Тарифы Услуги Сим-карты

Протокол tcp выполняет перекодирование данных. Транспортный протокол tcp обеспечивает

На канальном и сетевом уровне протоколов TCP / IP пакета , которые касаются основного механизма передачи блоков данных между странами и между сетями, являются основами TCP / IP . Они используют стек протоколов, но они не используются непосредственно в приложениях, которые работают по протоколу TCP / IP . В этой статье мы рассмотрим два протокола, которые используются приложениями: User Datagram Protocol (UDP) и Transmission Control Protocol (TCP).

Протокол дейтаграммы пользователя
User Datagram Protocol очень простой протокол. Как и IP , это надежный протокол без соединений. Вам не нужно устанавливать соединение с хостом для обмена данными с ним, используя UDP , и не существует механизма для обеспечения передаваемых данных.
Блок данных, передаваемых с помощью UDP называется датаграммой. UDP добавляет четыре 16-битных поля заголовка (8 байт) к передаваемым данным. Эти поля: длина поля, поле контрольной суммы, а также источник и номер порта назначения. «Порт», в этом контексте, представляет собой программное обеспечение порта, а не аппаратный порт.
Концепция номера порта является общей для обоих UDP и TCP . Номера портов определяют, какой модуль протокола направляет (или получает) данные. Большинство протоколов имеют стандартные порты, которые обычно используются для этого. Например, протокол Telnet обычно использует порт 23. Simple Mail Transfer Protocol (SMTP), использует порт 25. Использование стандартных номеров портов позволяет клиентам взаимодействовать с сервером без предварительной установки, какой порт использовать.
Номер порта и протокола в поле в заголовка IP дублируют друг друга в какой-то степени, хотя поля протокола не доступны для протоколов более высокого уровня. IP использует поле протокола, чтобы определить, куда должны быть переданы данные на UDP или TCP модули. UDP или TCP используют номер порта, чтобы определить, какой протокол прикладного уровня, должен получать данные.
Несмотря на то, UDP не является надежным, он все еще подходящий выбор для многих приложений. Он используется приложениями в реальном времени, такими как потоковое аудио и видео, где, если данные будут потеряны, то лучше обойтись без него, чем отправить его снова по порядку. Он также используется протоколами, такими как Simple Network Management Protocol (SNMP).
Трансляция
UDP подходит для информационного вещания, поскольку он не требует подключения к открытой связи.Цели широковещательного сообщения определяются отправителем, на указанный в IP-адрес назначения. UDP датаграммы с адресом назначения IP все бинарные 255.255.255.255) и будет получен каждый хост в локальной сети. Обратите внимание на слово местные: дейтаграммы с таким адресом не будут приняты маршрутизатором к Интернету.
Передачи могут быть направлены на конкретные сети. UDP датаграммы с хоста и подсети части IP-адреса, установленные как бинарные транслируются на все узлы на всех подсетях сети, которая соответствует чистой части IP-адреса. Если только принимающая сторона (другими словами, все биты, которые равны нулю в маске подсети) устанавливается в бинарные, то вещание ограничено для всех хостов в подсети, который соответствует остальной части адреса.
Многоадресная рассылка используются для передачи данных в группе хостов, которые выразили желание их получать. Многоадресная UDP датаграмма имеет адрес назначения, в котором первые четыре бита 1110, предоставлены адреса в диапазоне 224.xxx в 239.xxx Остальные биты адреса используются для обозначения группы многоадресной рассылки. Это, скорее, как радио-или телеканал. Так, например, 224.0.1.1 используется для протокола NTP. Если TCP / IP приложения хотят получить многоадресное сообщение, они должны присоединиться к соответствующей группе многоадресной рассылки, что он и делает, передавая адрес группы в стек протоколов.
Широкое вещание, по сути, фильтруют передачу. Multicaster не рассматривает индивидуальные сообщения для каждого хоста, который присоединяется к группе. Вместо этого, сообщения в эфир, и драйвера на каждом хосте решают, следует ли игнорировать их или передать содержимое стеку протоколов.
Это означает, что многоадресные сообщения должны транслироваться по всему Интернету, так как multicaster не знает, какие хосты хотят получать сообщения. К счастью, это не является необходимым. IP использует протокол под названием Internet Group Management Protocol (IGMP), чтобы сообщить маршрутизаторам, какие хосты хотят получать сообщения многоадресной группы, так что сообщения отправляются только туда, где они необходимы.
Протокол управления передачей
Transmission Control Protocol является протоколом транспортного уровня и используется большинством интернет-приложений, такими как Telnet, FTP и HTTP. Это протокол с установлением соединения. Это означает, что два компьютера - один клиент, другой сервер и между ними необходимо установить соединение до того, как данные могут передаваться между ними.
TCP обеспечивает надежность. Приложение, которое использует TCP знает, что он отправляет данные полученные на другом конце, и что он получил их правильно. TCP использует контрольные суммы, как на заголовках,так и на данных. При получении данных, TCP посылает подтверждение обратно к отправителю. Если отправитель не получает подтверждения в течение определенного периода времени, данные отправляются повторно.
TCP включает в себя механизмы обеспечения данных, которые поступают в обратной последовательности, в порядке как они были отправлены. Он также реализует управление потоком, так что отправитель не может подавить приемник данных.
TCP передает данные, используя IP, в блоках, которые называются сегментами. Длина отрезка определяется протоколом. В дополнение к IP-заголовку, каждый сегмент состоит из 20 байт заголовка. Заголовок TCP начинается с 16-битного источника и поля назначения номера порта. Как и UDP , эти поля определяют уровень приложения, которые направлены и на получение данных. IP-адрес и номер порта, вместе взятые однозначно идентифицируют службы, работающие на хозяина, и пары известной как гнездо.
Далее в заголовке идет 32-битный порядковый номер. Это число определяет позицию в потоке данных, что должен занимать первый байт данных в сегменте. Порядковый номер TCP позволяет поддерживать поток данных в правильном порядке, хотя сегменты могут быть получены из последовательности.
Следующее поле представляет собой 32-битное поле, которое используется для передачи обратно отправителю, что данные были получены правильно. Если ACK флаг, которым он обычно и бывает, то это поле содержит положение следующего байта данных, что отправитель сегмента ожидает получить.
В TCP нет необходимости для каждого сегмента данных, которые будут признаны. Значение в поле подтверждения интерпретируется как «все данные до сих пор получены ОК». Это экономит полосу пропускания, когда все данные направляются в одну сторону, уменьшая потребность в признании сегментов. Если данные одновременно отправляються в обоих направлениях, как в полной дуплексной связи, то марки не связаны с расходами,так как сегмент передачи данных в одну сторону может содержать подтверждение для данных, передаваемых по-другому.
Далее в заголовке представляется 16-битное поле, содержащее длину заголовка и флаги. TCP заголовки могут содержать дополнительные поля, так что длина может варьироваться от 20 до 60 байт. Флаги: URG, ACK (который мы уже упоминали), PSH, RST, SYN и FIN. Позже,мы рассмотрим некоторые другие флаги.
Заголовок содержит поле, называемое размером окна, что дает количество байт, которые приемник может принять. Также существует 16-битная контрольная сумма, охватывающая как заголовок,так и данные. Наконец (до дополнительных данных) есть поле называемое «указатель срочности». Когда флаг URG установлен, это значение интерпретируется как смещение порядкового номера. Он определяет начало данных в потоке, которые должны быть обработаны в срочном порядке. Эти данные часто называют данными «вне группы». Пример её использования, когда пользователь нажимает клавишу перерыв, чтобы прервать выход из программы во время Telnet сессии.

Транспортные протоколы TCP и UDP стека протоколов TCP/IP обеспечивают передачу данных между любой парой прикладных процессов , выполняющихся в сети, и предоставляют интерфейс для протокола IP путем демультиплексирования нескольких процессов, использующих в качестве адресов транспортного уровня порты. Для каждого прикладного процесса (ПП) (приложения), выполняемого в компьютере, может быть сформировано несколько точек входа , выступающих в качестве транспортных адресов , называемых портами (рис.4.60).

Существуют два способа присвоения порта приложению:

· централизованный (присвоенные или назначенные номера от 0 до 1023), использующий стандартные номера, присвоенные общедоступным службам (приложениям), например: FTP – 21, telnet – 23, SMTP – 25, DNS – 53, HTTP – 80.

· локальный (динамические номера от 1024 до 65535), предоставляющий произвольный номер из списка свободных номеров при поступлении запроса от приложения пользователя.

Динамические номера портов приложений являются уникальными в пределах каждого компьютера, но могут совпадать с номерами портов в других компьютерах. Различие между ними определяется только различием интерфейсов каждого из компьютеров, задаваемых IP-адресами.

Таким образом, пара «IP-адрес; номер порта », называемая сокетом (socket), однозначно определяет прикладной процесс в сети.

Номера UDP- и TCP-портов в пределах одного и того же компьютера могут совпадать, хотя и идентифицируют разные приложения. Поэтому при записи номера порта обязательно указывается тип протокола транспортного уровня, например 2345/TCP и 2345/UDP. В некоторых случаях, когда приложение может обращаться по выбору к протоколу UDP или TCP, ему могут быть назначены одинаковые номера UDP- и TCP-портов, например DNS-приложению назначен номер 53 – 53/UDP и 53/TCP.

Транспортный протокол UDP

UDP – транспортный протокол, обеспечивающий передачу данных в виде дейтаграмм между любой парой прикладных процессов , выполняющихся в сети, без установления соединения . Сегменты состоят из 8-байтового заголовка, за которым следует поле данных. Заголовок UDP-сегмента показан на рис.4.61.

Наиболее широко UDP используется при выполнении клиент-серверных приложений (типа запрос-ответ).

При этом UDP не выполняет:

· контроль потока,

· контроль ошибок,

· повторной передачи после получения испорченного сегмента.

Примерами приложений, использующих протокол UDP для передачи данных, являются DHCP, DNS, SNMP.

В некоторых случаях на одном конечном узле может выполняться несколько копий одного и того же приложения. Возникает вопрос: каким образом различаются эти приложения?

Для этого рассмотрим на простом примере процесс формирования запроса и процедуру обращения DNS-клиента к DNS-серверу, когда на одном компьютере запущены два DNS-сервера, причём оба используют для передачи своих данных транспортный протокол UDP (рис.4.62). Для того чтобы различать DNS-серверы, им присваиваются разные IP-адреса – IP1 и IP2, которые вместе с номером порта образуют два разных сокета: «UDP-порт 53, IP1» и «UDP-порт 53, IP2».

Рис.4.62,а) иллюстрирует процесс формирования DNS-клиентом запроса к DNS-серверу.

DNS-запрос транспортном уровне стека протоколов TCP/IP передаётся протоколу UDP, который вкладывает этот запрос в UDP-дейтаграмму и указывает в заголовке порт назначения 53/UDP. Затем UDP-дейтаграмма передаётся на межсетевой уровень, где она вкладывается в IP-пакет, заголовок которого содержит «IP-адрес: IP2». IP-пакет, в свою очередь, передаётся на уровень «межсетевой интерфейс», где он помещается в кадр канального уровня с соответствующим заголовком канального уровня (ЗКУ). Этот кадр передаётся по сети к компьютеру, содержащему два DNS-сервера (рис.4.62,б).

В этом компьютере протокол канального уровня (ПКУ) снимает заголовок ЗКУ и передаёт содержимое кадра на межсетевой уровень протоколу IP, который, в свою очередь, извлекает содержимое (UDP-дейтаграмму) из IP-пакета. Дальнейшие манипуляции с передаваемыми данными отличаются от принципов, заложенных в многоуровневую модель иерархии протоколов. Вместо того чтобы просто передать UDP-дейтаграмму, находящуюся в поле данных IP-пакета, транспортному уровню, IP-протокол присоединяет к UDP-дейтаграмме так называемый псевдозаголовк , содержащий среди прочего IP-адреса отправителя и получателя. Таким образом, протокол UDP, имея IP-адрес и порт назначения, однозначно определяет, что содержимое поля данных (то есть DNS-запрос), должно быть передано приложению «DNS-сервер 2».

Транспортный протокол TCP

Протокол TCP обеспечивает надежную передачу данных между прикладными процессами за счет установления логических соединений между взаимодействующими процессами.

Логическое соединение между двумя прикладными процессами идентифицируется парой сокетов (IP-адрес, номер порта), каждый из которых описывает один из взаимодействующих процессов.

Информация, поступающая к протоколу TCP в рамках логического соединения от протоколов более высокого уровня, рассматривается протоколом TCP как неструктурированный поток байтов и заносится в буфер. Для передачи на сетевой уровень из буфера вырезается сегмент , не превосходящий 64 Кбайт (максимального размера IP-пакета). На практике обычно длина сегмента ограничивается значением 1460 байтами, что позволяет поместить его в кадр Ethernet с заголовками TCP и IP.

Соединение TCP ориентировано на полнодуплексную передачу .

Управление потоком данных в протоколе ТСР осуществляется с использованием механизма скользящего окна переменного размера . При передаче сегмента узел-отправитель включает таймер и ожидает подтверждения. Отрицательные квитанции не посылаются, а используется механизм тайм-аута . Узел назначения, получивший сегмент формирует и посылает обратно сегмент (с данными, если они есть, или без данных) с номером подтверждения, равным следующему порядковому номеру ожидаемого байта . В отличие от многих других протоколов, протокол TCP подтверждает получение не пакетов, а байтов потока. Если время ожидания подтверждения истекает, отправитель посылает сегмент еще раз.

Несмотря на кажущуюся простоту протокола, в нем имеется ряд нюансов, которые могут привести к некоторым проблемам.

Во-первых, поскольку сегменты при передаче по сети могут фрагментироваться, возможна ситуация, при которой часть переданного сегмента будет принята, а остальная часть окажется потерянной.

Во-вторых, сегменты могут прибывать в узел назначения в произвольном порядке, что может привести к ситуации, при которой байты с 2345 по 3456 уже прибыли, но подтверждение для них не может быть выслано, так как байты с 1234 по 2344 еще не получены.

В-третьих, сегменты могут задержаться в сети так долго, что у отправителя истечёт интервал ожидания, и он передаст их снова. Переданный повторно сегмент может пройти по другому маршруту и может быть иначе фрагментирован, или же сегмент может по дороге случайно попасть в перегруженную сеть. В результате для восстановления исходного сегмента потребуется достаточно сложная обработка На рис.4.63 представлен формат заголовка TCP-сегмента. Первые 20-байт заголовка имеют строго фиксированный формат, за которым могут находиться дополнительные поля. После дополнительных полей заголовка размещается поле данных, содержащее не более 65 495 байт, которое вместе с TCP- и IP-заголовками размером по 20 байт даст максимально допустимый размер IP-пакета в 65 535 байт.

Не вдаваясь в детали, рассмотрим кратко назначение фиксированных полей заголовка ТСР-сегмента.

Поля «Порт отправителя» (2 байта) и «Порт получателя» (2 байта) идентифицируют процессы , между которыми установлено логическое соединение.

Поле «Порядковый номер» (4 байта) содержит номер первого байта данных в сегменте, который определяет смещение сегмента относительно потока передаваемых данных

Поле «Номер подтверждения» (4 байта) содержит номер следующего ожидаемого байта , который используется в качестве квитанции, подтверждающей правильный приёма всех предыдущих байтов.

Поле «Длина TCP-заголовка» (4 бита) задаёт длину заголовка ТСР-сегмента, измеренную в 32-битовых словах.

Поле «Резерв» длиной 6 бит зарезервировано на будущее.

Однобитовые флаги несут служебную информацию о типе сегмента и интерпретируются следующим образом:

· URG=1 указывает на наличие срочных данных , что означает использование поля «Указатель на срочные данные» ;

· ACK=1 означает, что сегмент является квитанцией на принятый сегмент и поле «Номер подтверждения» содержит осмысленные данные. В противном случае данный сегмент не содержит подтверждения и поле «Номер подтверждения» просто игнорируется.

· PSH=1 (PUSH-флаг) означает запрос на отправку данных без ожидания заполнения буфера;

· RST=1 используется для сброса состояния соединения при обнаружении проблем, а также для отказа от неверного сегмента или от попытки создать соединение;

· SYN=1 используется для установки соединения , при этом если АСК=0, то это означает, что поле подтверждения не используется;

· FIN=1 используется для разрыва соединения .

Поле «Размер окна» (2 байта) определяет, сколько байт может быть послано после байта, получившего подтверждение.

Поле «Контрольная сумма» (2 байта) содержит контрольную сумму, которая охватывает заголовок, данные и псевдозаголовок .

Алгоритм вычисления контрольной суммы выглядит следующим образом.

Перед началом вычисления контрольной суммы значение этого поля устанавливается равным нулю. Если поле данных содержит нечётное число байтов, то оно дополняется нулевым байтом, который используется при подсчёте контрольной суммы, но не вставляется в сегмент для передачи в сети. Необходимость такого добавления обусловлена тем, что ТСР-сегмент, включающий заголовок, данные и псевдозаголовок, рассматривается как совокупность 16-разрядных двоичных чисел, которые складываются в дополнительном коде, а затем вычисляется дополнение для полученной суммы, которое заносится в поле «Контрольная сумма».

Получатель сегмента аналогичным образом подсчитывает контрольную сумму для всего сегмента, включая поле «Контрольная сумма». Очевидно, что полученный таким образом результат должен быть равен 0. Отметим, что дополнительный нулевой байт Поле «Указатель на срочные данные» (2 байта) содержит смещение в байтах от текущего порядкового номера байта до места расположения срочных данных, которые необходимо срочно принять, несмотря на переполнение буфера. Таким образом, в протоколе TCP реализуются прерывающие сообщения. Содержимым срочных данных занимается прикладной уровень. Протокол TCP лишь обеспечивает их доставку и не интересуется причиной прерывания.

Поле «Параметры» имеет переменную длину и может отсутствовать.

Примерами приложений, использующих протокол TCP для передачи данных, являются FTP, TFTP, DNS, POP3, IMAP, TELNET.

В стеке протоколов TCP/IP протокол TCP (Transmission Control Protocol) работает на транспортном уровне, обеспечивая надежную транспортировку данных между прикладными процессами путем установления логического соединения.

К функциям TCP относят:

    Получение и передача потока данных от вышестоящего уровня IP-модулю;

    Обеспечение полнодуплексной передачи данных;

    Обеспечение защиты от повреждения, потери, дублирования;

    Обеспечение работы нескольких соединений;

    Управление потоком данных (с помощью механизмов окна)

Формат сообщений TCP

Единицей данных протокола TCP является сегмент. Информация, поступающая к протоколу TCP в рамках логического соединения от протоколов более высокого уровня, рассматривается протоколом TCP как неструктурированный поток байт. Поступающие данные буферизуются средствами TCP. Для передачи на сетевой уровень из буфера "вырезается" некоторая непрерывная часть данных, называемая сегментом, состоящая из заголовка и блока данных. Заголовок сегмента имеет следующие поля:

Порт источника (Source Port) и порт назначения (Destination Port) занимают 16 бит. Протокол TCP обеспечивает работу одновременно несколько соединений. Каждый прикладной процесс идентифицируется IP-адресом и номером порта.

Destination Port

Sequence number (SN)

Acknowledgment number (ASK SN)

Urgent Pointer

Порядковый номер (Sequence number) занимает 32 бита, указывает номер байта, который определяет смещение сегмента относительно потока отправляемых данных;

Подтвержденный номер (Acknowledgment number) занимает 32 бита, содержит максимальный номер байта в полученном сегменте, увеличенный на единицу; т.е все предыдущие байты были получены именно это значение используется в качестве квитанции;

Длина заголовка (Data Offset) занимает 4 бита, указывает длину заголовка сегмента TCP, измеренную в 32-битовых словах. Длина заголовка не фиксирована и может изменяться в зависимости от значений, устанавливаемых в поле Опции. Служит указателем на начало пол данных;

Резерв (Reserved) занимает 6 битов, поле зарезервировано для последующего использования. Заполняется нулями;

Кодовые биты (Control bits) занимают 6 битов, содержат служебную информацию о типе данного сегмента, задаваемую установкой в единицу соответствующих бит этого поля:

URG - срочное сообщение, используется если приложение обращается с запросом о срочной передаче данных. В этом случае протокол TCP, не ожидая заполнения буфера до уровня размера сегмента, немедленно передает указанные данные в сеть. Полученные из сети данные минуя буфер передаются процессу или приложению. Данная технология используется для передачи видео и аудио- данных;

ACK - квитанция на принятый сегмент;

PSH - запрос на отправку сообщения без ожидания заполнения буфера;

RST – сброс текущего соединения (при получении соединение ликвидируется, недопоставленные данные уничтожаются);

SYN - запрос на установление соединения;

FIN - признак достижения передающей стороной последнего байта в потоке передаваемых данных.

Окно (Windows) занимает 16 бит, содержит объявляемое значение размера окна в байтах;

Контрольная сумма (Checksum) занимает 16 бит, определяется для блока данных, состоящего из псевдозаголовка и самого сегмента данных. 96 –битный псевдозаголовок предшествует заголовку TCP и содержит IP-адрес отправителя, получателя, идентификатор протокола и сегмента.

Указатель срочности (Urgent Pointer) занимает 16 бит, используется совместно с кодовым битом URG и указывает на конец данных, которые необходимо срочно принять, несмотря на переполнение буфера;

Опции (Options) - это поле имеет переменную длину и может вообще отсутствовать, используется для решения вспомогательных задач, например, при выборе максимального размера сегмента, или передачи дайджеста MD5;

Заполнитель (Padding) может иметь переменную длину, представляет собой фиктивное поле, используемое для доведения размера заголовка до целого числа 32-битовых слов.

Порты и установление TCP-соединений

Для организации надежной передачи данных предусматривается установление логического соединения между двумя прикладными процессами. В рамках соединения осуществляется обязательное подтверждение правильности приема для всех переданных сообщений, и при необходимости выполняется повторная передача. Соединение в TCP позволяет вести передачу данных одновременно в обе стороны, то есть полнодуплексную передачу.

Соединение в протоколе TCP идентифицируется парой полных адресов обоих взаимодействующих процессов включающих IP-адрес (номер сети и номер компьютера) и номер порта. Портам присваиваются стандартные, зарезервированные номера (например, номер 21 закреплен за сервисом FTP, 23 - за TELNET), или произвольно выбранными локальными номерами.

Установление соединения выполняется в следующей последовательности:

1. Узел А посылает узлу В запрос на открытие порта, а также запрос процессу, с которым требуется установить соединение (active open).

2. Узел В открывает порт для приема данных (passive open) и возвращает квитанцию, подтверждающую прием запроса.

3. Получив квитанцию, узел А открывает порт для передачи (active port) и передает запрос к противоположной стороне.

Соединение по протоколу TCP

Предположим, что узел А устанавливает соединение с узлом В. Для этого:

    Узел A в сообщении TCP, посылаемому узлу B устанавливает флаг SYN и начальный порядковый номер ISN с которого будут нумероваться отправляемые данные.

    Для подтверждения приема сообщения, узел B откликается посылкой TCP сегмента с установленным флагом ACK. Но вследствие того, что протокол TCP обеспечивает полнодуплексную передачу, узел B может в свою очередь запросить соединение на передачу данных с узлом А посылкой флага SYN и начального порядкового номера своих сообщений ISN.

    Узел А, подтверждает получение сообщение от узла В. Так как сеанс связи можно считать установившимся, то узел А может включить свои данные, нумерация которых начинается с ISN (A)+1 в это сообщения.

    Происходит передача данных между узлами А и В.

    Сеанс обмена данными заканчивается процедурой закрытия, которая в заголовке последнего сегмента использует флаг FIN. Аварийный разрыв соединения происходит посылкой сообщение с битом RST, при этом все недопоставленные данные уничтожаются.

Концепция квитирования

В рамках соединения правильность передачи каждого сегмента должна подтверждаться квитанцией получателя. Квитирование - это один из традиционных методов обеспечения надежной связи. Идея квитирования состоит в следующем.

Для организации повторной передачи искаженных данных отправитель нумерует отправляемые кадры и ожидает от приемника положительную квитанцию - служебное сообщение, извещающее о том, что исходный кадр был получен и данные в нем оказались корректными. Существуют два подхода к организации процесса обмена квитанциями: с простоями и с организацией "окна".

Метод с простоями требует, чтобы узел, посылал очередной кадр, после получения квитанции (положительной или отрицательной) от получателя. Производительность обмена данными в этом методе незначительна, так как передающий узел и мог бы послать следующий кадр сразу же после отправки предыдущего, однако он обязан ждать прихода квитанции, что особенно заметно на низкоскоростных каналах связи, то есть в территориальных сетях.

В методе с организацией "окна" отправителю разрешается передать некоторое количество кадров в непрерывном режиме, без получения на эти кадры ответных квитанций. Количество кадров, которые возможно передать таким образом, называется размером окна W. При отправке кадра с номером 1 отправителю разрешается передать еще (W-1) кадров до получения квитанции на первый кадр. Если квитанция на кадр 1 не получена, то процесс передачи приостанавливается, и по истечению некоторого тайм-аута кадр 1 считается утерянным и передача его осуществляется снова. Выбор времени ожидания (тайм-аута) очередной квитанции является важной задачей, при которой необходимо учитывать скорость и надежность линий связи, их протяженность и т.д. В протоколе TCP при каждой передаче засекается время от момента отправки сегмента до прихода квитанции о его приеме. Получаемые значения усредняются с весовыми коэффициентами, возрастающими от предыдущего замера к последующему. В качестве тайм-аута выбирается среднее время оборота, умноженное на некоторый коэффициент.

Описанный алгоритм называется алгоритмом скользящего окна (при каждом получении квитанции окно перемещается (скользит), захватывая новые данные, которые разрешается передавать без подтверждения).

В протоколе TCP квитанцией (ASK SN) подтверждается правильный прием данных, отсутствие квитанции говорит о приеме искаженного сегмента, потере сегмента или квитанции. В качестве квитанции получатель отсылает сообщение (сегмент), в которое помещает число, на единицу превышающее максимальный номер байта в полученном сегменте. Если размер окна равен W, а последняя квитанция содержала значение n, то отправитель может посылать новые сегменты до тех пор, пока в очередной сегмент не попадет байт с номером n+W. Этот сегмент выходит за рамки окна, и передачу в таком случае необходимо приостановить до прихода следующей квитанции.

Изменяя величину окна, возможно, повлиять на загрузку сети. Чем больше окно, тем большую порцию неподтвержденных данных можно послать в сеть. Если сеть не справляется с нагрузкой, то протокол TCP, отправляя квитанцию, помещает в нее новый, уменьшенный размер окна. Если узел совсем отказывается от приема, то в квитанции указывается окно нулевого размера. После приема квитанции с нулевым значением окна отправитель время от времени делает контрольные попытки продолжить обмен данными. Если протокол-приемник уже готов принимать информацию, то в ответ на контрольный запрос он посылает квитанцию с указанием ненулевого размера окна.

). В отличие от приложение получит данные точно в такой же последовательности, в какой они были отправлены, и без потерь.

Реализация TCP, как правило, встроена в ядро системы, хотя есть и реализации TCP в контексте приложения.

TCP часто обозначают «TCP/IP». Когда осуществляется передача от компьютера к компьютеру через Internet, TCP работает на верхнем уровне между двумя конечными системами, например, интернет-браузер и интернет-сервер. Также TCP осуществляет надежную передачу потока байт от одной программы на некотором компьютере в другую программу на другом компьютере. Программы для электронной почты и обмена файлами используют TCP. TCP контролирует длину сообщения, скорость обмена сообщениями, сетевой трафик.

Формат TCP-сегмента

Формат TCP-сегмента
Бит 0 - 3 4 - 9 10 - 15 16 - 31
0 Порт источника Порт назначения
32 Номер последовательности
64 Номер подтверждения
96 Смещение данных Зарезервировано Флаги Окно
128 Контрольная сумма Указатель важности
160 Опции (необязательное)
160/192+
Данные

Порт источника

Порт назначения

Порт назначения идентифицирует порт, на который отправлен пакет.

Номер последовательности

Номер последовательности выполняет две задачи:

  1. Если установлен флаг SYN, то это начальное значение номера последовательности и первый байт данных - это номер последовательности плюс 1.
  2. В противном случае, если SYN не установлен, первый байт данных - номер последовательности

Поскольку TCP-поток в общем случае может быть длинее, чем число различных состояний этого поля, то все операции с номером последовательности должны выполняться по модулю 2^32. Это накладывается практическое ограничение на использование TCP. Если скорость передачи комуникационной системы такова, чтобы в течение MSL (максимального времени жизни сегмента) произошло переполнение номера последовательности, то в сети может появиться два сегмента с одинаковым номером, относящихся к разным частям потока, и приёмник получит некорректные данные.

Номер подтверждения

Если установлен флаг ACK, то это поле содержит номер последовательности, ожидаемый получателем в следующий раз. Помечает этот сегмент как подтверждение получения.

Смещение данных

Это поле определяет размер заголовка пакета TCP в 32-битных словах. Минимальный размер составляет 5 слов, а максимальный - 15, что составляет 20 и 60 байт соответственно. Смещение считается от начала заголовка TCP.

Зарезервировано

Зарезервировано (6 бит) для будущего использования и должны устанавливаться в ноль. Из них два (7-й и 8-й) уже определены:

  • CWR (Congestion Window Reduced) - Поле «Окно перегрузки уменьшено» - флаг установлен отправителем, чтоб указать, что получен пакет с установленным флагом ECE (RFC 3168)
  • ECE (ECN-Echo) - Поле «Эхо ECN» - указывает, что данный хост способен на ECN (явное уведомление перегрузки) и для указания отправителю о перегрузках в сети (RFC 3168)

Флаги (управляющие биты)

Это поле содержит 6 битовых флагов:

  • URG - Поле "Указатель важности" задействовано (англ. Urgent pointer field is significant )
  • ACK - Поле "Номер подтверждения" задействовано (англ. Acknowledgement field is significant )
  • PSH - (англ. Push function ) инструктирует получателя протолкнуть данные, накопившиеся в приемном буфере, в приложение пользователя
  • RST - Оборвать соединения, сбросить буфер (очистка буфера) (англ. Reset the connection )
  • SYN - Синхронизация номеров последовательности (англ. Synchronize sequence numbers )
  • FIN (англ. final , бит) - флаг, будучи установлен, указывает на завершение соединения (англ. FIN bit used for connection termination ).

Контрольная сумма

Поле контрольной суммы - это 16-битное дополненение суммы всех 16-битных слов заголовка и текста. Если сегмент содержит нечетное число октетов в заголовке /или тексте, последние октеты дополняются справа 8 нулями для выравнивания по 16-битовой границе. Биты заполнения (0) не передаются в сегменте и служат только для расчета контрольной суммы. При расчете контрольной суммы значение самого поля контрольной суммы принимается равным 0.

Указатель важности

16-битовое значение положительного смещения от порядкового номера в данном сегменте. Это поле указывает порядковый номер октета которым заканчиваются важные (urgent) данные. Поле принимается во внимание только для пакетов с установленным флагом URG.

Механизм действия протокола

Состояния сеанса TCP

Состояния сеанса TCP
CLOSED Начальное состояние узла. Фактически фиктивное
LISTEN Сервер ожидает запросов установления соединения от клиента
SYN-SENT Клиент отправил запрос серверу на установление соединения и ожидает ответа
SYN-RECEIVED Сервер получил запрос на соединение, отправил ответный запрос и ожидает подтверждения
ESTABLISHED Соединение установлено, идёт передача данных
FIN-WAIT-1 Одна из сторон (назовём её узел-1) завершает соединение, отправив сегмент с флагом FIN
CLOSE-WAIT Другая сторона (узел-2) переходит в это состояние, отправив, в свою очередь сегмент ACK и продолжает одностороннюю передачу
FIN-WAIT-2 Узел-1 получает ACK, продолжает чтение и ждёт получения сегмента с флагом FIN
LAST-ACK Узел-2 заканчивает передачу и отправляет сегмент с флагом FIN
TIME-WAIT Узел-1 получил сегмент с флагом FIN, отправил сегмент с флагом ACK и ждёт 2*MSL секунд, перед окончательным разрушением канала
CLOSING Обе стороны инициировали закрытие соединения одновременно: после отправки сегмента с флагом FIN узел-1 также получает сегмент FIN, отправляет ACK и находится в ожидании сегмента ACK (подтверждения на свой запрос о разъединении)

Установка соединения

Процесс начала сеанса TCP называется «тройным рукопожатием». Клиент, который намеревается установить соединение, посылает серверу сегмент с номером последовательности и флагом SYN. Сервер получает сегмент, запоминает номер последовательности и пытается создать сокет (буфера и управляющие структуры памяти) для обслуживания нового клиента. В случае успеха сервер посылает клиенту сегмент с номером последовательности и флагами SYN и ACK, и переходит в состояние SYN-RECEIVED. В случае неудачи сервер посылает клиенту сегмент с флагом RST.

Если клиент получает сегмент с флагом SYN, то он запоминает номер последовательности и посылает сегмент с флагом ACK, если он одновременно получает и флаг ACK (что обычно и происходит), то он переходит в состояние ESTABLISHED. Если клиент получает сегмент с флагом RST, то он прекращает попытки соединиться.

Если клиент не получает ответа в течение 10 секунд, то он повторяет процесс соединения заново.

Если сервер в состоянии SYN-RECEIVED получает сегмент с флагом ACK, то он переходит в состояние ESTABLISHED. В противном случае после таймаута он закрывает сокет и переходит в состояние CLOSED.

Процесс называется «тройным рукопожатием», поскольку возможен процесс установления соединения с использованием 4 сегментов (SYN в сторону сервера, ACK в сторону клиента, SYN в сторону клиента, ACK в сторону сервера), но для экономии времени используется 3 сегмента.

Передача данных

При обмене данными приемник использует номер последовательности, содержащийся в получаемых сегментах, для восстановления их исходного порядка. Приемник уведомляет передающую сторону о номере последовательности, до которой он успешно получил данные, включая его в поле «номер подтверждения». Все получаемые данные, относящиеся к промежутку подтвержденных последовательностей, игнорируются. Если полученный сегмент содержит номер последовательности больший, чем ожидаемый, то данные из сегмента буферизируется, но номер подтвержденной последовательности не изменяется. Если в последствии будет принят сегмент, относящийся к ожидаемому номеру последовательности, то порядок данных будет автоматически восстановлен исходя из номеров последовательностей в сегментах.

Для того, чтобы передающая сторона не отправляла данные интенсивнее, чем их может обработать приемник, TCP содержит средства управления потоком. Для этого используется поле «окно». В сегментах, направляемых от приемника передающей стороне в поле «окно» указывается текущий размер приемного буфера. Передающая сторона сохраняет размер окна и отправляет данных не более, чем указал приемник. Если приемник указал нулевой размер окна, то передача данных в направлении этого узла не происходит, до тех пор пока приемник не сообщит о большем размере окна.

В некоторых случаях передающее приложение может явно затребовать протолкнуть данные до некоторой последовательности принимающему приложению, не буферизируя их. Для этого используется флаг PSH. Если в полученном сегменте обнаруживается флаг PSH, то реализация TCP отдает все буферизированные на текущий момент данные принимающему приложению. «Проталкивание» используется, например, в интерактивных приложениях. В сетевых терминалах нет смысла ожидать ввода пользователя после того, как он закончил набирать команду. Поэтому последний сегмент, содержащий команду, обязан содержать флаг PSH, чтобы приложение на принимающей стороне смогло начать её выполнение.

Завершение соединения

Завершение соединения можно рассмотреть в три этапа: 1. Посылка серверу от клиента флагов FIN и ACK на завершения соединения. 2. Сервер посылает клиенту флаги ответа ACK , FIN, что соединение закрыто. 3. После получение этих флагов клиент закрывает соединение и в подтверждение отправляет серверу ACK , что соединение закрыто.

Известные проблемы

Максимальный размер сегмента

TCP требует явного указания максимального размера сегмента (MSS) в случае, если виртуальное соединение осуществляется через сегмент сети, где максимальный размер блока (MTU , IPIP, а так же MTU туннеля меньше чем стандартный, поэтому сегмент TCP максимального размера имеет длину пакета больше, чем MTU. Поскольку фрагментация в подавляющем большинстве случаев запрещена, то такие пакеты отбрасываются.

Проявление этой проблемы выглядит как «зависание» соединений. При этом «зависание» может происходить в произвольные моменты времени, а именно тогда, когда отправитель использовал сегменты длинее допустимого размера.

Для решения этой проблемы на маршрутизаторах применяются правила Firewall-а, добавляющие параметр MSS во все пакеты, инициирующие соединения, чтобы отправитель использовал сегменты допустимого размера.

MSS может так же управляться параметрами операционной системы.

Обнаружение ошибок при передачи данных

Хотя протокол осуществляет проверку контрольной суммы по каждому сегменту, используемый алгоритм считается слабым . Так в 2008 году не обнаруженная сетевыми средствами ошибка в передаче одного бита, привела к остановке серверов системы Amazon Web Services .

В общем случае распределенным сетевым приложениям рекомендуется использовать дополнительные программные средства для гарантирования целостности передаваемой информации .

Реализация

См. также

Ссылки

  • RFC 793 - Transmission Control Protocol

Литература

  • Терри Оглтри Модернизация и ремонт сетей = Upgrading and Repairing Networks. - 4-е изд. - М.: «Вильямс» , 2005. - С. 1328. - ISBN 0-7897-2817-6
  • Дуглас Камер Сети TCP/IP, том 1. Принципы, протоколы и структура = Internetworking with TCP/IP, Vol. 1: Principles, Protocols and Architecture. - М.: «Вильямс» , 2003. - С. 880. - ISBN 0-13-018380-6
  • Андрей Робачевский, Сергей Немнюгин, Ольга Стесик Операционная система UNIX. - 2-е изд. - "БХВ-Петербург" , 2007. - С. 656. - ISBN 5-94157-538-6

Протоколы транспортного уровня предназначены для обеспечения непосредственного информационного обмена между двумя пользовательскими процессами. Существует два типа протоколов транспортного уровня – сегментирующие протоколы и не сегментирующие протоколы доставки дейтаграмм.

Сегментирующие протоколы транспортного уровня, разбивают исходное сообщение на блоки данных транспортного уровня - сегменты.

Протоколы доставки дейтаграмм не сегментируют сообщение и отправляют его одним куском, который называется «дейтаграмма». При этом функции установления и разрыва соединения, управления потоком не нужны. Протоколы доставки дейтаграмм просты для реализации, однако, не обеспечивают гарантированной и достоверной доставки сообщений.

В качестве протоколов транспортного уровня в сети Internet могут быть использованы два протокола:

  • UDP User Datagram Protocol
  • TCP Transmission Control Protocol

Идентификация процессов на транспортном уровне

Для организации информационного взаимодействия на транспортном уровне должен быть указан сетевой адрес абонента и номер порта процесса. В данном случае порт является виртуальным интерфейсом транспортного уровня. Взаимодействие процессов пользователя с портами может производиться по различным схемам:

  • Синхронизация процесса
  • Буферизация поступающих данных

При использовании первой схемы, поступление данных от внешней системы в порт вызывает прерывание выполнения соответствующего процесса. Использование буферов промежуточного хранения для каждого порта обеспечивает возможность асинхронного обмена с портом.

Перечень номеров назначенных портов приведен в документе IETF STD 2

Транспортный протокол UDP

Описание принципов построения протокола UDP приведено в RFC 768. Для передачи сообщений UDP используются пакеты IP. Сообщения UDP в данном случае размещаются в поле данных переносящего их пакета.

Формат сообщения UDP

Дейтаграммы UDP имеют переменную длину и состоят из заголовка сообщения UDP header и собственно сообщения UDP Data. На рисунке приведена структура заголовка сообщения UDP.

Поле UDP DESTINATION PORT

В этом поле должен быть размещен номер порта процесса, которому предназначено данное сообщение.

Поле UDP SOURCE PORT

В этом поле может быть размещен номер порта процесса, который является источником данного сообщения. Это поле формируется в том случае, если характер информационного взаимодействия предполагает формирование отклика.

Поле UDP MRSSAGE LENGTH

В поле UDP MRSSAGE LENGTH размещается выраженная в байтах длина сообщения UDP. Сообщение минимальной длины – 8 байт состоит из одного заголовка.

UDP SOURCE PORT UDP DESTINATION PORT
UDP MRSSAGE LENGTH UDP CHECKSUM
DATA

Поле UDP CHECKSUM

В этом поле может размещаться контрольная сумма сообщения. В том случае, если контрольная сумма сформирована, она должна быть вычислена с учетом псевдо- заголовка UDP, который является не частью дейтаграммы, а фрагментом пакета IP и содержит адреса сетевого уровня источника и станции назначения.

Использование протокола UDP

Протокол UDP обеспечивает негарантированную доставку сообщений в сети Internet. Этот протокол может быть использован в тех приложениях, которые либо не нуждаются в этом качестве, либо обеспечивают гарантированность доставки другими средствами. Примерами приложений, которые используют протокол UDP, являются TELNET и TFTP.

Транспортный протокол TCP

Протокол TCP используется для обеспечения надежного информационного обмена на транспортном уровне в сетях Internet. Первое описание протокола приведено в RFC 793.

Особенности реализации информационного обмена TCP

Существует достаточно много причин, которые могут помешать пакету, который передается в сети, успешно достичь станции назначения. Таким образом, если не будут использованы специальные методы для обеспечения гарантированной доставки, принятое сообщение может существенным образом отличаться от того сообщения, которое было передано.

Надежный информационный обмен предполагает следующие возможности:

  • Потоковый обмен
  • Использование виртуальных соединений
  • Буферизированная передача данных
  • Неструктурированный поток
  • Обмен в режиме полного дуплекса

Потоковый обмен

Надежное транспортное соединение позволяет обеспечить такой режим информационного взаимодействия, когда приемник получает абсолютно ту же последовательность байтов, которая была передана отправителем.

Использование виртуальных соединений

Надежный информационный обмен на транспортном уровне может быть интерпретирован виртуальным логическим соединением. На начальной стадии одна из взаимодействующих сторон инициирует установление соединения, используя при этом по мере необходимости процедуры аутентификации. В процессе информационного обмена через установленное соединение обе стороны контролируют его качество и при возникновении проблем с передачей данных инициируют процесс разрыва соединения и формируют соответствующие сообщения для протоколов верхних уровней.

Буферизированная передача данных

Использование буферов позволяет согласовать скорость информационного обмена в канале передачи данных с значением скорости передачи данных приложением пользователя.

Для обеспечения требования доставки трафика, который чувствителен к временным задержкам, в дополнение к буферу может быть использован дополнительный механизм «push» - поршень. Использование данного механизма обеспечивает форсирование передачи содержимого буфера в тот момент, когда в него попадают данные, которые чувствительны к временным задержкам.

Методы обеспечения надежного информационного взаимодействия в TCP.

Для обеспечения гарантированной доставки сообщений протокол TCP использует аппарат позитивного квитирования с повторной передачей (positive acknowledgement with retransmission). Обычно при использовании данной схемы получатель информации посылает специальный сигнал ACK в подтверждение ее получения. Дальнейшее выполнение информационного обмена может быть выполнено только в том случае, если передающая сторона получит это подтверждение.

Простая процедура квитирования

Передающая сторона приостанавливает передачу очередного сегмента до получения подтверждения о приеме предыдущего сегмента. Интервал ожидания устанавливается равным значению задержки повторной передачи – retransmit timer. Если в течение этого интервала времени не будет получено подтверждение о приеме переданного сегмента, передача данного сегмента выполняется повторно.

Квитирование с использованием скользящего окна

Применение простой процедуры квитирования не обеспечивает достаточную эффективность использования пропускной способности каналов передачи данных. По крайней мере, половину времени системы ожидают получения подтверждения. Более эффективной в этом смысле является процедура квитирования с использованием скользящего окна, которая позволяет передающей стороне передать несколько сегментов сообщения, не дожидаясь получения подтверждения о приеме.

Максимальное число сегментов, которые передающая сторона может передать до получения подтверждения приема первого из них, называется ОКНОМ

При использовании этого механизма принимающая сторона может передавать подтверждение на получение сразу нескольких сегментов.

Процедуры управления потоком TCP

Протокол TCP оперирует с данными, которые поступают в виде потока байтов, которые сгруппированы в сегменты. Для передачи каждого сегмента используется отдельная дейтаграмма.

Описанный в предыдущем параграфе метод скользящего окна используется протоколом TCP для обеспечения выполнения двух функций:

  • Управление скоростью передачи данных
  • Обеспечение надежной доставки передаваемых данных

Процедура скользящего окна в протоколе TCP реализуется применительно к байтам. Каждому байту входного потока присваивается порядковый номер. Для управления процессом передачи используется три указателя.

Первый указывает границу между последним байтом, который был передан и получение которого подтверждено и первым переданным, но неподтвержденным байтом.

Второй указывает границу между последним переданным байтом, подтверждение о получении для которого еще не получено, и первым байтом, который может быть передан, до получения подтверждения о приеме предыдущих переданных байтов.

Третий указывает границу между последним байтом, который может быть передан, до получения подтверждения о приеме предыдущих переданных байтов и остальной частью информационного потока.

Процедура управления потоком заключается в согласовании скорости, с которой передаются данные с пропускной способностью канала их передачи.

Для обеспечения управления потоком в протоколе TCP предусмотрена возможность изменения размера окна. Каждое сообщение подтверждения содержит в себе значение представляемого размера окна - (window advertisement) которое в общем случае определяет размер буфера, который может быть использован в текущий момент для приема информации.

Использование скользящего окна для управления информационным потоком делает ненужным использование дополнительных механизмов для управления переполнением.

Особенности практической реализации протокола TCP

Синдром неоптимального окна

При использовании протокола TCP на линиях, пропускная способность которых была различной в различных направлениях, пользователи могли наблюдать возникновение ситуации, которая получила название синдром неоптимального окна – silly window syndrome - SWS. Данная ситуация характеризуется тем, что одно из взаимодействующих приложений «А» может передавать данные с существенно большей скоростью, чем другое - «В». Если изначально сторона «В» установила размер своего окна равным величине своего буфера, вполне может получиться так, что сторона «А» заполнит весь буфер до того, как получит первое уведомление об изменении размера окна. Исчерпав лимит байтов, установленный для передачи, сторона «А» перейдет в режим ожидания подтверждения. Когда сторона «В» начнет обработку поступивших данных, она сможет освободить некоторую часть буфера и передаст уведомление о соответствующем изменении размера приемного окна. Сторона «А» быстро заполнит освободившееся место в буфере и опять перейдет в режим ожидания. Наиболее неприятным следствием возникновения такой ситуации будет то, что канал передачи данных в направлении от «А» к «В» будет использоваться крайне неэффективно, поскольку сегменты TCP будут использоваться для переноса небольших объемов данных (до 1 байта). Соотношение долей полезной нагрузки и служебной информации в данном случае будет крайне неудачным. Для того, чтобы избежать возникновения SWS в практической реализации протокола TCP используются несколько различных способов.

Способы предотвращение появления SWS на приемной стороне

Для того, чтобы предотвратить возникновение SWS, приемной стороне достаточно передавать представления только для больших изменений размеров окна. Это означает, что сообщение ACK с новым значением размера окна передается не сразу после того, как появится свободное место во входном буфере, а только после того, как размер этого свободного место будет достаточен для приема минимального установленного объема передаваемой информации. Например, в качестве такого минимального объема может быть использован половинный объем приемного буфера. Некоторые реализации протокола TCP могут также использовать в качестве представления величины окна максимальную длину передаваемого сегмента.

Другим способом, который также может быть использован на приемной стороне для предотвращения возникновения эффекта SWS, является процедура задержки подтверждений. Этот метод довольно прост для реализации и в тоже время достаточно эффективен. Действительно, задержка ответа на некоторое постоянное время, позволит избежать SWS и одновременно повысить эффективность использования канала передачи данных – поскольку на все сегменты, которые поступят на приемник в течение интервала задержки, будет сформировано только одно подтверждение. Использование фиксированной задержки подтверждения рекомендовано стандартом для предотвращения SWS. Следует, однако, иметь в виду, что выбор слишком большого времени задержки может привести к повторной передаче сегмента.

Способы предотвращение появления SWS на передающей стороне

Для предотвращения появления SWS передающая сторона может использовать алгоритм Нейгла (Nagle). Суть этого алгоритма заключается в том, что первая порция информации передается немедленно после попадания в буфер, все последующие дожидаются, пока в буфере накопится достаточный для передачи объем данных.

Предыдущая лекция
Протоколы внешней маршрутизации