Тарифы Услуги Сим-карты

Системы и элементы систем. Классификация САУ. Воздействие на систему (переменные системы уравнения). Математические модели непрерывных динамических систем. Метод малых отклонений. Математические модели динамических систем и процессов

Непрерывные и дискретные модели

Непрерывные модели отражают непрерывные процессы, протекающие, в частности, во времени. Значения независимой переменной (аргумента) принадлежат континуальному множеству. Континуальное множество обладает свойством, соответственно которому между любыми сколь угодно близкими точками множества всегда можно найти еще более близкие точки. Очень часто такой характер изменения приписывается времени.

Непрерывными моделями достаточно точно описываются такие реальные процессы, как изменение силы тока в определенной точке электрической схемы, изменение угловой скорости на выходе электропривода, набор линейной скорости при разгоне автомобиля, истечение газа или жидкости из резервуара и т.п.

Дискретные модели описывают дискретные, т.е. прерывистые процессы. Такие процессы происходят, например, в дискретных СУ, содержащих импульсный элемент (ключ), периодически замыкающий цепь через постоянный тактовый период Т .

Дискретными моделями достаточно точно описываются такие реальные процессы, как штамповка деталей, продажа мелких товаров с помощью автомата, работа микропроцессора и т.п.

Существуют также комбинированные – дискретно-непрерывные модели, в которых обычно можно отделить непрерывную часть от дискретной.

Статической называется модель объекта, отражающая оригинал в какой-то отдельный момент времени, т.е. «моментальная фотография» объекта. Например, буквально фотография или схема.

С фотографией (рис. 1.11) все ясно, что же касается схемы, то даже если это структурная схема с указанием передаточных функций звеньев, по ней явно не видно, как модель изменяется с течением времени (рис. 1.12).

Рис.1.11. Фотография как пример статической модели

Рис. 1.12. Структурная схема системы

Другой очевидный и знакомый пример статической модели –статическая характеристика, т.е. зависимость выходной переменной объекта (системы) от входной переменной в установившемся режиме , т.е. при t®∞: y(∞)=F (рис. 1.13).

Рис. 1.13. Статическая характеристика системы ”System

Динамическая модель, в отличие от статической, учитывает изменения, происходящие в системе с течением времени. Это может выражаться в зависимости входной, выходной и промежуточных переменных от времени. Примером могут служить переходные функции – реакции систем на единичное ступенчатое входное воздействие (рис. 1.14).

Рис. 1.14. Переходная функция h(t) системы “System

Обычно переходные функции получаются в результате: 1) аналитического решения; 2) численного интегрирования дифференциальных уравнений, описывающих исследуемую систему; 3) обратного преобразования Лапласа от передаточной функции системы, деленной на s . Модельв виде дифференциальных уравнений (ДУ) является широко распространенной динамической моделью.



Пример. Пусть система описывается моделью в виде дифференциального уравнения:

входное воздействие x(t)= 1[t] – единичное ступенчатое (как на рис. 1.14), а начальные условия имеют вид: y(t= 0) = 0, т.е. процесс начинается из начала координат.

Аналитическое решение. Это линейное дифференциальное уравнение первого порядка с постоянными коэффициентами (стационарное). Его решение складывается из двух слагаемых – общего и частного решения:

Общее решение ищется в виде:

где А – неизвестный коэффициент, определяемый из начальных условий;

l – корень характеристического уравнения, которое в данном случае выглядит так:

откуда l=– 2.

В стандартной форме исходное уравнение должно иметь при y(t) коэффициент, равный единице. Для этого исходное уравнение разделим на 4 и получим:

Частное решение зависит от вида правой части ДУ; в данном примере, поскольку x(t)= 1[t] , частное решение будет равно константе:

Суммарное решение будет выглядеть так:

Теперь, подставив в решение y(t) начальное условие (для уравнения 1-го порядка оно одно), можно найти значение коэффициента А :

откуда А = – 1,25. Окончательно решение имеет вид:

Поскольку входным воздействием было единичное ступенчатое, то полученное решение является переходной функцией и обозначается, как обычно, h(t) . График этой функции показан на рис. 1.15.

Рис. 1.15. Переходная функция h(t) – решение ДУ из примера

Подобный h(t) характер (с разной погрешностью) имеют такие процессы, как разгон автомобиля, нагрев жидкости, накопление знаний в некоторой предметной области, увеличение численности популяции животных, рост производства (при определенных условиях) и многие другие. В этом заключается одно из важнейших свойств математическихмоделей – их универсальность.

Введение..................................................................................................... 3

1. Модель межотраслевого баланса............................................ 4

1. 1. Динамическая модель Леонтьева.................................................... 7

1. 2. Построение динамической модели Леонтьева............................. 12

2. Модель Неймана............................................................................... 16

Заключение............................................................................................. 20

Cписок литературы............................................................................. 21

Динамические модели экономики - модели, описывающие экономику в развитии (в отличие от статических, характеризующих ее состояние в определенный момент). Модель является динамической, если, как минимум, одна ее переменная относится к периоду времени, отличному от времени, к которому отнесены другие переменные.

В общем виде динамические модели экономики сводятся к описанию следующих экономических явлений: начального состояния экономики, технологических способов производства (каждый “способ” говорит о том, что из набора ресурсов x можно в течение единицы времени произвести набор продуктов y), а также критерия оптимальности.

Математическое описание динамических моделей экономики производится с помощью систем дифференциальных уравнений (в моделях с непрерывным временем), разностных уравнений (в моделях с дискретным временем), а также систем обыкновенных алгебраических уравнений.

С помощью динамических моделей решаются, в частности, следующие задачи планирования и прогнозирования экономических процессов: определение траектории экономической системы, ее состояний в заданные моменты времени, анализ системы на устойчивость, анализ структурных сдвигов.

С точки зрения теоретического анализа большое значение приобрела динамическая модель фон Неймана. Что же касается практического применения динамических моделей экономики, то оно находится еще в начальной стадии: расчеты по модели, хотя бы сколько-нибудь приближающейся к реальности, чрезвычайно сложны. Но развитие в этом направлении продолжается. Используются, в частности, многоотраслевые (многосекторные) динамические модели развития экономики, к которым относятся динамические модели межотраслевого баланса, а также производственная функция, теория экономического роста.

Межотраслевое моделирование является частью макроэкономического

моделирования и служит для анализа и оценки состояния общего экономического равновесия национальной экономики. Национальная

экономика в межотраслевом балансе представлена рядом чистых отраслей,

связанных между собой финансовыми потоками от реализации продукции,

работ и услуг. Чистые отрасли – это условные отрасли, представляющие

производство одного или нескольких однородных продуктов.

Динамические модели межотраслевого баланса - частный случай динамических моделей экономики; основаны на принципе межотраслевого баланса, в который дополнительно вводятся уравнения, характеризующие изменения межотраслевых связей во времени на основе отдельных показателей: напр., капитальных вложений и основных фондов (что позволяет создать преемственность между балансами отдельных периодов).

Основные предположения модели межотраслевого баланса:

· каждая отрасль выпускает ровно один продукт

· каждый продукт выпускается ровно одной отраслью

Число продуктов равно числу отраслей

Измерять интенсивность работы отрасли можно объёмом выпуска соответствующего продукта

· затраты любого продукта в каждой отрасли прямо пропорциональны её интенсивности

Межотраслевой баланс представляет собой экономико-математическую модель, образуемую перекрестным наложением строк и колонок таблицы, то есть балансов распределения продукции и затрат на ее производство, увязанных по итогам. Главные показатели здесь – коэффициенты полных и прямых затрат.

Динамическая модель межотраслевого баланса характеризует производственные связи народного хозяйства на ряд лет, отражает процесс воспроизводства в динамике. По модели межотраслевого баланса выполняются два типа расчетов: первый тип, когда по заданному уровню конечного потребления рассчитывается сбалансированный объем производства и распределения продукции; второй тип, включающий смешанные расчеты, когда по заданным объемам производства по одним отраслям (продуктам) и заданному конечному потреблению в других отраслях рассчитывается баланс производства и распределения продукции в полном объеме.

Наибольшее распространение получила матричная экономико-математическая модель межотраслевого баланса. Она представляет собой прямоугольную таблицу (матрицу), элементы которой отражают связи экономических объектов. Количественные значения этих объектов вычисляются по установленным в теории матриц правилам. В матричной модели отражается структура затрат на производство и распределение продукции и вновь созданной стоимости.

Таблица межотраслевого баланса производства и распределения

продукции,работ и услуг

В первом квадранте отражены данные о взаимных поставках продукции,

работ, услуг между отраслями. Первый квадрант называется квадрантом

промежуточного потребления и характеризует промежуточное потребление

(затраты) или промежуточный спрос отраслей при производстве продукции,

работ, услуг:

X ij – стоимость продукции i -й отрасли, поставленной в j -ю отрасль в

течение года, или стоимость продукции i -й отрасли, потребленной j

отраслью в течение года;

i -я строка – промежуточное потребление продукции i -й отрасли всеми

отраслями;

j -й столбец – потребление (затраты) в j -й отрасли продукции всех

отраслей при производстве своей продукции;

X i – стоимость валового продукта, произведенного i -й отраслью в

течение года.

Второй квадрант называется квадрантом конечного использования

(потребления) или конечного спроса. В нем представлено конечное использование продукции отраслей, распределенное на конечное потребление (С i ), инвестиции (I i ), экспорт (E i ) и импорт (M i ), сальдо во внешней торговле (E i M i ). Конечное потребление включает потребление домашних хозяйств (населения), государства и некоммерческих организаций.

Третий квадрант называется квадрантом добавленной стоимости. В нем

представлена добавленная стоимость, присоединенная в отраслях к затратам

продукции других отраслей при производстве продукции, работ, услуг.

Добавленная стоимость, произведенная в отраслях народного хозяйства,

включает: оплату труда (V j ), амортизацию (потребление основного капитала)

(C j ), чистый доход (m j ). Четвертый квадрант не заполняется.

В состав отраслей в МОБ входят отрасли материального производства:

промышленность (энергетика, машиностроение, легкая и пищевая

промышленность, строительство, сельское хозяйство) и отрасли

нематериальных услуг (жилищно-коммунальное хозяйство, банковская сфера, здравоохранение, образование, наука и др.). В реальный межотраслевой баланс входит около 30 отраслей. Межотраслевой баланс за прошедший год называется отчетным межотраслевым балансом.

Межотраслевой баланс известен в науке и практике как метод “затраты – выпуск”, разработанный В.В. Леонтьевым. Этот метод сводится к решению системы линейных уравнений, где параметрами являются коэффициенты затрат на производство продукции. Коэффициенты выражают отношения между секторами экономики (коэффициенты текущих материальных затрат), они устойчивы и поддаются прогнозированию. Решение системы уравнений позволяет определить, какими должны быть выпуск и затраты в каждой отрасли, чтобы обеспечить производство конечного продукта заданного объема и структуры. Для этого составляется таблица межотраслевых потоков товаров. Неизвестными выступают выпуск и затраты товаров, произведенных и использованных в каждой отрасли. Их исчисление с помощью коэффициентов и означает объемы производства, обеспечивающие общее равновесие. В случае выявления диспропорции с учетом заказов потребителей, в том числе и государственных, составляется план-матрица выпуска всех видов материальных благ и затрат на их производство.

Метод “затраты – выпуск” стал универсальным способом прогнозирования и планирования в условиях, как рыночной, так и директивной экономики. Он применяется в системе ООН, в США и других странах для прогнозирования и планирования экономики, структуры производства, межотраслевых связей.

В динамических моделях отражается процесс развития экономики. В них

производственные капитальные вложения выделяются из состава конечной

продукции, исследуется их структура и влияние на рост объема производства.

Схема динамического межотраслевого баланса представлена в таблице

Таблица содержит две матрицы. Элементы второй матрицы показывают, какое количество продукции i -й отрасли направлено в текущем периоде в j -ю отрасль в качестве производственных капитальных вложений в основные и оборотные средства.

В динамической схеме конечный продукт у i включает продукцию i- й отрасли, идущую в личное и общественное потребление, накопление

непроизводственной сферы, незавершенное строительство, на экспорт. Все

показатели даны в стоимостной форме.

В таблице выполняются следующие балансовые соотношения:

Межотраслевые потоки капитальных вложений относятся к периоду

(t- 1,t ). Динамика задается дополнительными соотношениями:

Экономический смысл коэффициентов ϕ ij = Кij /ΔХj следующий: они

показывают, какое количество продукции i -й отрасли должно быть вложено в

j -ю отрасль для увеличения выпуска ее продукции на единицу в

рассматриваемых единицах измерения. Коэффициенты ϕ ij называются

коэффициентами капитальных вложений или коэффициентами приростной

фондоемкости. Систему уравнений (1) с учетом (2) можно записать как:

Представим (3) в матричном виде:

(4)

Из (4) следует, что

Модель (3) называется дискретной динамической моделью межотраслевого баланса Леонтьева. Система уравнений (3) представляет собой систему линейных разностных уравнений 1-го порядка. Для исследования данной модели надо задать в начальный момент времени векторы X (0 ) и Y (t ) для t = 1, 2, …, T. Решением модели будут значения векторов X (t ), K (t ), t = 1, 2, …, T.

Условием разрешимости системы (3) относительно вектора Х (t ) является требование det (E A Ф ) ≠ 0

В данной модели предполагается, что прирост продукции в периоде

(t – 1, t ) обусловлен капиталовложениями, произведенными в том же периоде.

Для коротких периодов это предположение нереально, т.к. существуют

отставания во времени (временные лаги) между вложением средств в

производственные фонды и приростом выпуска продукции. Модели,

учитывающие лаги капитальных вложений, образуют особую группу

динамических моделей межотраслевого баланса.

Если перейти к непрерывному времени, то уравнения (3) перепишутся в виде системы дифференциальных уравнений 1-го порядка с постоянными коэффициентами:

(6)

Для ее решения помимо матриц коэффициентов текущих прямых

материальных затрат A = (a ij ) и коэффициентов капитальных затрат Ф = (ϕij )

необходимо знать уровни валового выпуска в начальный момент времени

t = 0 (x (0)) и закон изменения величин конечного продукта y (t ) на отрезке .

Решением системы уравнений (6) будут значения вектор-функции x (t )

на отрезке . Условием разрешимости системы (6) является det Ф ≠ 0 .

Более общей динамической межотраслевой моделью является модель,

учитывающая производственные мощности отраслей. Она представлена ниже в виде следующих соотношений:

(7)

(9)

Состояние экономики в году t характеризуется в динамике следующими

переменными:

Х t – вектор-столбец валовых выпусков отраслей;

v t –вектор ввода отраслевых мощностей;

γ − диагональная матрица выбытия мощностей;

x t – вектор-столбец отраслевых мощностей (максимально возможных выпусков);

l t = (l 1 , l 2 ,..., l n )t вектор трудоемкости отраслевых производств, может зависеть от времени;

L t объем трудовых ресурсов в экономике.

Время в модели дискретно и изменяется через промежутки, равные году

(t = 1, 2, …, T ). Коэффициенты матрицы прямых затрат А = ║аij║ и матрицы

капиталоемкости прироста производственных мощностей Ф = ║фij║ могут

зависеть от времени. Экзогенно заданы вектор-функция Y t и числовая функция L t . Решением модели являются векторы Х t и x t , удовлетворяющие системе неравенств (7)-(10).

Неравенства (7) показывают, что вектор валового продукта X t должен

обеспечивать текущие производственные затраты t , затраты продукции на

ввод производственных мощностей ФV t и на непроизводственное потребление Y t. Неравенства (8) ограничивают валовые выпуски отраслей наличными мощностями, неравенства (9) представляют собой отраслевые балансы изменения производственных мощностей с учетом их выбытия и ввода, неравенства (10) показывают, что общая занятость ограничена имеющимися трудовыми ресурсами.

Определим величины, характеризующие изменения валового выпуска 5 отраслей по 7 временным интервалам.

Рыбная -25056 -46023 -27579 -9222 18357 -22098 -79866
Логистика 101607 -1499 56461 8932 226650 -181033 -583399
Судоремонтная -7076 29510 9728 55934 -35028 15280 -432869
Пищевая 10100 11822 39809 -54373 12350 35889 -532456
Машино и приборо-строение 11706 2156 16085 -97206 36989 9201 -543768

Теперь воспроизведем матрицу D. Коэффициент d ij матрицы D равен количе­ству продукции отрасли i, необходимой для увеличения на единицу (в стоимост­ном выражении) фонда отрасли j. Коэффициенты d ij именуются ко­эффициентами капиталоемкости приростов ОПФ.

Производство продукции, B Потребление продукции

Конечная продукция Y

Валовой выпуск

Рыбная Логистика Судоремонтная Пищевая Машино и приборо-строение
Рыбная 1 5,5 1,5 5 6 56700 101964
Логистика 6 1 5 4,5 3 56430 204324
Судоремонтная 4,5 5 1 6 6 390860 508326
Пищевая 5 5 5 1 6 787890 1289754
Машино и приборо-строение 4 4 5 4 1 323630 734563

Построим матрицу К коэффициентов капитальных затрат или капи­тальных коэффициентов.

Производство продукции, B Потребление продукции Конечная продукция Y Валовый выпуск
Рыбная Логистика Судоремонтная Пищевая Машино и приборо-строение
Рыбная 0,8 4,4 1,2 4 4,8 56700 101964
Логистика 4,8 0,8 4 3,6 2,4 56430 204324
Судоремонтная 3,6 4 0,8 4,8 4,8 390860 508326
Пищевая 4 4 4 0,8 4,8 787890 1289754
Машино и приборо-строение 3,2 3,2 4 3,2 0,8 323630 734563

Теперь определим

Пусть Ф 0 =0,

(Матрица А - матрица прямых затрат)

Итак, мы имеем первый вектор

Отрасль x при t=1 Ф при t=1 y при t=1
Рыбная 191487 -20044,8 -3,601*10^4
Логистика 372281 81285,6 7,575*10^4
Судоремонтная 364521 -5660,8 2,697*10^3
Пищевая 476859 8080 1,824*10^4
Машино и приборо-строение 564837 9364,8 -8,428*10^3

Аналогичным образом получаются таблицы для t = 2, 3, 4, 5, 6.

Отрасль x при t=2 Ф при t=2 y при t=2
Рыбная 166431 -56863,2 -6,808*10^4
Логистика 473888 80086,4 -6,632*10^3
Судоремонтная 357445 17947,2 2,495*10^4
Пищевая 486959 17537,6 2,816*10^4
Машино и приборо-строение 576543 11089,6 5,698*10^3
Отрасль x при t=3 Ф при t=3 y при t=3
Рыбная 120408 -78926,4 -4,702*10^4
Логистика 472389 125255,2 2,757*10^4
Судоремонтная 386955 25729,6 8,966*10^3
Пищевая 498781 49384,8 3,867*10^4
Машино и приборо-строение 578699 23957,6 -3,451*10^3
Отрасль x при t=4 Ф при t=4 y при t=4
Рыбная 92829 -86304 -4,489*10^4
Логистика 528850 132400,8 5,323*10^4
Судоремонтная 396683 70476,8 3,166*10^4
Пищевая 538590 5886,4 -3,038*10^4
Машино и приборо-строение 594784 -53807,2 -6,271*10^4
Отрасль x при t=5 Ф при t=5 y при t=5
Рыбная 83607 -71618,4 8,141*10^3
Логистика 537782 313720,8 1,671*10^5
Судоремонтная 452617 42454,4 -2,388*10^4
Пищевая 484217 15766,4 -2,626*10^3
Машино и приборо-строение 497578 -24216 -2,208*10^4
Отрасль x при t=6 Ф при t=6 y при t=6
Рыбная 101964 -89296,8 -9,557*10^3
Логистика 764432 168894,4 -1,595*10^5
Судоремонтная 417589 54678,4 1,239*10^4
Пищевая 496567 44477,6 3,563*10^4
Машино и приборо-строение 534567 -16855,2 3,836*10^4

В модели Неймана представлены n продуктов и m способов их

производства. Каждый j- й способ задается вектор-столбцом затрат продуктов

a j и вектор-столбцом выпусков продуктов b j в расчете на единицу

интенсивности процесса:

(1)

Это означает, что при единичных интенсивностях j -го производственного процесса потребляется вектор продуктов a j и производится продуктов b j . Векторы (1) рассматриваются в натуральных единицах или в постоянных ценах.

Из векторов затрат и выпуска образуются матрицы затрат А и выпусков

В с неотрицательными коэффициентами затрат a ij и выпусков b ij :

Матрицы А и В обладают следующими свойствами:

1) a ij ≥0 ,b ij ≥0,т.е. все элементы матриц неотрицательны;

2) что означает: в каждом из m способов

производства потребляется хотя бы один продукт;

3) что означает: каждый продукт

производится хотя бы одним способом производства;

Таким образом, каждый столбец матрицы А и каждая строка матрицы В

должны иметь по крайней мере один положительный элемент.

Через Х (t ) обозначим вектор-столбец интенсивностей

Тогда AX (t ) – вектор затрат, BX (t ) – вектор выпусков при заданном

векторе Х (t ) интенсивностей процессов.

Модель Неймана является обобщением динамической модели

межотраслевого баланса Леонтьева, поскольку допускает производство одного продукта несколькими способами производства, и совпадает с ней, если В = Е.

В модели Неймана имеют место следующие соотношения:

(2)

Соотношения (2) означают, что при производстве продукции в году

(t + 1) расходуется продукция, произведенная в году t.

Вектор p (t )=(p 1 (t ), p 2 (t ),..., p n (t ))≥0 называется вектором цен

продуктов, произведенных в году t , если он удовлетворяет следующим соотношениям:

(3)

Если коэффициенты матриц А и В – стоимостные величины в постоянных ценах, то р (t ) будет вектором индексов цен.

Первое векторное неравенство в (3) означает, что стоимость выпуска

продукции для каждого технологического способа производства в году t + 1 не может быть больше стоимости затрат в ценах года t.

Из (2) и (3) следует, что имеют место следующие соотношения:

(4)

Первое соотношение в (4) означает, что цена i -го продукта в году t равна нулю, если его выпуск в году t будет больше его затрат в году (t + 1).

Второе соотношение (4) означает, что j -й технологический процесс в году t не будет применяться (интенсивность равна нулю), если стоимость затрат по нему в году t больше стоимости его выпуска в году (t + 1).

Определение. Векторы Х (t ) и p (t ), t = 1, 2, …, T называются траекторией

сбалансированного роста в модели Неймана, если они удовлетворяют

условиям:

(5)

Здесь λ − темп, ρ − норма процента сбалансированного роста.

Из (5) следует, что в состоянии сбалансированного роста значения компонент вектора Х (t ) пропорционально возрастают, а вектора p (t ) снижаются. При этом имеют место соотношения:

(6)

где Х (0) и р (0) – начальные значения векторов в году t = 0.

Из (5), (6) следует, что на траектории сбалансированного роста должны выполняться соотношения.

(7)

Вопрос о существовании траекторий сбалансированного роста решается

следующими теоремами.

Первая теорема Неймана . Если матрицы А и В удовлетворяют

свойствам 1-3, то система неравенств (7) имеет решение X (t), p (t),λ ,ρ ,

т.е. в модели Неймана существуют траектории сбалансированного роста.

Вторая теорема Неймана. Существует решение X * (t ), p * (t ),λ * ,ρ *

системы (7), у которого будет максимальный темп роста λ * ≥λ и

минимальная норма процента ρ * ≤ ρ по сравнению с другими решениями.

При этом выполняется соотношение:

(8)

Данное решение называется магистралью , или траекторией

максимального сбалансированного роста в модели Неймана.

Модель Неймана является невычислимой, чисто теоретической моделью. Выход к практическим результатам осуществляется через динамическую модель В. Леонтьева, являющуюся частным случаем модели Неймана. Цены, полученные на основе динамического баланса, обладают свойствами цен модели Неймана. Модель Леонтьева использует данные динамического межотраслевого баланса. На основе динамического баланса также возможно построение неймановского луча максимального сбалансированного роста экономики и вычисление цен, соответствующих этому лучу, которые отражают альтернативную стоимость. Отличие динамической межотраслевой модели от модели Неймана состоит в том, что она базируется на предположении, что в каждой отрасли возможен один и только один производственный процесс. Таким образом, выбор решения по каждой отрасли сводится лишь к определению интенсивности производственного способа.

В заключение отметим, что с помощью межотраслевого баланса решают

следующие задачи:

1. По таблице межотраслевого баланса найти матрицу прямых и полных затрат.

2. Задав вектор конечной продукции, определить вектор валовой продукции.

3. Задав вектор валовой продукции, определить вектор конечной продукции.

4. При новых значениях добавленной стоимости найти индексы цен и построить новую таблицу межотраслевого баланса.

5. Найти векторы валового выпуска, добавленной стоимости, затрат,

доли затрат и добавленной стоимости в валовом продукте, межотраслевые

поставки продукции, составить таблицу межотраслевого баланса.

Аналитический метод «затраты-выпуск» наполнил практическим содержанием теорию общего экономического равновесия, он способствовал усовершенствованию математического аппарата. Метод Леонтьева отличает ясность и простота, универсальность и глобальность, другими словами пригодность для экономики отдельных стран и регионов, для мирового хозяйства в целом.

Модель Леонтьева "Затраты-выпуск" строится на основе схемы межотраслевого баланса в предположении о том, что каждая отрасль выпускает один и только свой продукт с использованием продуктов остальных отраслей и посредством линейной технологии. Она помогает анализировать перетоки товаров между отраслями и отвечает на вопрос: можно ли в условиях данной технологии удовлетворить конечный спрос населения на товары?

Магистральная траектория - это луч Неймана. Основным вопросом магистральной теории является анализ близости траекторий оптимизационных моделей к соответствующим магистралям. Оптимальные траектории в динамических моделях Леонтьева и Неймана обладают такими свойствами при выполнении некоторых дополнительных условий.

1. Колемаев В.А. "Экономико-математическое моделирование" ЮНИТИ-ДАНА, 2005 295 с.

2. Поттосина С. А., ЖуравлевВ. А. " Экономико-математические модели и методы" Учебное пособие для студентов экономических специальностей, 2003. – 94 с.

3. Экономико-математические модели и методы / Под общей ред. А.В. Кузнецова. – Мн.: БГЭУ, 2000.

4. http://slovari.yandex.ru/dict/lopatnikov/article/lop/lop-0879.htm

5. http://www.sseu.ru/edumat/v_mat/course2/razd10_2/par10_4k2.htm

Динамическая система первого порядка . Рассмотрим рис. 10.3. Пусть в момент - объем воды в резервуаре , a - объем воды в резервуаре , связанном с трубой. В данный момент мы не рассматриваем резервуар , показанный пунктиром. Пусть вода может подаваться в или забираться из него по трубе ; имеются механические средства, позволяющие изменять уровень, а следовательно, и объем воды в нужным образом вне зависимости от того, что происходит в .

Если объем в первом резервуаре поддерживается на постоянном уровне, вода будет перетекать из одного резервуара в другой до тех пор, пока уровни в них не станут одинаковыми. Если теперь изменить объем , вода будет снова перетекать из одного резервуара в другой до тех пор, пока не наступит равновесие. Объем воды в , находящийся в равновесии как функция заданного объема в , описывается стационарным соотношением

. (10.1.4)

В этом случае стационарное усиление геометрически выражается как отношение заштрихованных площадей двух резервуаров. Если два уровня в момент не совпадают, различие в уровне воды между резервуарами пропорционально .

Пусть теперь, выкачивая или впуская жидкость по трубе , мы заставляем объем следовать графику, показанному на рис. 10.3. Тогда объем воды в будет изменяться в соответствии с ходом графика, показанного на том же рисунке. В общем случае функция , определяющая режим системы, называется вынуждающей функцией .

Для того чтобы связать вход и выход, заметим, что с хорошей точностью скорость потока через трубу пропорциональна разности в уровнях, т. е.

, (10.1.5)

где - константа. Дифференциальное уравнение (10.1.5) можно переписать в виде

где. Динамическую систему, описываемую таким образом при помощи дифференциального уравнения первого порядка, часто называют динамической системой первого порядка.

Рис. 10.3. Представление простой динамической системы.

Постоянная называется постоянной времени системы. Та же модель первого порядка может приближенно описывать поведение многих простых систем. Например, может быть выходной температурой воды в системе водяного отопления, а - скоростью поступления воды в систему.

Можно показать (см. например ), что решение линейного дифференциального уравнения такого типа, как (10.1.6), можно записать в виде

, (10.1.7)

где - вообще говоря, (непрерывная) функция отклика на единичный импульс. Видно, что получается из как непрерывно взвешенная сумма, точно так же, как получалось из в (10.1.2) как дискретно взвешенная сумма. Далее видно, что роль непрерывной весовой функции в непрерывном случае совершенно аналогична роли в дискретном случае. Для конкретной системы первого порядка, определенной (10.1.6),

.

Таким образом, отклик на единичный импульс затухает в этом случае по экспоненте (см. рис. 10.3).

В непрерывном случае определение выхода для произвольной вынуждающей функции, такой, как на рис. 10.3, обычно выполняется либо моделированием на аналоговом вычислительном устройстве, ибо расчетом на цифровой вычислительной машине

Рис. 10.4. Функция отклика на единичный скачок системы первого порядка.

Аналитические решения можно получить только для вынуждающих функций специального вида. Пусть, например, вначале гидравлическая система пуста, а затем внезапно достигает уровня и сохраняет это значение. Такую вынуждающую функцию, внезапно изменяющую нулевой стационарный уровень на стационарный уровень, равный единице, мы будем называть (единичным) скачком. Отклик системы на такую функцию, названный откликом на единичный скачок, можно получить, решая дифференциальное уравнение (10.1.6) с единичным скачком на входе, что дает

. (10.1.8)

Как следует из этого результата, уровень в резервуаре возрастает по экспоненте (рис. 10.4). Когда , . Это означает, что постоянная времени - это время, необходимое системе первого порядка (10.1.6) для достижения 63,2% ее заключительного равновесного уровня после подачи на вход единичного скачка.

Иногда существует начальный интервал чистого запаздывания, или холостое время, перед тем как проявится какая бы то ни было реакция на данное изменение входа. Например, если труба между и (рис. 10.3) достаточно длинна, внезапное изменение уровня в может не оказать эффекта на до тех пор, пока через трубу не прошло достаточное количество жидкости. Пусть введенное таким образом запаздывание занимает единиц времени. Тогда отклик запаздывающей системы будет описываться дифференциальным уравнением, подобным (10.1.6), но только справа вместо будет стоять , т. е.

Соответствующие функции отклика на единичный импульс и скачок имеют точно такую же форму, как в системе без запаздывания, но смещены по оси времен на расстояние .

Рис. 10.5. Функции отклика на единичный скачок совпадающих дискретной и непрерывной систем второго порядка, имеющих характеристические уравнения с действительными (кривая ) и комплексными корнями (кривая).

Динамическая система второго порядка . Рассмотрим рис. 10.3 еще раз. Вообразим, что имеется система трех резервуаров с трубой, ведущей от резервуара к резервуару , объем жидкости в котором обозначен. Пусть - временная постоянная, и - стационарное усиление дополнительной системы. Тогда и связаны дифференциальным уравнением

После подстановки в (10.1.6) мы получаем дифференциальное уравнение второго порядка , связывающее выход третьего резервуара и вход первого,

где . Для такой системы функция отклика на единичный импульс - это наложение экспонент

а функция отклика на единичный скачок имеет вид

. (10.1.12)

Непрерывная кривая на рис. 10.5 показывает отклик на скачок системы

у которой , , . Отметим, что в отличие от системы первого порядка система второго порядка имеет отклик на скачок с начальным нулевым наклоном. действительными, действительными и равными или комплексными. У перезатушенной системы функция отклика на скачок образована наложением экспонент такого типа как (10.1.12), и всегда располагается ниже асимптоты . Как и в системе первого порядка, отклик может иметь холостое время, для этого надо заменить аргумент в правой части (10.1.13) на . Многие весьма сложные динамические системы можно достаточно точно описывать такими системами второго порядка с запаздыванием.

Более сложные линейные динамические системы могут быть описаны, если допустить, что не только сами значения уровня вынуждающей функции , но также скорость ее изменения и более высокие производные влияют на поведение системы. Поэтому общая модель для описаний (непрерывных) динамических систем - это линейное дифференциальное уравнение

(4)

и т.д. Для каждого конкретного значения n будем получать новую динамическую систему, в заданном приближении описывающую процесс колебаний физического маятника .

Кинематическая интерпретация системы дифференциальных уравнений

Рассмотрим динамические системы, моделируемые конечным числом обыкновенных дифференциальных уравнений . Применительно к таким системам сохранились представления и терминология, первоначально возникшие в механике. В рассматриваемом случае для определения динамической системы необходимо указать объект, допускающий описание состояния заданием величин x 1 , x 2 , ..., x N в некоторый момент времени t = t 0 . Величины x i могут принимать произвольные значения, причем двум различным наборам величин x i и отвечают два разных состояния. Закон эволюции динамической системы во времени записывается системой обыкновенных дифференциальных уравнений

Если рассматривать величины x 1 , x 2 , ..., x N как координаты точки x в N -мерном пространстве, то получается наглядное геометрическое представление состояния динамической системы в виде этой точки, которую называют изображающей , а чаще фазовой точкой , а пространство состояний — фазовым пространством динамической системы. Изменению состояния системы во времени отвечает движение фазовой точки вдоль некоторой линии, называемой фазовой траекторией . В фазовом пространстве системы уравнениями (5) определяется векторное поле скоростей, сопоставляющее каждой точке x выходящий из нее вектор скорости F (x ), компоненты которого даются правыми частями уравнений (5):

Динамическая система (5) может быть записана в векторной форме:

где F (x ) — вектор-функция размерности N .

Необходимо уточнить взаимосвязь понятий числа степеней свободы и размерности фазового пространства динамической системы. Под числом степеней свободы понимается наименьшее число независимых координат, необходимых для однозначного определения состояния системы. Под координатами первоначально понимались именно пространственные переменные, характеризующие взаимное расположение тел и объектов. В то же время для однозначного решения соответствующих уравнений движения необходимо помимо координат задать соответствующие начальные значения импульсов или скоростей. В связи с этим система с n степенями свободы характеризуется фазовым пространством в два раза большей размерности (N = 2n ).

Классификация динамических систем

Если динамическая система задана уравнением (7), то постулируется, что каждому x (t 0) в фазовом пространстве ставится в соответствие состояние x (t ), t > t 0 , куда за время t - t 0 переместится фазовая точка, движущаяся в соответствии с уравнением (7). В операторной форме (7) можно записать в виде

x (t ) = T t x (t 0), (8)

где T t — закон (оператор) эволюции. Если этот оператор применить к начальному состоянию x (t 0), то мы получим x (t ), то есть состояние в момент времени t > t 0 . Так как x (t 0) и x (t ) принадлежат одному и тому же фазовому пространству динамической системы, то математики говорят в данной ситуации: оператор T t отображает фазовое пространство системы на себя. В соответствии с этим можно называть оператор T t оператором отображения или просто отображением.

Динамические системы можно классифицировать в зависимости от вида оператора отображения и структуры фазового пространства. Если оператор предусматривает исключительно линейные преобразования начального состояния, то он называется линейным. Линейный оператор обладает свойством суперпозиции: T [x (t ) + y (t )] = T x (t ) + T y (t ). Если оператор нелинейный, то и соответствующая динамическая система называется нелинейной . Различают непрерывные и дискретные операторы и соответственно системы с непрерывным и дискретным временем . Системы, для которых отображение x (t ) с помощью оператора T может быть определено для любых t > t 0 (непрерывно во времени), называют также потоками по аналогии со стационарным течением жидкости . Если оператор отображения определен на дискретном множестве значений времени, то соответствующие динамические системы называют каскадами или системами с дискретным временем.

Способы задания оператора отображения T также могут различаться. Оператор T можно задать в виде дифференциального или интегрального преобразования, в виде матрицы или таблицы, в виде графика или функции и т.д.

Колебательные системы и их свойства

Важную группу динамических систем представляют системы, в которых возможны колебания. Колебательные системы с точки зрения их математических моделей разделяют на определенные классы. Различают линейные и нелинейные колебательные системы, сосредоточенные и распределенные, консервативные и диссипативные, автономные и неавтономные. Особый класс представляют так называемые автоколебательные системы. Основные свойства указанных систем подробно обсуждаются в работах по теории колебаний.

Модели, типы моделей и их использование

Одним из главных элементов, необходимых для эффективного решения сложных задач, является построение и соответствующее использование модели. Модель - представление объекта или системы в некоторой форме, отличной от формы их реального существования.

Очевидно, что модели могут принимать самую разную форму и записываться с разной степенью математической детализации. Выбор того уровня сложности, который делает модель полезной, определяется планируемым ее использованием.

В повседневной практике при работе с системами пользуются умозрительными (субъективными) моделями, в которых математики нет вообще. Примерами таких моделей могут служить алгоритмы функционирования, правила управления системами и т.д.

Для описания свойств некоторых объектов и систем подходят числовые таблицы и (или) графики. Такие описания обычно называют графическими моделями. Например, линейные системы автоматического управления (САУ) могут быть представлены своими импульсными реакциями, реакциями на единичный скачок или частотными характеристиками. Соответствующие графические представления широко используются при проектировании и исследовании САУ.

В более сложных приложениях используются математические модели, в которых соотношения, описывающие связи между переменными объекта, задаются в виде определенных уравнений. Поэтому такие модели иногда называют аналитическими моделями. Математические модели представляют собой формализованные математические описания, отражающие с требуемой точностью процессы, происходящие в исследуемом объекте. Математические модели могут быть снабжены набором поясняющих прилагательных (линейные, нелинейные, дискретные, непрерывные, детерминированные, стохастические и т.д.) в зависимости от типа исследуемых уравнений.

В процессе машинного моделирования моделью системы является программа для ЭВМ. Программа, которой описывается поведение сложных систем, может представлять собой совокупность взаимодействующих между собой подпрограмм и просмотровых таблиц. Формализация такой совокупности в виде некоторой математической модели может оказаться трудноразрешимой задачей. Такие компьютеризованные представления называют программными (или машинными) моделями. Такие модели в настоящее время играют большую роль в процессе принятия оптимальных решений в сложных системах.

Модели можно классифицировать различными способами. Однако ни один из них не является полностью удовлетворительным, хотя каждый из них служит определенной цели. Укажем некоторые типовые альтернативные группы моделей:

Физические (натурные) и математические (символьные);

Статические и динамические;

Детерминированные и стохастические;

Дискретные и непрерывные;

Линейные и нелинейные;

Сосредоточенные и распределенные;

Стационарные и нестационарные.

Физическими моделями являются модели, в которых свойства реального объекта представляются свойством такого же объекта (макета) или некоторым другим свойством аналогичного по поведению объекта.

К математическим моделям относятся те, в которых для представления процесса используются символы, а не физические устройства.

Математическую модель можно представить в виде множества величин, описывающих процесс функционирования реального объекта:

а) совокупность управляемых входных воздействий на объект

б) совокупность неуправляемых входных воздействий

в) совокупность внутренних (собственных) параметров объекта

г) совокупность выходных характеристик объекта (переменных состояния)

Структура моделируемого объекта имеет вид представленный на рис. 4.1

Входные переменные являются независимыми (экзогенными), а выходные - зависимыми (эндогенными) переменными.

Процесс функционирования объекта описывается во времени оператором F, который преобразует независимые переменные в зависимые

(4.1)

Совокупность зависимостей выходных характеристик объекта от времени называется выходной траекторией .

Зависимость (1.1) называется законом функционирования объекта. В общем случае закон функционирования объекта может быть задан в виде функции, функционала, логических условий, в алгоритмической и табличной формах или в виде словесного правила соответствия.

Весьма важным для описания и исследования объекта является понятие алгоритма функционирования , под которым понимается метод получения выходных характеристик с учетом входных воздействий .

Очевидно, что один и тот же закон функционирования может быть реализован различными способами, т.е. с помощью множества различных алгоритмов функционирования.

Соотношения (1.1) являются математическим описанием поведения объекта моделирования во времени t, т.е. отражают его динамические свойства. Поэтому математические модели такого вида называются динамическими . Они описывают изменения параметров во времени, например:

(4.2)

Инженеру очень часто приходится сталкиваться с такими моделями при разработке новых технологических процессов, изделий, средств и систем автоматического управления. В сущности, любая задача проектирования, связанная с расчетом потоков энергии или движения тел, в конечном счете сводится к решению дифференциальных уравнений.

Статические модели описывают процессы, не изменяющиеся во времени, т.е. поведение объекта в установившихся режимах

(4.3)

Статические модели используют, как правило, при проектной оптимизации объекта.

Обычно динамическая модель задается в виде дифференциальных уравнений, а статическая - в виде алгебраических или трансцендентных.

Модели, у которых существует жесткая связь между переменными, называют детерминированными . Такие модели не содержат случайных факторов и значения выходных переменных однозначно определяются значениями входных переменных.

Стохастическая (вероятностная) модель отражает воздействие случайных факторов. Поэтому между входными и выходными переменными существует не функциональная зависимость (детерминированная модель), а вероятностная. Обычно переменные состояния объекта оцениваются в терминах математического ожидания, а входные воздействия - вероятностными законами распределения.

Непрерывная модель описывает непрерывные изменения переменных объекта в течении определенного промежутка времени, например:

Дискретная модель описывает зависимость между переменными объекта в дискретные моменты времени, например: где - начало j-ой стадии моделирования объекта; - ее конец, т.е. состояние объекта в момент времени определяется по известному его состоянию в момент при условии, что известны и остаются постоянными.

У линейной модели существует пропорциональная связь между входными и выходными переменными. Модели, не удовлетворяющие этому условию, являются нелинейными .

Динамическая модель, которая описывает изменение переменных объекта только во времени, называется динамической моделью с сосредоточенными параметрами (искомая величина зависит только от одной переменной).

Эти модели содержат одну или несколько производных от переменных состояния и представляют собой обыкновенные дифференциальные уравнения. Их можно записать в виде:

Полная математическая модель наряду с дифференциальным уравнением (1.4) при решении практических задач содержит также некоторые дополнительные условия (например, значения искомых переменных y ) в начальный момент времени t0 , называемыми начальными условиями :

Во многих практических задачах искомая величина зависит от нескольких переменных. В этом случае математическая модель содержит частные производные и называется моделью с распределенными параметрами .

Если одной из независимых переменных является время t, то такая модель дает описание динамики процесса как во времени, так и в пространстве. Полная математическая модель содержит дифференциальное уравнение в частных производных, начальные условия и граничные условия если математическая модель определена в ограниченном пространстве. Примером такой модели может служить модель теплопроводности или диффузии (параболическое уравнение):

, (4.5)

где y - параметр состояния (температура или концентрация); t - время; x - пространственная координата (толщина материала); a - константа, при заданных начальных и граничных условиях.

В настоящее время трудно назвать область человеческой деятельности, в которой в той или иной степени не использовались бы модели и методы моделирования. Особенно это относится к сфере управления различными системами, где основными являются процессы принятия решений на основе получаемой информации.

Идея представления объекта или системы при помощи модели носит столь общий характер, что дать полную классификацию всех функций модели затруднительно. Можно привести, по крайней мере, следующие основания области применения моделей в инженерной практике:

Управление сложными объектами и системами (техническими, экономическими, социальными и т.д.);

Проектирование технических объектов и систем;

Прогнозирование и диагностика с использованием модели объекта;

Создание средств обучения и тренажа;

Постановка численных экспериментов на имитационной модели объекта.

Математическое моделирование является составной частью всех технических и естественно - научных дисциплин. Действительно, основная задача техники заключается в том, чтобы, используя математическую модель, найти хорошее проектно-конструкторское решение, оптимальное управление объектами, наилучшее распределение ресурсов, оптимальный план производства и т.д.

Математические модели являются также мощным инструментальным средством решения задач имитационного моделирования и предсказания (прогнозирования) поведения моделируемых объектов при различных ситуациях, которые часто возникают не только в технике, но и в экономике, экологии, биологии и других областях знания. Модели широко применяются в качестве средств профессиональной подготовки и обучения лиц, которые должны уметь справляться с всевозможными случайностями до возникновения реальной критической ситуации. Широко известны такие применения моделей, как натурные макеты или модели космических летательных аппаратов, используемые для тренировки космонавтов, тренажеры для обучения водителей, деловые игры для обучения персонала, принимающего решения.

Применение моделей позволяет проводить контролируемые эксперименты в ситуациях, когда экспериментирование на реальных объектах практически невозможно или экономически нецелесообразно. При экспериментировании с моделью сложной системы мы часто можем узнать больше о ее внутренних взаимодействующих факторах, чем могли бы узнать, проведя эксперименты с реальной системой. Это становится возможным благодаря наблюдаемости переменных структурных элементов модели, благодаря тому, что мы можем контролировать ее поведение при различных внешних воздействиях, легко изменять ее параметры.

Резюмируя изложенное выше, отметим, что модель может служить для достижения одной из двух основных целей: либо описательной, если модель служит для объяснения и (или) лучшего понимания объекта, либо предписывающей, когда модель позволяет предсказать и (или) воспроизвести характеристики объекта, определяющие его поведение.