтобы раскрыть.

Не только.

Еще назначение и конструктив.

Пушкарёв Гость

Контактор - дистационно управляемый коммутационный аппарат, предназначенный для частых коммутаций электрических цепей при нормальных (номинальных) режимах работы. В зависимости от рода коммутируемого тока различают контакторы постоянного и переменного тока.

Источники:

Выбираем цвет стен: При выборе цвета под покраску стен, стоит всегда помнить, что светлые тона вызывают иллюзию простора в помещении.

Чтобы сыр не засох: Чтобы защитить сыр от высыхания поставьте рядом с сыром блюдце с небольшим количеством сахара. Накройте его другим блюдцем. Так сыр может долго оставаться свежим.

Навигация

Наиболее читаемые

Как сделать деревянный обеденный столНаверное, у каждого мастера в хозяйстве найдется несколько дощечек и реек разных размеров, которые остались