Тарифы Услуги Сим-карты

Индикаторы уровня

Индикатор максимумов и минимумов, который способен давать точную информацию - одна из составляющих мифического «Священного Грааля». Перед трейдерами стоит извечная задача - создание идеального помощника, который бы максимально точно определял направление движения тренда и указывал локальные экстремумы. Станет ли этот инструмент незаменимым?

Все группы индикаторов

За время существования интернет-трейдинга и технического анализа разработаны сотни разнообразных индикаторов и роботов, которые призваны помочь инвесторы в анализе рынка. Множество из них анализируют рынок по принципу пиков, впадин и экстремумов.

Инструменты можно разделить на следующие группы:

  • осцилляторы.
  • индикаторы экстремумов.

Обратите внимание! Из всех форекс брокеров, работающих на территории РФ, критериям действительно качественной компании удовлетворяют немногие. Лидером является – Альпари!

Более 20 лет на рынке Форекс;
- 3 международные лицензии;
- 75 инструментов;
- быстрый и удобный вывод средств;
- более двух миллионов клиентов;
- бесплатное обучение;
Альпари - это брокер №1 по версии Интерфакса! Все, что необходимо для начала - просто зарегистрироваться на сайте!

Стоит рассмотреть наиболее типичные из них.

Осцилляторы

Осцилляторы - группа инструментов, математическая модель большинства которых основана на разных типах скользящих средних. При этом почти все они не просто не перерисовываются, а являются источниками опережающих сигналов.

Индикатор MACD.

Важной особенностью осцилляторов является способность указывать на перекупленность или перепроданность рынка, что сигнализирует о скором развороте тренда.

Дивергенция на AO.

Кроме того, почти все осцилляторы способны демонстрировать дивергенцию, что также является очень сильным подтверждающим разворотным сигналом.

Для справки! При дивергенции минимумы или максимумы на графике всегда менее выражены, чем предыдущие пики на самом графике цены.

Текущий бар на графике осциллятора всегда будет перерисовываться, то есть, анализировать нужно предыдущий.

Осцилляторы - отличный инструмент для определения рыночной впадины, они дают мощные сигналы для входа в торговлю. Однако для построения полноценной торговой стратегии таких индикаторов недостаточно. Необходимо дополнение индикаторами, которые способны дать информацию о значении локальных экстремумов для того, чтоб трейдер мог оперировать локальными максимумами и минимумами при построении торговой стратегии.

Индикаторы экстремумов

Индикаторы, способные определять локальные хай и лоу уровни, играют важную роль во многих торговых стратегиях. С их помощью трейдер определяет точки установки торговых приказов Stop Loss и Take Profit.

Общая проблема таких индикаторов - перерисовка последнего значения. Например, общеизвестный Fractals дает точное значение экстремума только на третьем баре, что значительно замедляет точное определение локального экстремума.

Пример построения стратегии

Пример построения простой, но эффективной стратегии, основанной на взаимодействии разных индикаторов пиков и впадин заключается в том, что она будет построена при помощи стандартных MACD и Fractals.

MACD даст сигнал высокой точности о готовящемся развороте рынка, а Fractals укажет локальный экстремум для установки Stop Loss.

Шаг 1, поиск входа в рынок

Сигнал на покупку от MACD.

14.09 в 19:00 MACD дал четкий сигнал о перепроданности рынка, сообщив о дивергенции и сформировав впадину, более высокую, нежели предыдущая. Значение Fractals на самом нижнем баре станет точкой установки Stop Loss. Открывается ордер на покупку по цене 1.18895.

Шаг 2, сопровождение ордера

Подтвердив данные осциллятора, цена начала стремительный рост в сторону сильного уровня сопротивления на 1.1200. По ходу роста переносим Stop Loss на уровень безубыточности, снова используя образовавшийся новый фрактал – локальный минимум.

Шаг 3, выход из торговли и фиксация прибыли

Закрытие позиции.

Через сутки цена, встретив сильное сопротивление на уровне 1.12, начала коррекцию. MACD просигнализировал об образовании пика. Произошло формирование локального максимума, о чем сообщил Fractals. Закрывается ордер по цене. 1.19425

Чистая прибыль составила: 1,19425-1,18895 = 53 пункта.

Индикаторы пиков и впадин могут служить достаточно эффективным инструментом для построения прибыльных торговых стратегий. Основная проблема, над которой бьются многие трейдеры - перерисовка последнего значения.

Стремление получить индикатор пиков и впадин без перерисовки для получения максимально быстрого сигнала приводит к созданию программных продуктов, которые выдают массу ложных сигналов.

Важно! Индикатор high low уровней всегда будет работать так, что перерисовка как минимум на текущем баре неминуема.

Существование программы, которая бы давала четкий сигнал на формирующемся баре, без перерисовки - прекрасная мечта, которая приводит к созданию множества второсортных продуктов, генерирующих ложные сигналы. На практике стоит доверять лишь тем экстремумам, реальность которых подтверждена минимум двумя последующими барами.

Рисунок 1.

Вашему вниманию предлагается двухканальный (стереофонический) индикатор уровня с детектором пиков от Ondrej Slovak. Этот индикатор разработан на микроконтроллере PIC16F88, его так же можно собрать и на микроконтроллере PIC16F1827 и на микроконтроллере PIC16F819. Прошивки индикатора пиков для всех этих типов микроконтроллеров находятся в прикреплении (в архиве). Схемы аналогичны, различаются только прошивки. Мы будем рассматривать схему с микроконтроллером PIC16F88.
Отображение уровней и пиков в индикаторе, происходит на двух светодиодных шкалах (линейках) по 16 светодиодов в каждой, 2 х16.
Режимы, в которых может работать индикатор, изображены ниже в таблице, они такие-же, как и в предыдущей схеме (индикаторе). Их можно комбинировать и объединять установкой или снятием перемычек (джамперов). Резистором R1 изменяется чувствительность индикатора, меняется напряжение на выводе 2 микроконтроллера, причём чем меньше напряжение на выводе 2, тем выше чувствительность индикатора. Оптимальное напряжение на выводе в пределах 200-250 мВ.

Таблица 1. Выбор режимов индикации.

Шкала индикатора работает в двух режимах отображения, это в линейной и логарифмической (ниже на рисунке). Линейная шкала зашита программно в коде программы, а вот значения логарифмической шкалы можно поменять по своему усмотрению, или даже сделать обратно-логарифмической. Эти данные "зашиты" в EEPROM и их можно менять.


Рисунок 2.

Как менять самому значения данных EEPROM, рассмотрим ниже.
На рисунке №3 приведён "снимок" кодов EEPROM программы ISPROG.


Рисунок 3.

В верхней части таблицы, строчки обведённые красным цветом - это значения (логарифмические) "зажигания" каждого светодиода (16 значений), которые соответствуют значению логарифмической шкалы, на рисунке №2. Это шестнадцатеричные значения вертикальной шкалы (от 2-х до 248). Можете построить свою шкалу, например обратно-логарифмическую, и внести свои значения в эти ячейки.
Далее ниже разберём по частям;
03 - Первое значение - это время свечения светодиодов, по умолчанию установлено 12 мс (1 = 4,096 мс, то есть 03 = (4,096*3)= 12,228 мс)
08 - Это время свечения последнего светодиода, по умолчанию 33 мс.
08 - Это темп спадания пиков, по умолчанию установлено 33 мс.
7А - Это время послесвечения пиков, по умолчанию установлено 500 мс.(7А = 122* 4,096)
64 - Это коррекция яркости свечения светодиодов. Для светодиодов с током свечения 2 ма - значение 64, для светодиодов с током свечения 20 ма - устанавливается 08.

Посмотрите демонстрационное видео, работы индикатора пиков. Здесь он работает в режиме индикации с пиками в падающем режиме, шкала логарифмическая (джамперы сняты).

Схема индикатора изображена ниже на рисунке №4. Светодиоды применены на ток 3 мА, если ставить светодиоды мощнее, на ток 20 мА, то резисторы R1-R8 необходимо заменить на резисторы по 22-33 Ом, можно ставить на плату резисторы smd. Для оперативного переключения режимов работы индикатора, на плате установлены коммутированные перемычки ("джамперы").

Конфигурация процессора PIC16F88 (установка предохранителей, "фузов").
CP:OFF, CCPMux:RB0, Debugger:OFF, WRT:Writable, CPD:OFF, LVP:OFF, BOREN:ON, MCLRE:I/O, PWRTE:Disabled, WDTE:ON, OSC:INTRC-I/O, IESO:OFF, FCMEN:OFF

Конфигурация процессора PIC16F1827 (установка предохранителей, "фузов").
FOSC:INTOSC, WDTE:ON, PWRTE:OFF, MCLRE:OFF, CP:OFF, CPD:OFF, BOREN:ON, CLKOUTEN:OFF, IESO:OFF, FCMEN:OFF, WRT:OFF, PLLEN:OFF, STVREN:OFF, BORV:HI, LVP:ON

В прикреплении в архиве, так же находятся и начальные части кодов asm для этих процессоров, в которых указаны конфигурации процессоров.

*При конструировании и налаживании своих разработок на микроконтроллерах, автор использует USB-программатор PRESTO и соответственно, прилагающее к нему программное обеспечение компании ASIX - программу ASIX UP. Конфигурации процессоров указаны для этой программы.
Я повторял эту конструкцию, использовав программатор ExtraPic и программу icprog. Конфигурации процессора не устанавливал и не контролировал. Сразу после прошивки схемы заработали (имеется в виду ещё и первая схема для 40 светодиодов), повторял несколько раз - всё начинало работать сразу после прошивки.


Рисунок 4.

Индикатор собран на печатной плате, размером 84 х 27 мм. Фото печатной платы ниже на рисунке №5. На плате резисторы R1-R8 smd.


Рисунок 5.

Ниже на рисунке №6 показаны перемычки, распаянные на плате между линейками светодиодов.


Рисунок 6.

Внешний вид собранного индикатора. На плате установлены плоские светодиоды, резисторы R1 - R8 типа smd, распаяны с обратной стороны платы, со стороны дорожек.


Рисунок 7.

Печатная плата индикатора (в формате Sprint-Layout имеется в архиве) с расположением элементов изображена на рисунке №8. На плате не указаны перемычки между линейками светодиодов, так как они расположены одна над другой. Перемычки распаиваются на места, обозначенные цифрами 1 - 7, причём сначала устанавливается перемычка №1 на место 1-1, затем - 2 на место 2-2, и т.д.

Рисунок 8.

Ниже в архиве имеются схема, рисунки печатной платы в формате Sprint-Layout, прошивки для микроконтроллеров PIC16F88, PIC16F1827, так же в архив добавлена печатная плата в формате Sprint-Layout с увеличенным расстоянием между рядами светодиодов и рассчитанная под установку круглых светодиодов, так же прошивка для микроконтроллера PIC16F819.

Если у кого-то возникнут какие либо вопросы по конструкции индикатора, задавайте их .


Индикаторы звуковых сигналов. Часть вторая.

Часть 2. Дискретные измерители.

Вот и пришло время выполнять обещанное. В этой части статьи будут рассмотрены приборы фиксирующие только два состояние уровня сигнала: он есть , или его нет .

1. Пиковые индикаторы.

Свою родословную этот тип индикаторов ведёт от времён повсеместного распространения магнитной записи. Там основное назначение устройства было в регистрации превышении максимального уровня записи - "0" dB. Чуть позднее, такой тип индикаторов стали применять в усилителях мощности, и некоторых акустических системах. В усилителях, пиковый индикатор сигнализировал о превышении лимитированного уровня сигнала (клип-детектор, или, проще говоря, регистратор ограничения сигнала), а в АС он сигнализировал о превышении подводимой мощности. Так что такому детектору найдётся место и в наши дни.
Логика работы пикового детектора проста до неприличия: пока сигнал на входе не превышает некоторого значения, светодиод на выходе устройства не горит. Как только величина переменного напряжения превысит установленный уровень - светодиод вспыхивает. Остаётся только выставить этот уровень, и пиковый детектор готов к работе.
На данный момент существует огромное количество схемных реализаций таких устройств. Для начала рассмотрим самый простейший, показанный на рис1.

Как видно из схемы, всё построено на одном транзисторе. Выпрямленное диодом VD1 и "сглаженное" на конденсаторе С1 переменное напряжение подаётся на базу транзистора VT1. Если это напряжение ниже напряжения на эмиттере, то транзистор закрыт и светодиод не светится. При превышении входного напряжения на базе более 4 вольт, транзистор открывается и светодиод зажигается. Отсюда следует, что напряжение открытия транзистора можно выбирать, подбирая стабилитрон VD2. Кстати, стабилизирующую цепь R3,VD2 можно заменить на обычный резистивный делитель, однако в этом случае снизится стабильность показания устройства, поскольку опорное напряжение будет немного "плавать". В любом случае, общее сопротивление этого делителя рекомендую брать в пределах 0,3 - 2 кОм. Сопротивлением R2 производят окончательную калибровку индикатора.
На рисунке 2 представлен ещё один из простейших индикаторов. Он по своим параметрам аналогичен первому, но собран на двух логических инверторах КМОП - логики. Порог срабатывания устройства, определяется внутренним устройством микросхемы и составляет для К561ЛН1 около 2 вольт. В исходном состоянии, при уровне входного сигнала менее порогового на входе первого инвертора присутствует логический ноль. Следовательно на выходе инверторов так же будет ноль, а R6 будет замкнут на "землю". Светодиод VD5 гореть не будет. При превышении входного сигнала пороговый уровень, инверторы переключаться, на выходе появиться высокий уровень и светодиод загорится.
Преимущества приведённых схем - их простота и при невысоких требованиях к точности измерения они вполне работоспособны. Основной недостаток - "не чёткое" срабатывание светодиода, выражающееся в изменении яркости, при приближении уровня входного напряжения к порогу срабатывания. Для частичного устранения этого недостатка в схеме, представленной на рисунке 2, последовательно применены два инвертора.

Дальнейшим улучшением схемы с транзисторами, стала схема, представленная на рисунке 3. Видим, что введён ещё один транзистор VT2 и резистор R7. Собственно, он-то и должен устранить нечёткость срабатывания предыдущего устройства. В момент переключения, когда транзистор VT2 начинает открываться, его коллекторный ток течёт в два направления: на светодиод, и на базу транзистора VT1 через резистор R7. Это ускоряет перевод транзистора VT1 в насыщение и соответственно уменьшает время переключения.
Более совершенное устройство представлено на рисунке 4. Пиковый детектор построен на основе компаратора- устройства сравнения сигнала и отличается небольшим количеством навесных элементов. Работает индикатор следующим образом: на входы компаратора, инвертирующий и не инвертирующий, подаются два напряжения. На инвертирующий - опорное, задаваемое делителями R11, R12, а на не инвертирующий-полученое с детектора. Пока напряжение на не инвертируемом входе не превышает величины опорного напряжения (напряжение на инвертирующем входе), компаратор находиться в выключенном состоянии. То есть на выходе ОУ присутствует низкий уровень, индикатор LED2 не светится. Как только напряжения на входе сравняются (напряжение на не инвертируемом входе сравняется с опорным), компаратор скачкообразно "переключиться". На выходе появиться высокий уровень и через светодиод потечёт ток. Хороша ли эта схема? Да, очень даже не плоха, но имеет свои особенности.
1. Двуполярное питание. Может создать некоторые затруднения при реализации в устройствах с "однополярным" питанием. Но.
2. Двуполярное питание позволяет эффективно сравнивать сигналы вблизи "нулевого" уровня. То есть мы получаем устройство с очень большим диапазоном измерения.
Опять же, в следствии применения двуполярного питания, выходное напряжение ОУ скачкообразно изменяется от +Uпитания до -Uпитания. Это не всегда удобно. Именно по этому на рисунке последовательно со светодиодом установлен диод VD2. Его назначение - защищать светодиод от изменения полярности включения, в то время, когда с выхода ОУ на светодиод поступает отрицательное напряжение.

Принципиально не важно, на какой вход подавать опорное и контролирующее напряжение. Зеркально измениться только логика работы светодиода.

Околовсякое: Как отмечалось выше, в силу большого диапазона измерения, по этой схеме можно сделать "индикатор тишины" ("индикатор паузы"). Светодиод будет гореть, когда сигнал есть, и гаснуть, когда сигнал пропадет. Какая от этого польза? Ну, например, компаратор, в качестве датчика, можно подключить к устройству с выдержкой времени, а оно, в свою очередь, отключит усилитель от сети.

Повысить качественные характеристики и надёжность можно, если применить в качестве компаратора не операционный усилитель, а специализированный прибор. Самый распространённой и доступной, из советских микросхем подобного рода, была К554 СА3А. Это прибор, изначально расчитан на применение в качестве компаратора. По внутренней схемотехники схож по устройству с операционным усилителем, однако отличается от него, в основном, наличием дополнительного каскада на выходе для сопряжения уровней выхода компаратора с уровнями логического "0" и "1" цифровых устройств (ТТЛ и КМОП-логики). Физически, выходной каскад представляет собою транзистор, позволяющий включить его по схеме с общим эмиттером (с коллекторной нагрузкой), так и по схеме эмиттерного повторителя. Желающие поподробней ознакомиться с этим прибором пусть почитают литературу, от себя же ещё добавлю об одной особенности: этот прибор может питаться как от двуполярного питания, с сохранением всех выигрышей такого включения, так и от однополярного питания. Что, несомненно, добавляет плюсов этому прибору. К сожалению, при однополярном питании нижний предел сравнивающих сигналов начинается не от "нуля", а от 0,5V. Это немного снижает диапазон измерений, однако в большинстве случаев, в этом и нет необходимости.

В заключении рассмотрим пиковый детектор построенный на специализированной микросхеме К157ХП1.
Основные технические данные микросхемы:

Напряжение питания

Потребляемый ток

Выходной ток на индикаторы

Выходное опорное напряжение

Порог срабатывания системы АРУЗ

Выходной ток системы АРУЗ

Рассеиваемая мощность

Напряжение срабатывания дискриминатора

Микросхема разрабатывалась в линейке предназначенной для аппаратуры магнитной записи, однако с успехом может применятся и как отдельное устройство. Внутри корпуса содержится три функционально не зависимых узла: два пиковых дискриминатора с усилителями токов светодиода и узел вырабатывающий напряжение для управления элементами АРУЗ. Последний, разумеется нам не нужен.
На рисунке 5 представлена принципиальная схема пикового детектора, построенного на основе К157ХП1.

Как видно, схема очень проста и содержит минимальное количество деталей. Единственное о чём можно сказать, это об электролитических конденсаторах. Их ёмкость определяет постоянную времени индикации.
Следующим шагом в развитии пиковых индикаторов стало увеличение числа контролируемых уровней. В дополнение к основному индикатору стали устанавливать ещё один (реже два). Их назначение - сигнализировать о приближении величины к пороговому значению. Обычно диапазон устанавливался в пределах -3 - -6 dB. Установленные в акустических системах, такие индикаторы индицировали о подводимой мощности. Конструктивно, такие приборы представляли собой несколько схем, подключенных к одной измеряемой точке. Каждая ячейка такого индикатора калибруется на соответствующее значение напряжения или мощности.

Последующим развитием рассмотренных выше схем, явились дискретные индикаторы уровня. Они уже позволили контролировать весь звуковой диапазон. На данный момент, это наиболее совершенные устройства, и мы рассмотрим их в следующей статье.

Вопросы, как обычно, складываем .

Как вам эта статья?

Приблизительно год назад загорелся идеей собрать преобразователь напряжения 12-220 вольт. Для реализации понадобился трансформатор. Поиски привели в гараж, где был найден усилитель Солнцева, собранный мною лет 20 назад. Просто извлечь трансформатор и таким образом уничтожить усилитель не поднялась рука. Родилась идея его реанимировать. В процессе оживления усилителя многое подверглось изменениям. В том числе индикатор выходной мощности. Схема прежнего индикатора была громоздкой, собрана на К155ЛА3 и т.д. Найти ее не помог даже интернет. Зато была найдена другая очень простая, но от того не менее эффективная схема индикатора выходной мощности.

Схема LED индикатора

Данная схема достаточно хорошо описана на просторах интернета. Здесь лишь вкратце расскажу (перескажу) о ее работе. Индикатор выходной мощности собран на микросхеме LM3915. Десять светодиодов подключены к мощным выходам компараторов микросхемы. Выходной ток компараторов стабилизирован, поэтому отпадает необходимость в гасящих резисторах. Напряжение питания микросхемы может находиться в пределах 6...20 В. Индикатор реагирует на мгновенные значения звукового напряжения. У микросхемы делитель рассчитан так, что включение каждого последующего светодиода происходит при увеличении напряжения входного сигнала в v2 раз (на 3 дБ), что удобно для контроля мощности УМЗЧ.

Сигнал снимается непосредственно с нагрузки - акустической системы УМЗЧ - через делитель R*/10k. Указанный на схеме ряд мощностей 0,2-0,4-0,8-1,6-3-6-12-25-50-100 Вт соответствует действительности, если сопротивление резистора R*=5,6 кОм для Rн=2 Ом, R*= 10 кОм для Rн=4 Ом, R*= 18 кОм для Rн=8 Ом и R*=30 кОм для Rн=16 Ом. LM3915 дает возможность легко менять режимы индикации. Достаточно лишь подать на вывод 9 ИМС LM3915 напряжение, и она перейдет с одного режима индикации в другой. Для этого служат контакты 1 и 2. Если их соединить, то ИМС перейдет в режим индикации "Светящийся столбик", если оставить свободными - "Бегущая точка". Если индикатор будет эксплуатироваться с УМЗЧ с иной максимальной выходной мощностью, то нужно подобрать лишь сопротивление резистора R*, чтобы светодиод, подключенный к выводу 10 ИМС, светился при максимальной мощности УМЗЧ.

Как видите, схема проста и не требует сложной настройки. Благодаря широкому диапазону питающих напряжений для ее работы использовал одно плечо импульсного двухполярного блок питания УМЗЧ +15 вольт. На входе сигнала вместо подбора отдельных резисторов R* установил переменное сопротивление номиналом 20 кОм, что сделало индикатор универсальным для акустики разного сопротивления.

Для смены режимов индикации предусмотрел установку перемычки или кнопки с фиксацией. В финале замкнул перемычкой.

Самодельный блок пиковой индикации стереофонического сигнала своими руками, схема простого пикового индикатора. Пиковые индикаторы аудиосигналов показывают факт превышения уровнемсигнала ЗЧ некоторого предварительно заданного значения.

Здесь приводится описание пикового светодиодного индикатора на основе микросхемы CD4093. Отечественным аналогом которой является К561ТЛ1. Микросхема содержит четыре логических элемента «2И-Не» с эффектом триггеров Шмитта. В данной схеме входы каждого из элементов соединены между собой, поэтому элементы работают как инверторы - триггеры Шмитта.

Принципиальная схема

Выходные сигналы стереоканалов от выхода УНЧ поступают через конденсаторы С1 и С2 на входы элементов D1.1 и D1.2, соответственно. На входы этих элементов через резисторы R2 и R3 поступает постоянное напряжение смещения от подстроечного резистора R1.

На входах логических элементов постоянное напряжение смещение складывается с переменной составляющей аудиосигнала. Задача резистора R1 в том, чтобы выставить оптимальное напряжение смещения, при котором будет необходимая чувствительность индикатора, то есть, этим резистором задается тот самый пиковый порог.

Рис. 1. Принципиальная схема самодельного пикового индикатора.

Состояние на выходах элементов D1.1 и D1.2 будет меняться только тогда, когда будет превышен этот порог, выставленэтой схемы преобразуется в импульсы логического уровня, которые через диоды VD1 и VD2 заряжают конденсаторы С3 и С4. Эти схемы из диодов VD1,VD2, конденсаторов С3,С4 и резисторов R4,R6 работают как детекторы.

И напряжение на конденсаторах С3 и С4 увеличивается. Особенно это важно, так как пиковый момент входного сигнала может быть не длительным. А напряжение в виде заряда удерживается этими конденсаторами, потому что они быстро заряжаются через диоды и медленно разряжаются через резисторы.

Как только напряжение на С3 или С4 достигает порога переключения триггера Шмитта (D1.3 или D1.4, соответственно), на выходе D1.3 или D1.4 появляется логический ноль, который приводит к зажиганию светодиода HL1 или HL2. Соответствующий светодиод, или если стереосигнал хорошо сбалансирован, оба светодиода вспыхивают и горят не меньше времени, требующегося на разрядку С3 или С4 через R4 или R6.

Детали и налаживание

Светодиоды - любые индикаторные, например, АЛ307. Налаживание - подстройкой резистора R1 по порогу срабатывания.