Тарифы Услуги Сим-карты

Основы микропроцессорной техники. Микропроцессорная техника Новые уловки телефонных мошенников, на которые может попасться каждый

За несколько десятков лет развития микропроцессор проделал путь от объекта применения в узкоспециализированных областях к товару широкой эксплуатации. Сегодня в том или ином виде данные устройства вместе с контроллерами применяются практически в любой сфере производства. В широком смысле микропроцессорная техника обеспечивает процессы управления и автоматизации, но в рамках этого направления формируются и утверждаются все новые области развития высокотехнологичных устройств вплоть до появления признаков искусственного интеллекта.

Общее представление о микропроцессорах

Для управления или контроля определенными процессами требуется соответствующая поддержка программного обеспечения на реальной технической базе. В этом качестве выступает одна или набор микросхем на базовых матричных кристаллах. Для практических нужд почти всегда используются модули chip-set, то есть наборы микросхем, которые связаны общей системой питания, сигналами, форматами информационной обработки и так далее. В научной интерпретации, как отмечается в теоретических основах микропроцессорной техники, такие устройства представляют собой место (основная память) для хранения операндов и команд в закодированном виде. Непосредственное управление реализуется на более высоком уровне, но также через микропроцессора. Для этого используют контроллеры.

Говорить о контроллерах можно только применительно к микрокомпьютерам или микро-ЭВМ, состоящим из микропроцессоров. Собственно, это и есть рабочая техника, в принципе способная выполнять те или иные операции или команды в рамках заданного алгоритма. Как отмечается в учебнике по микропроцессорной технике Ливенцова С. Н., под микроконтроллером следует понимать компьютер, ориентированный на выполнение логических операций в рамках управления оборудованием. Он базируется на тех же схемах, но с ограниченным вычислительным ресурсом. Задача микроконтроллера в большей степени заключается в реализации ответственных, но простых процедур без сложных схем. Впрочем, технологически примитивными такие устройства тоже нельзя назвать, так как на современных производствах микроконтроллеры могут одновременно управлять сотнями и даже тысячами операций одновременно, учитывая и косвенные параметры их выполнения. В целом логическая структура микроконтроллера проектируется с расчетом на мощность, универсальность и надежность.

Архитектура

Разработчики микропроцессорных устройств имеют дело с набором функциональных компонентов, которые в итоге образуют единый рабочий комплекс. Даже простая модель микрокомпьютера предусматривает использование целого ряда элементов, обеспечивающих выполнение поставленных перед машиной задач. Способ взаимодействия между этими компонентами, а также средства коммуникации с входными и выходными сигналами во многом и определяют архитектуру микропроцессора. Что касается самого понятия архитектуры, то оно выражается разными определениями. Это может быть набор технико-физических и эксплуатационных параметров, среди которых число регистров памяти, разрядность, быстродействие и так далее. Но, в соответствии с теоретическими основами микропроцессорной техники, под архитектурой в данном случае следует понимать логическую организацию функций, реализуемых в процессе взаимосвязанной работы аппаратной и программной начинки. Более конкретно отражает следующее:

  • Совокупность физических элементов, которые образуют микропроцессор, а также связи между его функциональными блоками.
  • Форматы и способы предоставления информации.
  • Каналы обращения к доступным для использования модулям структуры с параметрами их дальнейшего применения.
  • Операции, которые может выполнять конкретный микропроцессор.
  • Характеристики управляющих команд, которые вырабатывает или принимает устройство.
  • Реакции на сигналы извне.

Внешние интерфейсы

Микропроцессор крайне редко рассматривается как изолированная система для выполнения односложных команд в статичном формате. Встречаются устройства, обрабатывающие один сигнал по заданной схеме, но чаще всего микропроцессорная техника работает с большим количеством коммуникационных связей от источников, которые и сами не являются линейными в плане обрабатываемых команд. Для организации взаимодействия со сторонней аппаратурой и источниками данных предусматриваются специальные форматы соединения - интерфейсы. Но для начала следует определить, с чем именно выполняется коммуникация. Как правило, в этом качестве выступают управляемые устройства, то есть на них от микропроцессора подается команда, а в режиме обратной связи могут поступать данные о статусе исполнительного органа.

Что касается внешних интерфейсов, то они служат не просто для возможности взаимодействия определенного исполнительного механизма, но и для его интеграции в структуру управляющего комплекса. Применительно к сложной компьютерной и микропроцессорной технике это может быть целая совокупность аппаратно-программных средств, тесно связанных с контроллером. Более того, микроконтроллеры зачастую и объединяют в себе функции обработки и подачи команд с задачами обеспечения коммуникации между микропроцессорами и внешними устройствами.

Характеристики микропроцессора

К основным характеристикам микропроцессорных устройств можно отнести следующие:

  • Тактовая частота. Временной период, в течение которого происходит переключение компонентов вычислительной машины.
  • Разрядность. Число максимально возможных для одновременной обработки двоичных разрядов.
  • Архитектура. Конфигурация размещения и способы взаимодействия рабочих элементов микропроцессора.

О характере эксплуатационного процесса можно судить и по критериям регулярности с магистральностью. В первом случае речь идет о том, насколько в конкретной единице вычислительной микропроцессорной техники реализуем принцип закономерной повторяемости. Иными словами, каков условный процент дублирующих друг друга связей и рабочих элементов. Регулярность может применяться и в целом к структуре организации схемы в рамках одной системы обработки данных.

Магистральность же указывает на способ обмена данными между внутренними модулями системы, затрагивая также характер упорядочения связей. Объединяя принципы магистральности и регулярности, можно выработать стратегию создания унифицированных под определенный стандарт микропроцессоров. Такой подход имеет преимущество в виде облегчения коммуникационной организации на разных уровнях в плане взаимодействия через интерфейсы. С другой стороны, стандартизация не позволяет расширять возможности системы и повышать ее устойчивость перед внешними нагрузками.

Память в микропроцессорной технике

Хранение информации организуется с помощью специальных запоминающих устройств, выполненных из полупроводников. Это касается внутренней памяти, но также могут применяться внешние оптические и магнитные носители. Также элементы хранения данных на основе полупроводниковых материалов можно представить в качестве интегральных схем, которые включаются в состав микропроцессора. Такие ячейки памяти используются не только для хранения программ, но и для обслуживания памяти центрального процессора с контроллерами.

Если глубже рассматривать структурную основу запоминающих устройств, то на первый план выйдут схемы из металла, диэлектрика и полупроводника из кремния. В качестве диэлектриков используются компоненты из металла, оксида и полупроводника. Уровень интеграции запоминающего устройства определяется целевыми задачами и характеристиками аппаратной части. В цифровой микропроцессорной технике с обеспечением функции видеопамяти к универсальным требованиям надежной интеграции и соответствия электротехническим параметрам также добавляется помехоустойчивость, стабильность работы, быстродействие и так далее. Оптимальным решением с точки зрения критериев быстродействия и универсальности по интеграции являются биполярные цифровые микросхемы, которые в зависимости от текущих задач могут также использоваться в качестве триггера, процессора или инвертора.

Функции

Спектр функций в значительной степени основывается на задачах, которые микропроцессор будет решать в рамках того или иного технологического процесса. Универсальный набор функций в обобщенном варианте можно представить так:

  • Чтение данных.
  • Обработка данных.
  • Обмен информацией с внутренней памятью, модулями или внешними подключенными устройствами.
  • Запись данных.
  • Ввод и вывод данных.

Значение каждой из вышеназванных операций определяется контекстом общей системы, в которой используется устройство. К примеру, в рамках арифметическо-логических операций электронная и микропроцессорная техника в результате обработки входной информации может представлять новую информацию, которая, в свою очередь, станет поводом для того или иного командного сигнала. Также стоит отметить внутренний функционал, за счет которого регулируются рабочие параметры самого процессора, контроллера, питания, исполнительных устройств и прочих модулей, работающих в рамках управляющей системы.

Производители устройств

У истоков создания микропроцессорных устройств стояли инженеры компании Intel, выпустившие целую линейку 8-разрядных микроконтроллеров на платформе MCS-51, которые в некоторых сферах применяются и сегодня. Также многие другие изготовители использовали семейство x51 для собственных проектов уже в рамках развития новых поколений электроники и микропроцессорной техники, в числе представителей которой значатся и отечественные разработки наподобие однокристальной ЭВМ К1816ВЕ51.

Выйдя в сегмент более сложных процессоров, фирма Intel уступила место микроконтроллеров другим компаниям, в числе которых оказались Analog Device и Atmel. Принципиально новый взгляд на архитектуру микропроцессоров предлагают фирмы Zilog, Microchip, NEC и др. На сегодняшний день в контексте развития микропроцессорной техники можно рассматривать линейки x51, AVR и PIC как наиболее успешные. Если же говорить о тенденциях разработки, то в наши дни на первое место выходят требования к расширению спектра задач внутреннего управления, компактности и низкому энергопотреблению. Иными словами, микроконтроллеры становятся меньше и рациональнее с точки зрения обслуживания, но при этом наращивают мощностный потенциал.

Обслуживание техники на базе микропроцессора

В соответствии с нормативными положениями, микропроцессорные системы обслуживаются бригадами рабочих во главе с электромехаником. Среди основных задач техобслуживания в данной сфере можно назвать следующие:

  • Фиксация сбоев в процессе работы системы и их анализ с определением причин нарушения.
  • Предупреждение отказов устройства и его компонентов за счет назначенного регламентного обслуживания.
  • Устранение отказов устройства путем ремонта поврежденных элементов или их замены на исправные аналогичные детали.
  • Производство своевременного ремонта компонентов системы.

Непосредственно обслуживание микропроцессорной техники может быть комплексным или мелкооперационным. В первом случае объединяется перечень технических операций независимо от их трудоемкости и уровня сложности. При мелкооперационном подходе акцент делается на индивидуализации каждой операции, то есть отдельные ремонтные или обслуживающие действия производятся в изолированном с точки зрения организации формате в соответствии с технологической картой. Недостатки данного метода связаны с высокими затратами на рабочий процесс, что в рамках масштабной системы может быть экономически неоправданным. С другой стороны, мелкооперационное обслуживание повышает качество технической поддержки аппаратуры, минимизируя риски ее дальнейшего выхода из строя вместе с отдельными компонентами.

Применение микропроцессорной техники

Перед широким внедрением микропроцессоров в разных сферах промышленности, бытового и народного хозяйства стоит все меньше барьеров. Это вновь обуславливается оптимизацией данных устройств, их удешевлением и ростом потребности в элементах автоматизации. К областям наиболее распространенного использования таких устройств можно отнести:

  • Промышленность. Микропроцессоры используются в управлении рабочими операциями, координации машин, систем контроля и сбора производственных показателей.
  • Торговля. В данной сфере эксплуатация микропроцессорной техники связана не только с вычислительными операциями, но и с обслуживанием логистических моделей при управлении товарами, запасами, а также информационными потоками.
  • Системы безопасности. Электроника в современных комплексах охраны и сигнализации задает высокие требования к автоматизации и интеллектуальному контролю, что и позволяют обеспечивать микропроцессоры новых поколений.
  • Связь. Разумеется, и коммуникационные технологии не могут обходиться без программируемых контролеров, обслуживающих мультиплексоры, дистанционные терминалы и схемы коммутации.

Несколько слов в заключение

Широкая аудитория потребителей не в полной мере может представить себе даже сегодняшние возможности микропроцессорной техники, но производители не стоят на месте и уже сейчас продумывают перспективные направления развития данной продукции. Например, все еще исправно поддерживается правило компьютерной индустрии, согласно которому каждые два года в схемах процессоров будет уменьшаться количество транзисторов. Но не только конструкционной оптимизацией могут похвастаться современные микропроцессоры. Специалисты также прогнозируют множество инноваций в части организации новой схемотехники, которая облегчит технологический подход к разработке процессоров и снизит их базовую стоимость.

Основные понятия цифровой техники.

Назначение и области применения микропроцессорных устройств

Замечательным свойством микропроцессорных систем является их высокая гибкость, возможность быстрой перенастройки при необходимости даже значительных изменений алгоритмов управления. Перенастройка осуществляется программным путем без существенных производственных затрат. Создание микропроцессоров позволяет уменьшить стоимость и размеры технических средств обработки информации, увеличить их быстродействие, снизить энергопотребление.

Характерные особенности микропроцессорных информационно-управляющих систем, предназначенных для автоматизации технологических процессов:

Наличие ограниченного набора четко сформулированных задач;

Требования оптимизации структуры системы для конкретного применения;

Работа в реальном масштабе времени, т.е. обеспечение минимального времени реакции на изменение внешних условий;

Наличие развитой системы внешних устройств, их большое разнообразие;

Существенное различие функциональных задач;

Высокие требования по надежности с учетом большой продолжительности непрерывной работы;

Сложные условия эксплуатации;

Обеспечение автоматического режима работы или режима с участием оператора как элемента системы.

Представление информации в микропроцессорных системах

Любой процесс функционирования технического объекта или системы связан с передачей, приемом и переработкой информации.

Информация - совокупность фактов, явлений, событий, представляющих интерес, подлежащих регистрации и обработке. В термине «информация» всегда существуют два элемента: источник и потребитель информации.

Информация, представленная в виде, удобном для обработки, называется данными. Определенная структура информационного объекта, подвергаемого обработке, именуется форматом.

Информация, вложенная и зафиксированная в некоторой материальной форме, называется сообщением. Сообщения делятся на:

Непрерывные (аналоговые);

Дискретные (цифровые).

Непрерывные сообщения могут принимать любые значения и изменяться в произвольные моменты времени. Данные сообщения естественным образом передают речь, музыку и изображения.

Основным примером непрерывного сообщения является аналоговый сигнал, это сигнал, величина которого непрерывно изменяется во времени.

Аналоговый сигнал обеспечивает передачу данных путем непрерывного изменения во времени амплитуды, частоты либо фазы. В соответствии с этим, он имеет бесконечное число значений. К аналоговым относятся и шумо-подобные сигналы.

Под дискретными сообщениями понимаются сообщения, параметры которых могут принимать лишь некоторое конечное число значений в определенном диапазоне.

Основным примером дискретного сообщения является логический (цифровой) сигнал (1/0) или (+/-). Процесс изменения напряжения от низкого уровня (-) к высокому (+), называется фронтом сигнала (положительным перепадом, положительным фронтом), а обратный процесс - спадом (отрицательным перепадом, отрицательным фронтом).

Использование аналоговых и дискретных сигналов

Для обработки аналоговых сигналов необходимо с требуемой степенью точности заменять непрерывные сообщения на цифровые путем квантования непрерывного сообщения по уровню и времени.

Другими словами необходимо определить для сигналов максимальные границы по уровню (по величине) сигнала. Затем необходимо провести дискретизацию по времени.

Последовательный и параллельный способ представления информации

Цифровая информация может быть представлена последовательным и параллельными кодами.

При последовательном коде каждый временной такт предназначен для отображения одного разряда кода слова.

Такт (clock tick) - промежуток времени, между последовательными сигналами синхронизации.

Величина такта выбирается такой, чтобы во время его прохождения в рассматриваемом объекте заканчивались все переходные процессы, вызванные изменением входных сигналов.

При параллельном коде все разряды кода слова представляются в одном временном такте, фиксируются отдельными элементами и проходят через отдельные линии, каждая из которых служит для представления и передачи только одного разряда.

При параллельной передаче информации код слова развертывается в пространстве, в отличие от последовательной, в которой развертывается во времени.

Микропроцессор

Микропроцессор (МП) - это программно-управляемое электронное цифровое устройство, предназначенное для обработки цифровой информации - ее перемещения, осуществления арифметических и логических операций по командам, которые он считывает из памяти.

Последовательность команд называется программой .

Микропроцессор включает в себя:

Арифметическо-логическое устройство (АЛУ), которое служит для выполнения арифметических и логических операций: арифметической операцией называют процедуру обработки данных, аргументыи результат которой являются числами (сложение, вычитание, умножение,деление и т.д.). Логической операцией именуют процедуру, осуществляющую построение сложного высказывания (операции И, ИЛИ, НЕ и т.д.).

Регистры общего назначения (РОН), которые используются для хранения информации - сверхоперативного запоминающего устройства;

Регистры предназначены для хранения операндов в процессе выполнения операций и функциональных схем, необходимых для выполнения преобразования операндов при передаче их с одного регистра на другой. Количество и назначение РОН в МП зависят от его архитектуры.

Аккумулятор - регистр, из которого берется одно из чисел, с которыми производятся арифметические или логические операции. В него помещается результат;

Счетчик адреса команд, в котором хранится адрес ячейки памяти, в которой записан код текущей команды;

Регистр флагов или условий в него помещаются сведения об особенностях результата выполнения арифметических или логических операций, например, нулевой результат, переполнение (перенос), четность и пр.;

Регистр адреса стека, в котором записан адрес последний занятой под стек ячейки памяти;

Блок управления шинами микропроцессорной системы, схемы формирующей сигналы на внешних шинах микропроцессора и, тем самым, управляющей микропроцессорной системой;

Блок дешифрирования кодов команд.

Таймер - счетчик - предназначен для подсчета внутренних событий, для получения программно-управляемых временных задержек и для выполнения времязадающих функций МП.

ОЗУ - служит для приема, хранения и выдачи информации, используемой в процессе выполнения программы.

ПЗУ - служит для выдачи констант, необходимых при обработке данных в АЛУ.

КЭШ память - хранит внутри МП копии тех команд операндов и данных, к которым производились последние обращения МП. Если МП необходимо считать данные, имеющиеся в КЭШ, то она их представляет, и нет необходимости обращаться к внешней памяти. В КЭШ помещаются результаты вычислений.

ША, ШД, ШУ (адреса, данных, управления) - группы линий, по которым передается однотипная информация.

Шинный интерфейс - выполняет функции согласования действий между внутренними устройствами МП и внешней системой, т.е. управляет потоками и форматами данных между МП и внешними устройствами.

В тех случаях, когда память и средства ввода/вывода размещаются на той же подложке интегральной схемы, что и микропроцессор , последний превращается в микроконтроллер . Более подробный анализ позволяет определить микроконтроллеры как устройства, имеющие память RAM или ROM вместо кэш-памяти, присутствующей обычно в большинстве периферийных устройств. В противоположность микроконтроллерам, микропроцессоры имеют устройство управления памятью и большой объем кэш-памяти. Иногда разница определяется производительностью или разрядностью.

Основные характеристики микропроцессора

Микропроцессор характеризуется:

1) тактовой частотой , определяющей максимальное время выполнения переключения элементов;

2) разрядностью , т.е. максимальным числом одновременно обрабатываемых двоичных разрядов.

3) архитектурой

Архитектура МП дает представление о функциональном поведении логической структуры и ее организации (взаимодействие отдельных узлов и блоков МП при выполнении тех или иных вычислительных операций), определяет особенности построения программных средств, описывает внутреннюю организацию потоков данных и управляющей информации.

Понятие архитектуры микропроцессора включает в себя систему команд и способы адресации, возможность совмещения выполнения команд во времени, наличие дополнительных устройств в составе микропроцессора, принципы и режимы его работы.

В зависимости от набора и порядка выполнения команд процессоры исторически сформировались несколько классов.

Архитектуры микропроцессора - RISC и CISC

Основные черты CISC-концепции:

Ранее других появились процессоры CISC. Термин CISC означает сложную систему команд и является аббревиатурой английского определения Complex Instruction Set Computer. Благодаря этому процессоры выполняют самые разнообразные задачи обработки данных.

При разработке набора команд CISC заботились об удобстве программиста/компилятора, а не об эффективности исполнения команд процессором. В систему команд вводили много сложных команд (производящих по несколько простых действий). Часто эти команды представляли собой программы, написанные на микрокоде и записанные в ПЗУ процессора. Команды CISC имеют разную длину и время выполнения. Зато машинный код CISC-процессоров - язык довольно высокого уровня. В наборе команд CISC часто присутствуют, например, команды организации циклов, команды вызова подпрограммы и возврата из подпрограммы, сложная адресация, позволяющая реализовать одной командой доступ к сложным структурам данных. Основной недостаток CISC - большая сложность реализации процессора при малой производительности.

Примеры CISC-процессоров - семейство Motorola 680x0 и процессоры фирмы Intel от 8086 до Pentium II. Наиболее известные микроконтроллеры с CISC-архитектурой фирм Zilog, Intel, Motololla, Siemens.

Основные черты RISC-концепции:

Со временем стало необходимо повысить скорость работы процессоров. Одним из путей к этому стал процессор RISC, который характеризуется сокращенным набором быстро выполняемых команд и происходит от английского Reduced Instruction Set Computer.

Одинаковая длина команд;

Одинаковый формат команд - код команды регистр-приемник два регистра-источника;

Операндами команд могут быть только регистры;

Команды выполняют только простые действия;

Большое количество регистров общего назначения (могут быть использованы любой командой);

Конвейер(ы);

Выполнение команды не дольше, чем за один такт;

Простая адресация.

RISC-концепция предоставляет компилятору большие возможности по оптимизации кода. Наиболее известные микроконтроллеры с RISC-архитектурой это семейства AT90S, ATMega, ARM фирмы Atmel, микроконтроллеры фирм PIC, Scenix, Holtek.

Сравнение архитектур

Основная идея RISC -архитектуры - это тщательный подбор таких комбинаций кодов операций, которые можно было бы выполнить за один такт тактового генератора. Основной выигрыш от такого подхода - резкое упрощение аппаратной реализации ЦП и возможность значительно повысить его производительность.

Однако обычно выигрыш от повышения быстродействия в рамках RISC -архитектуры перекрывает потери от менее эффективной системы команд, что приводит к более высокой эффективности RISC -систем в целом по сравнению с CISC . Так, в процессоре CISC для выполнения одной команды необходимо, в большинстве случаев, 10 и более тактов. Что же касается процессоров RISC, то они близки к тому, чтобы выполнять по одной команде в каждом такте.

Также с упрощением ЦП уменьшается число транзисторов, необходимых для его реализации, следовательно, уменьшается площадь кристалла. А с этим связано снижение стоимости и потребляемой мощности.

Следует также иметь в виду, что благодаря своей простоте процессоры RISC не патентуются. Это также способствует их быстрой разработке и широкому производству. Между тем, в сокращенный набор RISC вошли только наиболее часто используемые команды. Ряд редко встречающихся команд процессора CISC выполняется последовательностями команд процессора RISC.

Быстродействие процессоров определяется в миллионах операций в секунду MIPS.

Память в микропроцессорных устройствах

В микропроцессорных устройствах память служит для хранения исходных данных программ обработки информации промежуточных и окончательных результатов вычисления.

Выделяют два основных типа памяти:

- ОЗУ - оперативное запоминающее устройство, используемое для хранения данных, поэтому эту память называют еще памятью данных. Число циклов чтения и записи в ОЗУ не ограничено, но при отключении питающего напряжения вся информация теряется;

В современных микропроцессорах память ОЗУ представляет собой многоуровневую систему, в которой выделяют уровни сверхоперативной памяти (СОЗУ), ОЗУ, буферной памяти (БЗУ) и внешней памяти (ВЗУ).

Каждый последующий уровень отличается от предыдущего емкостью и быстродействием.

Емкостью называется максимальное количество информации, которая может быть записана в память.

Быстродействие характеризуется длительностью операций чтения и записи двух основных операций, выполняемых памятью. Для указанных уровней памяти емкость растет в направлении от СОЗУ к ВЗУ, а быстродействие в противоположном направлении.

- ПЗУ - постоянное запоминающее устройство, предназначенное

для хранения программ, поэтому часто эту память называют кодовой или памятью программ. Микросхемы ПЗУ способны сохранять информацию при отключенном электропитании, но могут быть запрограммированы только один или очень ограниченное число раз.

Основные характеристики полупроводниковой памяти

Основные характеристики памяти, которые необходимо учитывать при проектировании систем:

Емкость памяти определяется числом бит хранимой информации.

Емкость кристалла обычно выражается также в битах. Важной характеристикой кристалла является информационная организация кристалла памяти MxN, где M- число слов, N- разрядность слова. При одинаковом времени обращения память с большей шириной выборки обладает большей информационной емкостью.

Временные характеристики памяти.

Время доступа временной интервал, определяемый от момента, когда центральный процессор выставил на шину адреса адрес требуемой ячейки памяти и послал по шине управления приказ на чтение или запись данных, до момента осуществления связи адресуемой ячейки с шиной данных. Время восстановления - это время, необходимое для приведения памяти в исходное состояние после того, как ЦП снял с ША адрес, с ШУ сигнал «чтение» или «запись» и с ШД данные.

Удельная стоимость запоминающего устройства определяется отношением его стоимости к информационной емкости, т.е. определяется стоимостью бита хранимой информации.

Потребляемая энергия (или рассеиваемая мощность) приводится для двух режимов работы кристалла: режима пассивного хранения информации и активного режима, когда операции записи и считывания выполняются с номинальным быстродействием.

Плотность упаковки определяется площадью запоминающего элемента и зависит от числа транзисторов в схеме элемента и используемой технологии. Наибольшая плотность упаковки достигнута в кристаллах динамической памяти.

Допустимая температура окружающей среды обычно указывается отдельно для активной работы, для пассивного хранения информации и для нерабочего состояния с отключенным питанием. Указывается тип корпуса, если он стандартный, или чертеж корпуса с указанием всех размеров, маркировкой и нумерацией контактов, если корпус новый. Приводятся также условия эксплуатации: рабочее положение, механические воздействия, допустимая влажность и другие.

Типы микросхем постоянных запоминающих устройств (ПЗУ)

Существуют следующие основные типы ПЗУ:

- масочные ПЗУ - они программируются в процессе их изготовления путем нанесения маски из замкнутых (высокий уровень) и разомкнутых перемычек (низкий уровень), этот тип ПЗУ наиболее дешев, но при изготовлении крупной партией;

ПЗУ с плавкими перемычками или электрически программируемые (ЭПЗУ ) - эти микросхемы программируются потребителем путем пропускания импульсов тока до разрушения перемычек, соответствующих битам, которые должны стать нулевыми;

Перепрограммируемые ПЗУ с электрической записью информации

и стиранием ультрафиолетовым излучением (УФППЗУ ) - основа ячейки памяти микросхемы данного типа – МОП - транзистор с полностью изолированным «плавающим» затвором, при программировании окисел пробивается и на затворе накапливается заряд, который сохраняется там пока микросхема не будет подвергнута УФ-облучению, под его действием окисел становится проводящим; сопротивление канала транзистора зависит от заряда на затворе и будет определять бит, записанный в ячейку;

Электрически стираемые ПЗУ(ЕЕPRОМ ) устроены аналогично УФППЗУ, но стирание происходит, как и запись, при подаче импульсов напряжения; это самый дорогой, но и самый удобный тип ПЗУ.

- FLASH-память - наиболее популярная в настоящее время. Ее главное достоинство в том, что она построена по принципу электрической перепрограммируемости, т. е. допускает многократное стирание и запись информации с помощью программаторов. Минимальное гарантированное число циклов записи/стирания обычно превышает несколько тысяч. Это существенно увеличивает жизненный цикл и повышает гибкость микропроцессорных систем, так как позволяет вносить изменения в программу микропроцессора, как на этапе разработки системы, так и в процессе его работы в реальном устройстве.

Типы микросхем ОЗУ

Существует два типа микросхем ОЗУ:

Статические ОЗУ, в которых основой запоминающей ячейки служит триггер;

Динамические ОЗУ, в них основой запоминающих ячеек является конденсатор; в качестве конденсатора используется затвор полевого транзистора.

Ячейка динамического ОЗУ проще, поэтому ОЗУ этого типа дешевле и имеют большую емкость при том же количестве компонентов, однако они требуют периодической подзарядки всех запоминающих конденсаторов. Этот процесс называется регенерацией.

Типичное значение периода регенерации - миллисекунды; регенерация осуществляется при каждой операции чтения или записи. Также в динамических ОЗУ используется мультиплексированная адресная шина - адрес передается за два цикла, сначала одна половина разрядов (строки), потом другая (столбцы), для регенерации достаточно перебрать все номера строк.

Основными направлениями совершенствования ОЗУ является разработка:

Квазистатических ОЗУ - динамических «внутри», но со встроенной автономной схемой регенерации;

Энергонезависимых ОЗУ, хотя бы и в течение ограниченного периода времени. Одним из путей решения этой проблемы является использование микромощных статических ОЗУ со встроенным источником электропитания.

Буферная память

В вычислительных системах используются подсистемы с различным быстродействием и, в частности, с различной скоростью передачи данных (рис. 1). Обычно обмен данными между такими подсистемами реализуется с использованием прерываний или канала прямого доступа к памяти. В первую очередь подсистема 1 формирует запрос на обслуживание по мере готовности данных к обмену. Однако обслуживание прерываний связано с непроизводительными потерями времени и при пакетном обмене производительность подсистемы 2 заметно уменьшается. При обмене данными с использованием канала прямого доступа к памяти подсистема 1 передает данные в память подсистемы 2. Данный способ обмена достаточно эффективен с точки зрения быстродействия, но для его реализации необходим довольно сложный контроллер прямого доступа к памяти.

Периферийные устройства в микропроцессорных устройствах

Периферийные устройства предназначены для преобразования формы представления информации в процессе передачи данных от микропроцессора к внешним устройствам.

Типовые примеры - устройства преобразования сигналов (аналого-цифровые и цифро-аналоговые частотные преобразователи), устройства человеко-машинного интерфейса (клавиатура, дисплей), устройства связи с другими системами.

АЦП и ЦАП

Принцип работы АЦП состоит в измерении уровня входного сигнала и выдаче результата в цифровой форме. В результате работы АЦП непрерывный аналоговый сигнал превращается в импульсный, с одновременным измерением амплитуды каждого импульса.

ЦАП получает на входе цифровое значение амплитуды и выдает на выходе импульсы напряжения или тока нужной величины, которые расположенный за ним интегратор (аналоговый фильтр) превращает в непрерывный аналоговый сигнал.

Для правильной работы АЦП входной сигнал не должен изменяться в течение времени преобразования, для чего на его входе обычно помещается схема выборки-хранения, фиксирующая мгновенный уровень сигнала и сохраняющая его в течение всего времени преобразования.

На выходе ЦАП также может устанавливаться подобная схема, подавляющая влияние переходных процессов внутри ЦАП на параметры выходного сигнала.

Основные типы АЦП:

Параллельные - входной сигнал одновременно сравнивается с эталонными уровнями набором схем сравнения (компараторов), которые формируют на выходе двоичное значение. В таком АЦП количество компараторов равно (2 в степени N) - 1, где N - разрядность цифрового кода (для восьмиразрядного - 255), что не позволяет наращивать разрядность свыше 10-12.

Последовательного приближения - преобразователь при помощи вспомогательного ЦАП генерирует эталонный сигнал, сравниваемый со входным. Эталонный сигнал последовательно изменяется по принципу половинного деления (дихотомии), который используется во многих методах сходящегося поиска прикладной математики. Это позволяет завершить преобразование за количество тактов, равное разрядности слова, независимо от величины входного сигнала.

С измерением временных интервалов - широкая группа АЦП, использующая для измерения входного сигнала различные принципы преобразования уровней в пропорциональные временные интервалы, длительность которых измеряется при помощи тактового генератора высокой частоты.

Последовательного счета, или однократного интегрирования (single-slope) - в каждом такте преобразования запускается генератор линейно возрастающего напряжения, которое сравнивается со входным. Обычно такое напряжение получают на вспомогательном ЦАП, подобно АЦП последовательного приближения.

Двойного интегрирования (dual-slope) - в каждом такте преобразования входной сигнал заряжает конденсатор, который затем разряжается на источник опорного напряжения с измерением длительности разряда.

Следящие - вариант АЦП последовательного счета, при котором генератор эталонного напряжения не перезапускается в каждом такте, а изменяет его от предыдущего значения до текущего. Наиболее популярным вариантом следящего АЦП является Sigma-Delta, работающий на частоте, значительно (в 64 и более раз) превышающей частоту дискретизации выходного цифрового сигнала. Компаратор такого АЦП выдает значения пониженной разрядности (обычно однобитовые -0/1), сумма которых на интервале дискретизации пропорциональна величине отсчета. Последовательность малоразрядных значений подвергается цифровой фильтрации и понижению частоты следования (decimation), в результате чего получается серия отсчетов с заданной разрядностью и частотой дискретизации.

Основные типы ЦАП:

Взвешивающие - с суммированием взвешенных токов или напряжений, когда каждый разряд входного слова вносит соответствующий своему двоичному весу вклад в общую величину получаемого аналогового сигнала; такие ЦАП называют также параллельными или многоразрядными (multibit).

Sigma-Delta, по принципу действия обратные АЦП этого же типа.

Входной цифровой сигнал подвергается значительной (64x и более) передискретизации и подается на модулятор, формирующий малоразрядные (обычно однобитовые) значения. Полученные в результате малоразрядные отсчеты управляют схемой выдачи эталонных зарядов, которые со столь же высокой частотой добавляются к выходному сигналу.

Типы ЦАП, выдающих истинно одноразрядный поток, называют

bitstream (поток битов) или PDM (Pulse Density Modulation - модуляция плотностью импульсов). Несколько другой тип представляют ЦАП с широтно-импульсной модуляцией (ШИМ, Pulse Width Modulation, PWM),когда на схему выборки-хранения аналогового сигнала выдаются импульсы постоянной амплитуды и переменной длительности, управляя дозированием выдаваемого на выход заряда.

Параметры АЦП

При последовательном возрастании значений входного аналогового сигнала Uвх(t) от 0 до величины, соответствующей полной шкале АЦП Uпш выходной цифровой сигнал D(t) образует ступенчатую кусочно-постоянную линию. Такую зависимость по аналогии с ЦАП называют обычно характеристикой преобразования АЦП. В отсутствие аппаратных погрешностей средние точки ступенек расположены на идеальной прямой 1 (рис. 1),которой соответствует идеальная характеристика преобразования. Для количественной оценки отличий реальной характеристики от идеальной используются следующие параметры:

Рис 1. Статическая характеристика преобразования АЦП

Статические параметры

Разрешающая способность - величина, обратная максимальному

числу кодовых комбинаций на выходе АЦП. Разрешающая способность выражается в процентах, разрядах или децибелах. Например, 12-разрядный АЦП имеет разрешающую способность 1/4096, или 0,0245% от полной шкалы, или -72,2 дБ.

Разрешающей способности соответствует шаг квантования, номинальное значение шага квантования h=Uпш/(2N-1), где Uпш номинальное максимальное входное напряжение АЦП (опорное напряжение), соответствующее максимальному значению выходного кода, N - разрядность АЦП.

Погрешность полной шкалы-

относительная разность между реальным и идеальным значениями предела шкалы преобразования при отсутствии смещения нуля.

Погрешность смещения нуля - значение выходного кода, когда входной сигнал АЦП равен нулю. Является аддитивной составляющей полной погрешности.

Нелинейность - максимальное отклонение реальной характеристики преобразования D(Uвх) от оптимальной (линия 2 на рис. 24). Оптимальная характеристика находится эмпирически так, чтобы минимизировать значение погрешности нелинейности.

Дифференциальной нелинейностью АЦП в данной точке k характеристики преобразования называется разность между значением кванта преобразования hk и средним значением кванта преобразования h. В спецификациях на конкретные АЦП значения дифференциальной нелинейности выражаются в долях ЕМР или процентах от полной шкалы.

Погрешность дифференциальной линейности определяет два важных свойства АЦП: не пропадание кодов и монотонность характеристики преобразования. Не пропадание кодов - свойство АЦП выдавать все возможные выходные коды при изменении входного напряжения от начальной до конечной точки диапазона преобразования. Пример пропадания кода i+1 приведен на рис. 25. При нормировании непропадания кодов указывается эквивалентная разрядность АЦП - максимальное количество разрядов АЦП, для которых не пропадают соответствующие им кодовые комбинации.

Монотонность характеристики преобразования - это неизменность знака приращения выходного кода D при монотонном изменении

входного преобразуемого сигнала.

Температурная нестабильность АЦ преобразователя характеризуется температурными коэффициентами погрешности полной шкалы и погрешности смещения нуля.

Динамические параметры

Возникновение динамических погрешностей связано с дискретизацией сигналов, изменяющихся во времени.

Максимальная частота дискретизации (преобразования) - это наибольшая частота, с которой происходит образование выборочных значений сигнала, при которой выбранный параметр АЦП не выходит за заданные пределы. Измеряется числом выборок в секунду. Выбранным параметром может быть, например, монотонность характеристики преобразования или погрешность линейности.

Время преобразования (t пр) - это время, отсчитываемое от начала импульса дискретизации или начала преобразования до появления на выходе устойчивого кода, соответствующего данной выборке. Для одних АЦП, например, последовательного счета или многотактного интегрирования, эта величина является переменной, зависящей от значения входного сигнала, для других, таких как параллельные или последовательно-параллельные АЦП, а также АЦП последовательного приближения, примерно постоянной. При работе АЦП без УВХ время преобразования является апертурным временем.

Время выборки (стробирования) - время, в течение которого происходит образование одного выборочного значения. При работе без УВХ равно времени преобразования АЦП.

Параметры ЦАП

При последовательном возрастании значений входного цифрового сигнала D(t) от 0 до 2N-1 через единицу младшего разряда (ЕМР) выходной сигнал Uвых(t) образует ступенчатую кривую. Такую зависимость называют обычно характеристикой преобразования ЦАП. В отсутствие аппаратных погрешностей средние точки ступенек расположены на идеальной прямой 1 рис., которой соответствует идеальная характеристика преобразования. Реальная характеристика преобразования может существенно отличаться от идеальной размерами и формой ступенек, а также расположением на плоскости координат. Большинство параметров аналогично рассмотренным выше параметрам для АЦП, ниже рассмотрены специфические:

Динамические параметры ЦАП определяются по изменению выходного сигнала при скачкообразном изменении входного кода, обычно от величины "все нули" до "все единицы" рис. 2.

Рис.2 Статическая характеристика преобразования ЦАП

Рис 3. переходная характеристика ЦАП

Время установления - интервал времени от момента изменения входного кода (на рис. 3 t=0) до момента, когда в последний раз выполня-ется равенство |U вых-U пш|=d /2,

Скорость нарастания - максимальная скорость изменения Uвых(t) во время переходного процесса. Определяется как отношение приращения Uвых ко времени, за которое произошло это приращение. Обычно указывается в технических характеристиках ЦАП с выходным сигналом ввиде напряжения. У ЦАП с токовым выходом этот параметр в большой степени зависит от типа выходного ОУ.

Для перемножающих ЦАП с выходом в виде напряжения часто указываются частота единичного усиления и мощностная полоса пропускания, которые в основном определяются свойствами выходного усилителя.

Интерфейсы

Объединение модулей микропроцессорного устройства в единую систему и взаимодействие микропроцессора с внешними устройствами происходит с помощью интерфейса (от английского interface - сопрягать, согласовывать).

Интерфейс должен обеспечивать:

Простое и быстрое соединение данного устройства с любым другим, имеющим такой же интерфейс;

Совместную работу устройств без ухудшения их технических характеристик;

Высокую надежность.

Под стандартным интерфейсом понимается совокупность аппаратных, программных и конструктивных средств, необходимых для реализации взаимодействия функциональных различных компонентов в системах и направленных на обеспечение информационной, электрической и конструктивной совместимости компонентов.

Основными элементами интерфейса являются:

Совокупность правил обмена информацией (временные диаграммы

и диаграммы состояний сигналов интерфейса);

Аппаратная реализация (контроллеры);

Программное обеспечение интерфейса (драйверы).

Для любого интерфейса, соединяющего (физически или логически) два устройства, различают три возможных режима обмена - дуплексный, полудуплексный и симплексный:

- Дуплексный режим позволяет по одному каналу связи одновременно передавать информацию в обоих направлениях. Он может быть асимметричным, если пропускная способность в направлениях «туда» и «обратно» имеет существенно различающиеся значения, или симметричным.

- Полудуплексный режим позволяет передавать информацию «туда» и «обратно» поочередно, при этом интерфейс имеет средства переключения направления канала.

- Симплексный (односторонний) режим предусматривает только одно направление передачи информации (во встречном направлении передаются только вспомогательные сигналы интерфейса).

В зависимости от способа передачи данных различают два вида интерфейса: последовательный и параллельный.

В параллельном интерфейсе все биты передаваемого слова (обычно байта) выставляются и передаются по соответствующим параллельно идущим проводам одновременно (за один квант времени), то есть информация разворачивается в пространстве. Параллельный способ применяют в тех случаях, когда необходимо получить наивысшую пропускную способность канала передачи информации. Так как между отдельными проводниками шины для параллельной передачи данных существует электрическая емкость, то при изменении сигнала, передаваемого по одному из проводников, возникает помеха (короткий выброс напряжения) на других проводниках. С увеличением длины шины (увеличением емкости проводников) помехи возрастают и могут восприниматься приемником как сигналы. Поэтому рабочее расстояние для шины параллельной передачи данных ограничивается длиной 1-2 м, и только за счет существенного удорожания шины или снижения скорости передачи длину шины можно увеличить до 10-20 м

Последовательный интерфейс для передачи данных использует одну сигнальную линию, по которой информационные биты, передаются друг за другом последовательно, на каждый из них отводится свой квант времени (битовый интервал). При последовательной передачи информации разворачивается во времени. Последовательная передача позволяет сократить количество сигнальных линий и увеличить дальность связи.

В последовательном канале асинхронный режим работы соответствует передаче всего массива информации без специальных сигналов синхронизации и пауз между словами, синхронный - с синхронизацией после передачи каждого слова, при этом возможна пауза любой длительности между моментами передачи.

Пример стандартного последовательного интерфейса - RS-232 (COM-порты в IBM PC совместимых компьютерах).

Последовательный интерфейс подразделяют на синхронный и асинхронный.

В синхронном интерфейсе каждый передаваемый бит данных сопровождается импульсом синхронизации, информирующим приемник о наличии на линии информационного бита. Следовательно, между передатчиком и приемником должны быть протянуты минимум три провода: два для передачи импульсов синхронизации и бит данных, а также общий заземленный проводник. Если же передатчик (например, микропроцессор) и приемник (например, персональный компьютер) разнесены на несколько метров, то каждый из сигналов (информационный и синхронизирующий) придется посылать либо по экранированному кабелю, либо с помощью витой пары проводов, один из которых заземлен или передает сигнал, инверсный основному.

В асинхронном интерфейсе у передатчика и приемника нет общего генератора синхроимпульсов, и синхронизирующий сигнал не посылается вместе с данными. А для синхронизации процесса передачи данных используются внутренние встроенные генераторы, настроенные на одну частоту, и некий оговоренный двумя взаимодействующими сторонами формат передачи данных. Данный формат разработан еще в 70-х годах прошлого столетия поддерживается практически всеми микропроцессорными устройствами.

Стандартный формат последовательной асинхронной передачи данных содержит n пересылаемых бит информации (при пересылке символов n равно 7 или 8 битам) и 3-4 дополнительных бита: стартовый бит, бит контроля четности (или нечетности) и 1 или 2 стоповых бита (рис. 4,а).

Бит четности (или нечетности) может отсутствовать.

Рис. 4 а и б Формат последовательной асинхронной передачи

Передатчик может начать пересылку символа в любой момент времени посредством генерирования стартового бита. Затем происходит передача битов символа, начиная с младшего значащего бита, за которым следует дополнительный бит контроля по четности или нечетности. Далее с помощью стопового бита линия переводится в состояние логической 1 (рис.4,б). Состояние логической 1 должно поддерживаться в течение промежутка времени, равного 1 или 2 временам передачи бита.

Промежуток времени от начала стартового бита до конца стопового бита (стоповых бит) называется кадром. Сразу после стоповых бит передатчик может посылать новый стартовый бит, если имеется другой символ для передачи; в противном случае уровень логической 1 может сохраняться на протяжении всего времени, пока бездействует передатчик. Новый стартовый бит может быть послан в любой момент времени после окончания стопового бита, например, через промежуток времени, равный 0,43 или 1,5 времени передачи бита.

Передний фронт стартового бита сигнализирует о начале поступления передаваемой информации, а момент его появления служит точкой отсчета времени для считывания бит данных (запуск тактового генератора приемника).

Стоповый бит предоставляет время для записи принятого символа в буфер приемника и обеспечивает возможность выявления ошибки кадра.

Применение микропроцессорных систем практически во всех электрических устройствах - важнейшая черта технической инфраструктуры современного общества. Электроэнергетика, промышленность, транспорт, системы связи существенно зависят от компьютерных систем управления. Микропроцессорные системы встраиваются в измерительные приборы, электрические аппараты, осветительные установки и д.р.

Всё это обязывает электрика знать хотя бы основы работы микропроцессорной техники.

Предназначены для автоматизации обработки информации и управления различными процессами.

Понятие «Микропроцессорная система» очень широко и объединяет такие понятия как «Электронно-вычислительная машина (ЭВМ)», «управляющая ЭВМ», «Компьютер» и т.п.

Микропроцессорная система включает в себя аппаратное обеспечение или по-английски – hardware и программное обеспечение (ПО) - software.

Цифровая информация

Микропроцессорная система работает с цифровой информацией , которая представляет собой последовательность цифровых кодов.

В основе любой микропроцессорной системы лежит микропроцессор , который способен воспринимать только двоичные числа (составленные из 0 и 1). Двоичные числа записываются посредством двоичной системы счисления. Например, в повседневной жизни мы пользуемся десятичной системой счисления, в которой для записи чисел используются десять символов или цифр 0,1,2,3,4,5,6,7,8,9. Соответственно в двоичной системе таких символов (или цифр) всего два – 0 и 1.

Необходимо понимать, что система счисления – это всего лишь правила записи чисел, и выбор типа системы определятся удобством применения. Выбор двоичной системы обусловлен её простотой, а значит надёжностью работы цифровых устройств и лёгкостью их технической реализации.

Рассмотрим единицы измерения цифровой информации:

Бит (от английского "BInary digiT" - двоичная цифра) принимает только два значения: 0 или 1. Можно закодировать логическое значение «да»» или «нет», состояние «включено» или «выключено», состояние «открыто» или «закрыто» и т.п.

Группа из восьми бит называется байтом, например 10010111. Один байт позволяет кодировать 256 значений: 00000000 – 0, 11111111 - 255.

Бит – наименьшая единица представления информации.

Байт - наименьшая единица обработки информации. Байт- часть машинного слова, состоящая обычно из 8 бит и используемая как единица количества информации при её хранении, передаче и обработке на ЭВМ. Байт служит для представления букв, слогов и специальных символов (занимающих обычно все 8 бит) или десятичных цифр (по 2 цифры в 1 байт).

Два взаимосвязанных байта называется словом, 4 байта – двойное слово, 8 байт – учетверённое слово.

Почти вся информация, которая нас окружает, является аналоговой. Поэтому, прежде чем информация попадёт на обработку в процессор, она подвергается преобразованию посредством АЦП (аналого-цифровой преобразователь). Кроме того, информация кодируется в определённом формате и может быть числовой, логической, текстовой (символьной), графической, видео и д.р.

Например, для кодирования текстовой информации используется таблица кодов ASCII (от англ. American Standard Code for Information Interchange - Американский стандартный код для обмена информацией). Запись одного символа осуществляется одним байтом, который может принимать 256 значений. Графическая информация разбивается на точки (пиксели) и производится кодирование цвета и положение каждой точки по горизонтали и вертикали.

Кроме двоичной и десятичной системы в МС используют шестнадцатеричную систему, в которой для записи чисел используются символы 0...9 и A...F. Её применение обуславливается тем, что один байт описывается двухразрядным шестнадцатеричным числом, что значительно сокращает запись цифрового кода и делает его более читаемым (11111111 – FF).

Таблица 1 – Запись чисел в различных системах счисления


Для определения значения числа (например, значения числа 100 для разных систем счисления может составлять 42, 10010, 25616), в конце числа добавляют латинскую букву, обозначающую систему счисления: для двоичных чисел букву b, для шестнадцатеричных - h, для десятичных – d. Число без дополнительного обозначения считается десятичным.

Перевод чисел из одной системы в другую и основные арифметические и логические операции над числами позволяет производить инженерный калькулятор (стандартное приложение операционной системы Windows).

Основу микропроцессорной системы составляет микропроцессор (процессор), который выполняет функции обработки информации и управления. Остальные устройства, входящие в состав микропроцессорной системы, обслуживают процессор, помогая ему в работе.

Обязательными устройствами для создания микропроцессорной системы являются порты ввода/вывода и отчасти память . Порты ввода/вывода связывают процессор с внешним миром, обеспечивая ввод информации для обработки и вывод результатов обработки, либо управляющих воздействий. К портам ввода подключают кнопки (клавиатуру), различные датчики; к портам вывода - устройства, которые допускают электрическое управление: индикаторы, дисплеи, контакторы, электроклапаны, электродвигатели и т.д.

Память нужна в первую очередь для хранения программы (либо набора программ), необходимой для работы процессора. Программа - это последовательность команд, понятных процессору, написанная человеком (чаще программистом).

Структура микропроцессорной системы представлена на рисунке 1. В упрощённом виде процессор состоит из арифметически-логического устройства (АЛУ), осуществляющего обработку цифровой информации и устройства управления (УУ).

Память обычно включает постоянно-запоминающее устройство (ПЗУ), являющееся энергонезависимым и предназначенное для долговременного хранения информации (например, программ), и оперативно-запоминающее устройство (ОЗУ), предназначенное для временного хранения данных.


Рисунок 1 – Структура микропроцессорной системы

Процессор, порты и память взаимодействуют между собой посредством шин. Шина – это набор проводников, объединённых по функциональному признаку. Единый набор системных шин называют внутрисистемная магистраль , в которой выделяют:

    шину данных DB (Data Bus), по которой производится обмен данными между ЦП, памятью и портами;

    шину адреса AB (Address Bus), используемой для адресации процессором ячеек памяти и портов;

    шину управления CB (Control Bus), набор линий, передающих различные управляющие сигналы от процессора на внешние устройства и обратно.

Микропроцессоры

Микропроцессор - программно-управляемое устройство, предназначенное для обработки цифровой информации и управления процессом этой обработки, выполненное в виде одной (или нескольких) интегральной схемы с высокой степенью интеграции электронных элементов.

Микропроцессор характеризуется большим числом параметров, поскольку он одновременно является сложным программно-управляемым устройством и электронным прибором (микросхемой). Поэтому для микропроцессора важны, как тип корпуса, так и система команд процессора . Возможности микропроцессора определяются понятием архитектуры микропроцессора.

Приставка «микро» в названии процессора означает, что выполняется он по микронной технологии.

Рисунок 2 – Внешний вид микропроцессора Intel Pentium 4

В ходе работы микропроцессор считывает команды программы из памяти или порта ввода и исполняет их. Что означает каждая команда, определяется системой команд процессора. Система команд заложена в архитектуре микропроцессора и выполнение кода команды выражается в проведении внутренними элементами процессора определённых микроопераций.

Архитектура микропроцессора - это его логическая организация; она определяет возможности микропроцессора по аппаратной и программной реализации функций, необходимых для построения микропроцессорной системы.

Основные характеристики микропроцессоров:

1) Тактовая частота (единица измерения МГц или ГГц) – количество тактовых импульсов за 1 секунду. Тактовые импульсы вырабатывает тактовый генератор, который чаще всего находится внутри процессора. Т.к. все операции (инструкции) выполняются по тактам, то от значения тактовой частоты зависит производительность работы (количество выполняемых операций в единицу времени). Частотой процессора можно варьировать в определённых пределах.

2) Разрядность процессора (8, 16, 32, 64 бит и т.д.) – определяет число байтов данных, обрабатываемых за один такт. Разрядность процессора определяется разрядностью его внутренних регистров. Процессор может быть 8-разрядным, 16-разрядным, 32-разрядным, 64-разрядным и т.д., т.е. данные обрабатываются порциями по 1, 2, 4, 8 байт. Понятно, что чем больше разрядность, тем выше производительность работы.

Внутренняя архитектура микропроцессора

Упрощенная внутренняя архитектура типового 8-разрядного микропроцессора показана на рисунке 3. В структуре микропроцессора можно выделить три основных части:

1) Регистры для временного хранения команд, данных и адресов;

2) Арифметико-логическое устройство (АЛУ) , которое реализует арифметические и ло-гические операции;

3) Схема управления и синхронизации - обеспечивает выборку команд, организует функционирование АЛУ, обеспечивает доступ ко всем регистрам микропроцессора, воспринимает и генерирует внешние управляющие сигналы.

Рисунок 3 - Упрощенная внутренняя архитектура 8-разрядного микропроцессора

Как видно из схемы, основу процессора составляют регистры, которые делятся на специальные (имеющие определенное назначение) и регистры общего назначения.

Программный счетчик (PC) - регистр, содержащий адрес следующего командного байта. Процессор должен знать, какая команда будет выполняться следующей.

Аккумулятор – регистр, используемый в подавляющем большинстве команд логической и арифметической отработки; он одновременно является и источником одного из байт данных, которые требуются для операции АЛУ, и местом, куда помещается результат операции АЛУ.

Регистр признаков (или регистр флагов) содержит информацию о внутреннем состоянии микропроцессора, в частности о результате последней операции АЛУ. Регистр флагов не является регистром в обычном смысле, а представляет собой просто набор триггер-защелок (флаг поднят или опущен. Обычно имеются флаж¬ки нуля, переполнения, отрицательного результата и переноса.

Указатель стека (SP) - следит за положением стека, т. е. содержит адрес последней его использованной ячейки. Стек – способ организации хранения данных.

Регистр команды содержит текущий командный байт, который декодируется дешифратором команды.

Линии внешних шин изолированы от линий внутренней шины с помощью буферов, а основные внутренние элементы связаны быстродействующей внутренней шиной данных.

Для повышения производительности многопроцессорной системы функции центрального процессора могут распределяться между несколькими процессорами. В помощь центральному процессору в компьютер часто вводят сопроцессоры , ориентированные на эффективное исполнение каких-либо специфических функций. Широко распространены математические и графические , сопроцессоры ввода-вывода , разгружающие центральный процессор от несложных, но многочисленных операций взаимодействия с внешними устройствами.

На современном этапе основным направлением повышения производительности является разработка многоядерных процессоров , т.е. объединение в одном корпусе двух и более процессоров, с целью выполнения нескольких операций параллельно (одновременно).

Лидирующими компаниями по разработке и изготовлению процессоров являются Intel и AMD.

Алгоритм работы микропроцессорной системы

Алгоритм - точное предписание, однозначно задающее процесс преобразования исходной информации в последовательность операций, позволяющих решать совокупность задач определённого класса и получать искомый результат.

Главным управляющим элементом всей микропроцессорной системы является процессор . Именно он, за исключением нескольких особых случаев, управляет всеми остальными устройствами. Остальные же устройства, такие, как ОЗУ, ПЗУ и порты ввода/вывода являются ведомыми.

Сразу после включения процессор начинает читать цифровые коды из той области памяти, которая отведена для хранения программ. Чтение происходит последовательно ячейка за ячейкой, начиная с самой первой. В ячейке записаны данные, адреса и команды. Команда - это одно из элементарных действий, которое способен выполнить микропроцессор. Вся работа микропроцессора сводится к последовательному чтению и выполнению команд.

Рассмотрим последовательность действий микропроцессор во время выполнения команд программы:

1) Перед выполнением очередной команды микропроцессор содержит ее адрес в программном счетчике РС.

2) МП обращается к памяти по адресу, содержащемуся в РС, и считывает из памяти первый байт очередной команды в регистр команд.

3) Дешифратор команд декодирует (расшифровывает) код команды.

4) В соответствии с полученной от дешифратора информацией устройство управления вырабатывает упорядоченную во времени последовательность микроопераций, реализующих предписания команды, в том числе:

Извлекает операнды из регистров и памяти;

Выполняет над ними предписанные кодом команды арифметические, логические или другие операции;

В зависимости от длины команды модифицирует содержимое РС;

Передает управление очередной команде, адрес которой снова находится в программном счетчике РС.

Совокупность команд микропроцессора можно разделить на три группы:

1) Команды перемещения данных

Перемещение происходит между памятью, процессором, портами ввода/вывода (каждый порт имеет свой собственный адрес), между регистрами процессора.

2) Команды преобразования данных

Любые данные (текст, рисунок, видеоролик и т.д.) представляют собой числа, а с числами можно выполнять только арифметические и логические операции. Поэтому к командам этой группы относятся сложение, вычитание, сравнение, логические операции и т.п.

3) Команда передачи управления

Очень редко программа состоит из одной последовательной команд. Подавляющее число алгоритмов требуют разветвления программы. Для того, чтобы программа имела возможность менять алгоритм своей работы в зависимости от какого-либо условия, и служат команды передачи управления. Данные команды обеспечивают протекание выполнения программы по разным путям и организуют циклы.

Внешние устройства

К внешним, относятся все устройства, находящиеся вне процессора (кроме оперативной памяти) и подключаемые через порты ввода/вывода. Внешние устройства можно подразделить на три группы:

1) устройства для связи человек-ЭВМ (клавиатура, монитор, принтер и т.д.);

2) устройства для связи с объектами управления (датчики, исполнительные механизмы, АЦП и ЦАП);

3) внешние запоминающие устройтсва большой ёмкости (жёсткий диск, дисководы).

Внешние устройства подключаются к микропроцессорной системе физически - с помощью разъёмов, и логически - с помощью портов (контроллеров).

Для взаимодействия процессора и внешних устройств применяется система (механизм) прерываний.

Система прерываний

Это специальный механизм, который позволяет в любой момент, по внешнему сигналу заставить процессор приостановить выполнение основной программы, выполнить операции, связанные с вызывающим прерывание событием, а затем вернуться к выполнению основной программы.

У любого микропроцессора имеется хотя бы один вход запроса на прерывание INT (от слова Interrupt - прерывание).

Рассмотрим пример взаимодействия процессора персонального компьютера с клавиатурой (рисунок 4).

Клавиатура - устройство для ввода символьной информации и команд управления. Для подключения клавиатуры в компьютере имеется специальный порт клавиатуры (микросхема).


Рисунок 4 – Работа процессора с клавиатурой

Алгоритм работы:

1) При нажатии клавиши контроллер клавиатуры формирует цифровой код. Этот сигнал поступает в микросхему порта клавиатуры.

2) Порт клавиатуры посылает процессору сигнал прерывания. Каждое внешнее устройство имеет свой номер прерывания, по которому процессор его и распознаёт.

3) Получив прерывание от клавиатуры, процессор прерывает выполнение программы (например, редактор Microsoft Office Word) и загружает из памяти программу обработки кодов с клавиатуры. Такая программа называет драйвер.

4) Эта программа направляет процессор к порту клавиатуры, и цифровой код загружается в регистр процессора.

5) Цифровой код сохраняется в памяти, и процессор переходит к выполнению другой задачи.

Благодаря высокой скорости работы, процессор выполняет одновременно большое количество процессов.

Согласно приведенному определению микропроцессорная система -- это собранная в единое целое совокупность взаимодействующих БИС микро-процессорного комплекта (иногда дополненная БИС из других комплектов)организованная в систему, т. е. вычислительная или управляющая система с микропроцессором в качестве узла обработки информации. Общая структурная схема. Типовая структура микропроцессорной системы изображена на рис. 3. Кратко охарактеризуем узлы-модули, входящие в ее состав, за исключением уже описанного микропроцессора.

Генератор тактовых импульсов -- источник последовательности прямоугольных импульсов, с помощью которых осуществляется управление событиями во времени. Он задает цикл команды -- интервал времени, необходимый для считывания выборки команды из памяти и ее исполнения. Цикл команды состоит из определенной последовательности элементарных действий, называемых состояниями (тактами). Для некоторых микропроцессоров не требуется внешний генератор тактовых импульсов: он содержится непосредственно в схеме однокристального микропроцессора.

Основная память системы (внешняя по отношению к микропроцессору) состоит из ПЗУ и ОЗУ.

Постоянное запоминающее устройство (ПЗУ) -- это устройство, в котором хранится программа (и при необходимости совокупность констант). Содержимое ПЗУ не может быть стерто. Оно используется как память программы, составленной заранее изготовителем в соответствии с требованиями ее пользователей. В таких случаях говорят, что программа жестко «зашита» в запоминающем устройстве. Чтобы осуществить иную программу, необходимо применить другое ПЗУ или его часть. Из ПЗУ можно только выбирать хранимые там слова, но нельзя вносить новые, стирать и заменять записанные слова другими. Оно подобно напечатанной таблице выигрышей по облигациям: можно лишь считывать имеющиеся там числа, но заменять их или вносить новые невозможно.

Помимо ПЗУ используются также ППЗУ и РППЗУ.

Программируемое постоянное запоминающее устройство (ППЗУ) отличается от ПЗУ тем, что пользователь может самостоятельно запрограммировать ПЗУ (ввести в него программу) с помощью специального устройства -- программатора, но только один раз (после введения программы содержимое памяти уже нельзя изменить).

Репрограммируемое постоянное запоминающее устройство (РППЗУ), называемое также стираемым ПЗУ, имеет такую особенность: хранимая информация может стираться несколько раз (при этом она разрушается). Иначе говоря, РППЗУ допускает перепрограммирование, осуществляемое с помощью программатора. Это облегчает исправление обнаруженных ошибок и позволяет изменять содержимое памяти.

Оперативное запоминающее устройство (ОЗУ), которое иначе называют запоминающим устройством с произвольной выборкой (ЗУПВ) или произвольным доступом (ЗУПД), служит памятью данных, подлежащих обработке, и результатов вычислений, а в некоторых микропроцессорных системах -- также программ, которые часто меняются. Его характерное свойство заключается в том, что время, требуемое для доступа к любой из ячеек памяти, не зависит от адреса этой ячейки. ОЗУ допускает как запись, так и считывание слов. По отношению к этому запоминающему устройству приемлема аналогия с классной доской, на которой мелом записаны числа: их можно многократно считывать, не разрушая, а при необходимости -- стереть число и записать на освободившемся месте новое. Следует иметь в виду, что информация, содержащаяся в ОЗУ, исчезает, стирается, если прерывается напряжение питания.

Интерфейсом называют устройство сопряжения. Это упрощенное определение. В более строгом толковании под интерфейсом понимают совокупность электрических, механических и программных средств, позволяющих соединять модули системы между собой и с периферийными устройствами. Его составными частями служат аппаратные средства для обмена данными между узлами и программные средства -- протокол, описывающий процедуру взаимодействия модулей при обмене данными. Интерфейс микропроцессорной системы относится к машинным интерфейсам. В микропроцессорной системе применяют специальные интерфейсные БИС для сопряжения периферийных устройств с системой (на рис. 2 они показаны в виде модулей интерфейса ввода и интерфейса вывода). Для этих БИС характерна универсальность, осуществляемая путем программного изменения выполняемых ими функций.

Более простые задачи решают порты ввода-вывода -- схемы, спроектированные (запрограммированные) для обмена данными с конкретными периферийными устройствами: приема данных с клавиатуры или устройства считывания, передачи их дисплею, телетайпу и т. п.

Порт -- это схема средней степени интеграции, содержащая адресуемый многорежимный буферный регистр ввода-вывода (МБР) с выходными тристабильными схемами (о них идет речь ниже при описании схемы ОЗУ), логикой управления и разъемом для подключения устройств ввода-вывода. Возможности перепрограммирования порта ограничены.

Когда периферийные устройства, входящие в состав микропроцессорной системы, сложны, выполняют многочисленные разнообразные операции, то для сопряжения применяют усложненный интерфейс, называемый периферийным программируемым адаптером. Он содержит набор встроенных портов и других регистров, облегчающих программирование и осуществление временного согласования. К одному периферийному программируемому адаптеру может быть подключено несколько простых устройств ввода-вывода. Подобный интерфейс считают универсальным интерфейсом широкого применения, поскольку его можно сочетать почти со всеми имеющимися периферийными устройствами.

Для многих микропроцессорных систем и микро-ЭВМ характерно несоответствие между относительно высокой скоростью обработки информации внутри микропроцессора и низкой скоростью обмена данными между модулями через интерфейс.

Устройство ввода осуществляет введение в систему данных, подлежащих обработке, и команд. Устройство вывода преобразует выходные данные (результат обработки информации) в форму, удобную для восприятия пользователем или хранения. Устройствами ввода-вывода служат блоки считывания информации с перфоленты и магнитной ленты (или записи на них), кассетные магнитофоны, гибкие диски, клавиатуры, дисплеи, аналого-цифровые и цифро-аналоговые преобразователи, графопостроители, телетайпы и т.п.

Далее предметом нашего внимания будут шины системы. Шиной называют группу линий передачи, используемых для выполнения определенной функции (по одной линии на каждый передаваемый бит). Особенность структуры микропроцессорной системы заключается в магистральной организации связей между входящими в ее состав модулями. Она осуществляется с помощью трех шин. По ним передаются вся информация и сигналы, необходимые для работы системы. Эти шины соединяют микропроцессор с внешней памятью (ОЗУ, ПЗУ) и интерфейсами ввода-вывода, в результате чего создается возможность обмена данными между микропроцессором и другими модулями системы, а также передачи управляющих сигналов.

Рассмотрим назначение и функции каждой из трех шин (на примере 8-разрядного микропроцессора), показанных на рис. 3.

Шина данных. Это двунаправленная шина: по ней данные могут направляться либо в микропроцессор, либо из него (на рис. 3 такая особенность шины данных подчеркнута стрелкой с двумя остриями, одно из которых обращено к микропроцессору, а другое -- от него). При этом необходимо еще раз подчеркнуть, что невозможна одновременная передача данных в обоих направлениях. Эти процедуры разнесены во времени в результате применения временного мультиплексирования.

Шина адреса (или адресная шина). По ней информация передается только в одном направлении -- от микропроцессора к модулям памяти или ввода-вывода.

Шина управления. Служит для передачи сигналов, обусловливающих взаимодействие, синхронизацию работы всех модулей системы и внутренних узлов микропроцессора. Одна часть линий шины управления служит для передачи сигналов, выходящих из микропроцессора (на рис. 3 это условно показано стрелкой, острие которой направлено вправо), а по другой части линий передаются сигналы к микропроцессору (на рис. 3 -- стрелка с острием, направленным влево).

Достоинством шинной структуры является возможность подключения к микропроцессорной системе новых модулей, например нескольких блоков ОЗУ и ПЗУ для получения требуемой емкости памяти.

ОСНОВЫ МИКРОПРОЦЕССОРНОЙ ТЕХНИКИ

Конспект лекций

Москва 2013

ОРГАНИЗАЦИЯ МИКРОПРОЦЕССОРОВ И МИКРОПРОЦЕССОРНЫХ СИСТЕМ

МИКРОПРЦЕССОРНЫЕ СИСТЕМЫ НА ОСНОВЕ МИКРОПРОЦЕССОРНОГО КОМПЛЕКТА СЕРИИ К580

Состав микропроцессорного комплекта

МПК серии К580 содержит набор БИС для построения микропроцессорных систем невысокого быстродействия, работающих с тактовой частотой до 2,5 МГц. С использованием этого МПК строятся микропроцессорные системы (МПС), решающие задачи управления различными технологическими процессами.

Комплект имеет следующие особенности. В нем предусмотрена БИС центрального процессора, содержащая в одной микросхеме операционное и управляющее устройства, что существенно упрощает построение микропроцессорной системы. Кроме того, для облегчения программирования при управлении микросхемами МПК применяется фиксированный набор команд, что приводит к снижению быстродействия микропроцессорной системы. Это связано с тем, что предложенный набор команд может оказаться недостаточным для решения конкретной задачи.

Ряд микросхем, входящих в состав МПК, выполнены по n-МОП технологии, другие - по технологии ТТЛШ. Однако независимо от технологии изготовления все входные и выходные сигналы микросхем серии К580 соответствуют уровням логических схем ТТЛ – технологии, что упрощает согласование с микросхемами ТТЛ – технологии любых серий.

Все микросхемы МПК могут работать в диапазоне температур от -10° С до + 70° С. Микросхема К580ВМ80А требует трех источников напряжения:питания: +5 В, -5 В и +12 В, микросхема К580ГФ24 – двух источников: +5 В и +12 В, остальные микросхемы – одного источника: +5 В.

В таблице 2.1 приведен состав микропроцессорного комплекта серии К580.

Таблица 2.1 Состав микропроцессорного комплекта

Обозначение микросхемы Назначение Выполняемая функция
К580ВМ80А Параллельный центральный процессор Центральный процессор с фиксированной системой команд для обработки параллельной 8-разрядной информации
К580ВВ51А Универсальный синхронно/асинхронный приемопередатчик 8-разрядное универсальное синхронно/асинхронное приемо-передающее устройство последовательной связи
К580ВИ53 8 или 16-разрядный таймер Формирует программно-управляемые временные задержки для синхронизации управляемых объектов в реальном масштабе времени
К580ВВ55А 8-разрядный параллельный порт Программируемый ввод-вывод параллельной информации
К580ВТ57 8 или 16-разрядный контроллер прямого доступа к памяти Высокоскоростной обмен информацией между памятью МПС и периферийными устройствами
К580ВН59 Контроллер прерываний Обслуживает до восьми запросов на прерывания от внешних устройств
К580ВВ79 8-разрядный интерфейс клавиатуры и дисплея Контроллер ввода-вывода для клавиатуры и дисплея
К580ВГ75 8 или 16-разрядный интерфейс электронно-лучевой трубки Контроллер вывода информации из памяти МПС на экран электронно-лучевой трубки
К580ВК91А Интерфейс канала Устройство сопряжения микропроцессора с информационно-измерительной системой
К580ВА93 Приемопередатчик канала Приемопередатчик микропроцессор - канал общего пользования
К580ГФ24 Генератор тактовых импульсов Формирует две последовательности тактовых импульсов, необходимые для работы центрального процессора
К580ВК28 К580ВК38 Системный контроллер и шинный формирователь Формирует сигналы управления различными устройствами, входящими в МПС
К580ИР82 К580ИР83 Буферный регистр 8-разрядный буферный регистр с тремя состояниями
К580ВА86 К580ВА87 Шинный формирователь Двунаправленный 8-разрядный шинный формирователь с высокой нагрузочной способностью и тремя состояниями

Блок регистров

Микропроцессор К580 содержит программно-доступные 8-разрядные регистры общего назначения (РОН) и 16-разрядные специализированные регистры: счетчик команд и регистр-указатель стека. Кроме того, имеются непосредственно недоступные программе регистры: 8-разрядные регистры временного хранения W, Z и 16-разрядный регистр адреса.

Регистры общего назначения B, C, D, E, H, L используются для хранения операндов, промежуточных и конечных результатов, а также адресов и индексов при косвенной и индексной адресации. Для выполнения операций со словами двойной длины и операций формирования и пересылок двухбайтных адресов имеется возможность оперировать с содержимым пар регистров BC, DE, HL.

Особенность блока регистров МП является наличие в его составе схемы инкремента/декремента (INC/DEC), которая производит над содержимым счетчика команд (PC) и регистра-указателя стека (SP) операцию прибавления/вычитания 1 без привлечения АЛУ.

Счетчик команд (16-ти разрядный регистр) предназначен для хранения адреса команды; после выборки из оперативной памяти текущей команды содержимое счетчика увеличивается на единицу и таким образом формируется адрес очередной команды (при отсутствии безусловных и условных переходов).

Указатель стека (16-ти разрядный регистр) служит для адресации стековой памяти. В МП К580 используется «перевернутый» стек, т.е. при передаче в стек слова значение указателя стека (адрес вершины стека) уменьшается, а при извлечении слова из стека увеличивается.

Стековая адресация широко используется при работе с подпрограммами и в процедурах прерывания.

Для кратковременного хранения некоторых операндов и результатов выполнения операций служат регистры временного хранения данных W, Z. Использование регистров временного хранения позволяет МП за один цикл выполнения команды реализовать, например, такую операцию, как обмен содержимым двух регистров.

В состав блока регистров входит регистр адреса памяти (RA), предназначенный для хранения адреса ячейки памяти, в которой записана текущая команда. Регистр адреса недоступен программисту. Однако любая пара регистров (BC, DE, HL) может быть использована для задания адресов команд и данных в программе.

Буферные схемы

Двунаправленный буфер шины данных предназначен для логического и электрического разделения внутрипроцессорной шины данных и внешней, системной шины данных. Буфер состоит из регистра-защелки и выходной схемы с тремя состояниями, т.е. схемы обеспечивающей на выходе состояния 0, 1 и полное отключение от нагрузки (высокоимпедансное состояние).

В режиме ввода информации внутренняя шина данных подключается к регистру-защелке буфера, загрузку которого из внешней шины производит буферная схема под управлением команды.

В режиме вывода информации буферная схема передает в шину данных содержимое буферного регистра-защелки, на вход которого по внутренней шине с одного из регистров загружена информация, подлежащая выдаче.

Во время выполнения операций в МП, не связанных с процедурами обмена с внешними устройствами буферная схема отключается от шины данных.

Во время выполнения операций в МП не связанных с процедурами обмена с внешними по отношению к МП устройствами системы, буферная схема отключается от шины данных, т.е. переходит в высокоимпедансное состояние (не нуль, не один).

Буферная схема шины адреса – однонаправленная и обеспечивает передачу адресов команд и данных, а также номеров периферийных устройств от МП в систему. Выход буфера адреса, точно также как и буфера данных может переходить в отключенное состояние.

Управляющее устройство

Блок управления включает:

8-ми разрядный регистр команд (RK), предназначенный для приема и хранения кода операции;

Устройства управления и синхронизации (CU), формирующего управляющие сигналы для всех внутренних регистров и блоков МП, а также его выходные сигналы управления;

Управляющей памяти, выполненной на программируемой логической матрице, в которой хранятся микропрограммы отдельных операций. Пользователь не может изменить содержимого управляющей памяти, а, следовательно, и состава команд.

Команды пересылки данных

Команды пересылки данных обеспечивают выполнение операций размещения, обмена, загрузки и перемещения данных. Среди всех команд микропроцессора эти команды используются наиболее часто. Признаки условия не устанавливаются командами этой группы. В таблице 2.5 приведены команды пересылки данных.

Таблица 2.5 Команды пересылки данных

Мнемоника команды Код операции Количество байтов в команде Выполняемые действия
MOV R1, R2 01DDDSSS 1 1 (R1) (R2)
MOV R, M 01DDD110 1 2 (R) M(HL)
MOV M, R 01110SSS 1 2 M(HL) (R)
MVI R, data 00DDD110 2 2 (R) (байт2)
MVI M, data 00110110 2 3 M(HL) (байт2)
LXI RP, data 00RP0001 2 3 (RH) (байт3); (RL) (байт2).
LDA addr 00111010 3 4 (A) ((байт3)(байт2))
LHLD addr 00101010 3 5 L ((байт3)(байт2)); H ((байт3)(байт2)+1).
LDAX RP 00RP1010 1 2 (A) (M)
XCHG 11101011 1 1 (H) « (D); (L) « (E)
STA addr 00110010 3 4 ((байт3)(байт2)) (A)
SHLD addr 00110010 3 5 ((байт3)(байт2)) (L); ((байт3)(байт2)+1) (H)
STAX RP 00RP0010 1 2 M(RP) (A)

Команда пересылки с регистровой адресацией MOV A, D) осуществляет передачу содержимого регистра D в аккумулятор. Команда с непосредственной адресацией MVI D, 4Е 16 производит пересылку числа, приведенного во втором байте команды (в примере число 4Е 16), в регистр D, адрес которого указан в разрядах 5…3 первого байта команды. Команда с прямой адресацией LDA 0200 16 производит передачу содержимого ячейки памяти, адрес которой указан во втором и третьем байтах команды (0200 16), в аккумулятор. Команда LDAX BC загружается содержимое ячейки оперативной памяти, адресом которой служит содержимое пары регистров BC в аккумулятор.

Команды логических операций

Задачей этих команд является выполнение логических операций И, ИЛИ, ИСКЛЮЧАЮЩЕЕ ИЛИ, сравнения, сдвига и инвертирования. Эти команды выполняют логические операции над данными в памяти или регистрах и признаках. В таблице 2.7 приведены команды логических операций.

Таблица 2.7 Команды логических операций

Мнемоника команды Код операции Количество байтов в команде Время выполнения команды, циклы Выполняемые действия
ANA R 10100SSS 1 1 (A) (A)Ù(R). Устанавливаются флаги – Z, S, P, AC.
ANA M 10100110 1 2 (A) (A)ÙM(HL). Устанавливаются флаги – Z, S, P, AC.
ANI data 10101SSS 2 2 (A) (A)Ù(байт2). Устанавливаются флаги – Z, S, P, AC.
XRA R 10101SSS 1 1 (A) (A)Å(R). Устанавливаются флаги – Z, S, P.
XRA M 10101110 1 2 (A) (A)ÅM(HL). Устанавливаются флаги – Z, S, P.
XRI data 11101110 2 2 (A) (A)Å(байт2). Устанавливаются флаги – Z, S, P.
ORA R 10110SS 1 1 (A) (A)Ú(R). Устанавливаются флаги – Z, S, P.
ORA M 10110110 1 2 (A) (A)ÚM(HL). Устанавливаются флаги – Z, S, P.
ORI data 11110110 2 2 (A) (A)Ú(байт2). Устанавливаются флаги – Z, S, P.
CMP R 10111SSS 1 1 (A)-(R). Флаги – Z=1, если (A)=(R), C=1, если (A)<(R).
CMP M 10111110 1 2 (A)-M(HL). Флаги – Z=1, если (A)=(M), C=1, если (A)<(M).
CPI data 11111110 2 2 (A)-(байт2). Флаги – Z=1, если (A)=(байт2), C=1, если (A)<(байт2).
RLC 00000111 1 1 Сдвиг влево (A) (2A). Устанавливается флаг C.
RRC 00001111 1 1 Сдвиг вправо. (A) (A/2). Устанавливается флаг C.
RAL 00010111 1 1 Циклический сдвиг влево. Устанавливается флаг C.
RAR 00011111 1 1 Циклический сдвиг вправо. Устанавливается флаг C.
CMA 00101111 1 1
CMC 00111111 1 1
STC 00110111 1 1 (C) 1.

Приемы программирования

Для программирования МП необходимо знать состав команд, быть хорошо знакомым с назначением и расположением регистров, т.е. знать архитектуру микропроцессора.

Этапы составления программы должны выполняться в следующей последовательности:

1. Определение и анализ задачи;

2. Составления блок схемы алгоритма решения в общем виде и машинного алгоритма;

3. Написание программы на языке Ассемблера;

4. Трансляция программы в машинные коды;

5. Отладка программы (поиск и устранение ошибок);

6. Документирование программы.

Сформулируем общие требования, предъявляемые к программам, составленным на языке Ассемблера.

В общем виде любая команда на языке Ассемблера записывается следующим образом:

Метка: Операция Данные; Комментарий

Метка используется для обозначения адреса ячейки памяти, в которой хранится данная команда. Она может состоять из шести символов, не должна включать знаков пунктуации и пробелов, причем первым символом должна быть буква. Метка всегда определяется двоеточием и является необязательным элементом команды. Она применяется только при необходимости.

Операция является обязательным элементом команды. Она представляет собой мнемоническую запись из двух – четырех букв, которые указывают на характер выполняемых действий, например:

HLT – мнемоническое обозначение команды останов МП К580.

Данные – часть команды, в которой может размещаться одно или два восьмиразрядных слова в зависимости от типа команды (адрес ячейки памяти, адрес порта ввода- вывода, непосредственные данные).