Тарифы Услуги Сим-карты

Цифровая обработка сигналов. Медианный фильтр

Транскрипт

1 IN НАУЧНОЕ ПРИБОРОСТРОЕНИЕ, 011, том 1, 3, c ОБРАБОТКА И ПРЕДСТАВЛЕНИЕ ДАННЫХ УДК: Б. В. Бардин БЫСТРЫЙ АЛГОРИТМ МЕДИАННОЙ ФИЛЬТРАЦИИ Предложен быстрый алгоритм медианной фильтрации, использующий определение медианы данных в окне фильтра при помощи анализа локальной гистограммы. При переходе от точки к точке в процессе сканирования изображения корректировка гистограммы требует небольшого количества простых операций. Предложенный алгоритм существенно ускоряет медианную фильтрацию по сравнению с традиционными алгоритмами. Это позволяет расширить область применения медианной фильтрации. Кл. сл.: медианная фильтрация, цифровые изображения ВВЕДЕНИЕ Медианная фильтрация является удобным инструментом обработки информации, особенно двухмерной информации изображения . Медианный фильтр удаляет из сигнала фрагменты с размерами, меньшими чем половина размера окна фильтра, и при этом мало искажает или почти совсем не искажает остальные участки сигнала. Например, одномерный монотонный сигнал совсем не искажается медианным фильтром. Наиболее известным применением медианной фильтрации является устранение из сигнала коротких импульсных помех [, 3]. Причем амплитуда помехи не влияет на результат медианной фильтрации в отличие от реакции линейного фильтра. В работе показано использование медианного фильтра при обработке изображения клеток крови гранулоцитов. Здесь перед измерением размера гранулоцита его изображение подвергалось сглаживанию медианным фильтром с целью устранения гранул, которые могут влиять на результат измерения. Обычно в процессе медианной фильтрации значения сигнала в некоторой окрестности точки, в которой вычисляется отклик фильтра, при помощи сортировки по возрастанию или убыванию выстраиваются в вариационный ряд. Отклик фильтра определяется как медиана значение сигнала середины (центра) вариационного ряда. В дальнейшем эту окрестность будем называть окном фильтра. Кроме того, для упрощения будем рассматривать фильтр с квадратным окном размером n n. Следовательно, при вычислении медианы в окне фильтра число операций с данными, например число операций сортировки, равно n. При обработке изображения размером M N точек (пикселей) число операций с данными будет велико и составит M N n. Различные операции требуют разных затрат времени выполнения. При последовательном сканировании изображения количество наиболее трудоемких операций операций сортировки можно сократить. Так, при переходе от точки о1 с окном 1 к точке о с окном на рис. 1 можно из вариационного ряда окна 1 исключить точки столбца 1, отсортировать точки столбца 6 и объединить два полученных вариационных ряда в один. Такой алгоритм работает быстрее по сравнению с независимой сортировкой в каждом окне, однако общее число манипуляций с данными (пусть и менее трудоемких), например хотя бы перебор данных, остается тем же самым, т. е. достаточно большим. Поэтому при медианной фильтрации изображений обычно ограничиваются окнами 3 3 или 5 5 и редко Рис. 1. Сканирование изображения окном медианного фильтра 135

2 136 Б. В. БАРДИН больше, что вполне достаточно, например, для устранения импульсных помех. Такие же ограничения вынужденно принимаются и для различных нелинейных операций морфологической обработки , выполняющейся в геометрическом пространстве изображения, и которые в отличие от линейных операций невозможно выполнять в пространстве Фурье. Вместе с тем существует ряд задач обработки изображений, которые можно было бы эффективно решить при помощи медианного фильтра, но они требуют окна большого размера. Одна из таких задач будет рассмотрена ниже. Поэтому возможное повышение скорости медианной фильтрации сулит большие перспективы в задачах обработки изображений. БЫСТРАЯ МЕДИАННАЯ ФИЛЬТРАЦИЯ В работе при рассмотрении ранговых алгоритмов обработки изображений показано, что любую r-ю порядковую статистику v (r) элемента изображения можно найти из локальной гистограммы h (q) распределения значений элементов окрестности (окна на рис. 1), решив уравнение v (r) h (q) r. (1) q 0 Здесь q = 0, 1,Q 1 номер кванта (бина) гистограммы; v = q v квантованное значение видеосигнала; r = 0, 1, 1 ранг элемента: его номер в вариационном ряду; число элементов окрестности (окна), или площадь окна в пикселях; в нашем случае n. Медианный фильтр является частным случаем рангового фильтра с рангом отклика r = (1)/. Так как Q 1 h (q), () q 0 то из (1) следует, что медиана q = v (r) делит площадь гистограммы пополам (за вычетом бина, соответствующего q). На рис. показано разбиение гистограммы. Здесь h(q) площадь бина, соответствую- h(q) Рис.. Гистограмма яркости изображения в окне медианного фильтра щего медиане q. Остальные обозначения ясны из рисунка. При этом справедливы следующие соотношения:, (3) (1) /, (4) (1) /. (5) Предполагается, что нечетное. Знаки неравенства в двух последних выражениях могут иметь место только при 1. При сканировании окном медианного фильтра по строке, при переходе от точки о1 к точке о на рис. 1 корректировка гистограммы производится следующим образом. 1. Из гистограммы удаляются данные, соответствующие точкам столбца 1. При этом для каждой точки из площади соответствующего бина вычитается 1.. В гистограмму добавляются данные, соответствующие точкам столбца 6. При этом для каждой точки к площади соответствующего бина добавляется В процессе выполнения операций по пунктам 1 и одновременно изменяются величины, и. 4. На оснований выражений (3), (4) и (5) корректируются величины, и q. Ниже приведен фрагмент программы на языке С, реализующий описанный алгоритм корректировки. Здесь, для удовлетворения синтаксису языка С индексы при и q заменены строчными буквами, а индексы при h и v упущены. Для случая на рис. 1 n=5 и j=1. НАУЧНОЕ ПРИБОРОСТРОЕНИЕ, 011, том 1, 3

3 БЫСТРЫЙ АЛГОРИТМ МЕДИАННОЙ ФИЛЬТРАЦИИ 137 fr(i=0; i q) h--; else --; h[i]]++; if(v[i] < q) l++; else if(v[i] > q) h++; else ++; hile(l > (-1)/) q--; if(h[q] > 0) l=l-h[q]; h=h+h; =-l-h; hile(h > (-1)/) q++; if(h[q] > 0) h=h-h[q]; l=l+h; =-l-h; Если гистограмма не имеет разрывов, как изображено на рис., величина q при корректировке одной точки по п. 4 может измениться не более чем на единицу. Однако реальные локальные гистограммы, как правило, сильно изрезаны. Поэтому корректировки по п. 4 производятся в программе циклами hile для пропуска пустых бинов. Как видно из изложенного выше, рассматриваемый алгоритм медианной фильтрации имеет порядок сложности n, а не n как это имеет место для наиболее распространенных алгоритмов. Кроме того, здесь не требуется трудоемких операций сортировки. Видеоинформация, содержащаяся в регистрируемых аналитическими приборами изображениях, в частности в изображениях биологических объектов , обычно имеет три составляющие: видеоинформация, представляющая исследуемые объекты, шум и фоновая составляющая изображения. Фоновая составляющая обычно удаляется на начальном этапе обработки изображения, чтобы она не влияла на результаты обработки, или вычисляется с целью учета ее на последующих этапах обработки, что равнозначно. Фон изображения, как правило, изменяется медленнее, чем остальные составляющие сигнала при исследовании локальных объектов. Поэтому обычно фон вычисляется при помощи линейной низкочастотной фильтрации. Однако если на противоположных сторонах кадра изображения или на границах ра- ПРОВЕРКА РЕЗУЛЬТАТОВ И ВЫВОДЫ Рис. 3. Изображение объектов ПЦР-анализа НАУЧНОЕ ПРИБОРОСТРОЕНИЕ, 011, том 1, 3

4 138 Б. В. БАРДИН бочей области изображения величина фона существенно различается (или меняется), то линейный фильтр воспринимает это различие как скачок сигнала и пытается его сгладить. Это известное явление краевых эффектов. Существуют различные способы борьбы с краевыми эффектами. Чаще всего это или отбрасывание части изображения, затронутого краевыми эффектами, с соответствующей потерей части полезной информации, или расширение кадра с таким заполнением дополнительных полей, чтобы на краях исходного поля изображения, содержащего полезную информацию, не было бы скачков. Однако, существуют изображения, при обработке которых реализовать такие подходы или невозможно, или очень затруднительно. Так, на рис. 3 показана лунка микрочипа с объектами ПЦР-анализа и профиль сигнала по горизонтальной линии на изображении. На рис. 4 показано вычисление фоновой составляющей при помощи линейной фильтрации, которая, как видно из рисунка, дает большие краевые искажения по контуру лунки. Урезание областей изображения, искаженных краевыми эффектами, в данном случае недопустимо в связи с большой потерей полезной информации, а расширение рабочей области затруднительно из-за того, что эта область является круглой, а также в связи с большой неравномерностью фона по контуру области. На рис. 5 показано вычисление фона при помощи медианного фильтра. Из рисунка видно, что краевые эффекты в этом случае очень малы, однако при этом потребовалось применение фильтра с большим окном пиксель или 1681 пиксель в окне. Размер изображения составлял пикселей. Измерение времени медианной фильтрации производилось на компьютере со скромными возможностями. Он имел в своем составе одноядерный процессор Pentiu 4 CPU.4 Gz и RAM 51 MB. Время фильтрации традиционным медианным фильтром с использованием сортировки данных в окне составило 33 с. Время же фильтрации с использованием предлагаемого в настоящей работе алгоритма составило 0.37 с, т. е. почти на два порядка меньше, чем при использовании традиционных алгоритмов. Надо отметить, что, с одной стороны, в рассматриваемой задаче (ПЦР-анализ) время 0.37 с является вполне приемлемым, а с другой стороны, в системах, использующих цифровую обработку изображений, как правило, применяются значительно более мощные компьютеры. Таким образом, применение предлагаемого алгоритма позволяет значительно ускорить работу медианного фильтра, что, кроме того, позволяет расширить область применения медианной фильтрации. Рис. 4. Вычисление фона линейным фильтром Рис. 5. Вычисление фона медианным фильтром НАУЧНОЕ ПРИБОРОСТРОЕНИЕ, 011, том 1, 3

5 БЫСТРЫЙ АЛГОРИТМ МЕДИАННОЙ ФИЛЬТРАЦИИ 139 СПИСОК ЛИТЕРАТУРЫ 1. Бардин Б.В. Исследование возможностей медианной фильтрации при цифровой обработке изображений совокупностей локальных биологических объектов // Научное приборостроение Т. 1,. С Гонсалес Р., Вудс Р. Цифровая обработка изображений. Пер. с англ. М.: Техносфера, с. 3. Ярославский Л.П. Цифровая обработка сигналов в оптике и голографии. М.: Радио и связь, с. 4. Бардин Б.В., Чубинский-Надеждин И.В. Обнаружение локальных объектов на цифровых микроскопических изображениях // Научное приборостроение Т. 19, 4. С Бардин Б.В, Манойлов В.В., Чубинский-Надеждин И.В., Васильева Е.К., Заруцкий И.В. Определение размеров локальных объектов изображений для их идентификации // Научное приборостроение Т. 0, 3. С Институт аналитического приборостроения РАН, г. Санкт-Петербург Контакты: Бардин Борис Васильевич, Материал поступил в редакцию FAT AGORITM OF MEDIAN FITERING B. V. Bardin Institute fr Analytical Instruentatin f RA, aint Petersburg Fast algrith f edian filtering using data edian deterinatin in filter ind by eans f lcal histgra analysis has been suggested. When ving fr pixel t pixel in the prcess f iage scanning crrectin f histgra requires sall nuber f nn-cplex peratins. The suggested algrith increases cnsiderably the edian filtering prcess cpared t the traditinal algriths. This enables edian filtering applicatin sphere extending. Keyrds: edian filtering, digital iaging Оригинал-макет подготовлен Беленковым В.Д. Лицензия ИД 0980 от 06 октября 000 г. Подписано к печати г. Формат Бумага офсетная. Печать офсетная. Усл. печ. л Уч.-изд. л Тираж 100 экз. Тип. зак. 70. С 96 Санкт-Петербургская издательская фирма "Наука" РАН, Санкт-Петербург, Менделеевская линия, 1 E-ail: Internet:.naukaspb.spb.ru Первая Академическая типография «Наука», Санкт-Петербург, 9 линия, 1


НЕЛИНЕЙНЫЙ ФИЛЬТР ГЕОМЕТРИЧЕСКОГО СРЕДНЕГО С ЭКСПОНЕНЦИАЛЬНЫМИ ВЕСАМИ Толстунов Владимир Андреевич канд. техн. наук, доцент Кемеровского государственного университета, РФ, г. Кемерово E-mail: [email protected]

УДК 61.397 Частотные и пространственные методы цифровой фильтрации изображений # 05, май 01 Черный С.А. Cтудент, кафедра «Радиоэлектронные системы и устройства» Научный руководитель: Ахияров В.В., кандидат

Эффективная модификация алгоритма адаптивной медианной фильтрации цифровых изображений Яиков Рафаэль Равильевич Ярославский государственный университет им. П. Г. Демидова 2015 Какие бывают шумы? Аддитивный

Секция 6. Цифровая обработка сигналов и изображений 377 УДК 004.932.2+004.932.72"1 Е.Е. Плахова, Е.В. Меркулова Донецкий национальный технический университет, г. Донецк кафедра автоматизированных систем

Открытые информационные и компьютерные интегрированные технологии 64, 014 УДК 004.8/004.93/681.513.8;681.514 Л. С. Костенко Методы и алгоритмы сглаживания фона изображений в системах распознавания образов

УДК 519.6 + 004.4 ФИЛЬТРАЦИЯ РЕНТГЕНОВСКИХ ТОМОГРАММ МЕТОДОМ АДАПТАЦИИ РАЗМЕРА ОКНА ФИЛЬТРА К ЛОКАЛЬНЫМ ХАРАКТЕРИСТИКАМ ИЗОБРАЖЕНИЯ Е.Н. Симонов, В.В. Ласьков Предложен алгоритм фильтрации изображений

ISSN 0868 5886, c. 96 102 ОБРАБОТКА И АНАЛИЗ СИГНАЛОВ УДК 621.391.837: 681.3 Б. В. Бардин, И. В. Чубинский-Надеждин ОБНАРУЖЕНИЕ ЛОКАЛЬНЫХ ОБЪЕКТОВ НА ЦИФРОВЫХ МИКРОСКОПИЧЕСКИХ ИЗОБРАЖЕНИЯХ Рассмотрена

ИКОНИКА НАУКА ОБ ИЗОБРАЖЕНИИ УДК 004.932.4 МЕТОД МЕЖКАНАЛЬНОЙ КОМПЕНСАЦИИ ИМПУЛЬСНЫХ ПОМЕХ В ЗАДАЧАХ ВОССТАНОВЛЕНИЯ МНОГОКОМПОНЕНТНЫХ ЦИФРОВЫХ ИЗОБРАЖЕНИЙ 2013 г. Е. А. Самойлин, доктор техн. наук; В.

Реализация некоторых алгоритмов обработки изображений с использованием технологии CUDA на графических устройствах Н.Н. Богословский Томский государственный университет Обработки цифровых изображений в

УДК 621.391 А. В. ИВАШКО, канд. техн. наук, проф. НТУ «ХПИ»; К. Н. ЯЦЕНКО, студент НТУ «ХПИ» РЕАЛИЗАЦИЯ МЕДИАННЫХ И КВАЗИМЕДИАННЫХ ФИЛЬТРОВ НА ЦИФРОВЫХ СИГНАЛЬНЫХ ПРОЦЕССОРАХ В статье рассмотрена программная

Обработка цифровых изображений стеклянных микрошариков методами фильтрации и сегментации 77-30569/403867 # 03, март 2012 Стругайло В. В. УДК 004.932 Россия, Московский автомобильно-дорожный государственный

ВА Толстунов Нелинейная фильтрация на основе степенного преобразования 7 УДК 00467 ВА Толстунов Нелинейная фильтрация на основе степенного преобразования Предлагается алгоритм цифрового сглаживающего фильтра

Содержание 6. Обработка и количественный анализ СЗМ изображений Содержание 6. ОБРАБОТКА И КОЛИЧЕСТВЕННЫЙ АНАЛИЗ СЗМ ИЗОБРАЖЕНИЙ... 6-1 6.1. ЦЕЛЬ РАБОТЫ... 6-2 6.2. СОДЕРЖАНИЕ РАБОТЫ... 6-2 6.3. ЗАДАНИЕ...

Полосовая фильтрация 1 Полосовая фильтрация В предыдущих разделах была рассмотрена фильтрация быстрых вариаций сигнала (сглаживание) и его медленных вариаций (устранение тренда). Иногда требуется выделить

УДК 004.932 В.К. Злобин, Б.В. Костров, В.А. Саблина АЛГОРИТМ СЕКВЕНТНОЙ ФИЛЬТРАЦИИ ГРУППОВЫХ ПОМЕХ НА ИЗОБРАЖЕНИИ Рассмотрены проблемы использования методов секвентного анализа применительно к цифровой

Math-Net.Ru Общероссийский математический портал А. В. Гроховской, А. С. Макаров, Алгоритм предварительной обработки изображений для систем технического зрения, Матем. моделирование и краев. задачи, 2009,

УДК 61.865.8 МЕТОДЫ ПОВЫШЕНИЯ КОНТРАСТНОСТИ РАСТРОВЫХ ИЗОБРАЖЕНИЙ ДЛЯ СИСТЕМ ЦИФРОВОЙ ОБРАБОТКИ ВИДЕОИНФОРМАЦИИ М. Б. Сергеев, доктор техн. наук, профессор Н. В. Соловьев, канд. техн. наук, доцент А. И.

Влияние фильтров на классификацию дактилографии # 01, январь 2015 Деон А. Ф., Ломов Д. С. УДК: 681.3.06(075) Россия, МГТУ им. Н.Э. Баумана [email protected] Классы отпечатков пальцев В традиционной дактилоскопии

ISSN 0868 5886, c. 9 13 МЕТОДЫ ИЗМЕРЕНИЙ УДК 543.426; 543.9 Ю. В. Белов, И. А. Леонтьев, А. И. Петров, В. Е. Курочкин КОРРЕКЦИЯ БАЗОВОЙ ЛИНИИ СИГНАЛОВ ФЛУОРЕСЦЕНТНОГО ДЕТЕКТОРА ГЕНЕТИЧЕСКОГО АНАЛИЗАТОРА

Ñóäîñòðîåíèå ñóäîðåìîíò è ýêñïëóàòàöèÿ ôëîòà УДК 004.93.4:551.463.1 Г. А. Попов Д. А. Хрящёв ÎÁ ÎÄÍÎÌ ÌÅÒÎÄÅ ÍÈÇÊÎ ÀÑÒÎÒÍÎÉ ÔÈËÜÒÐÀÖÈÈ ÃÈÄÐÎËÎÊÀÖÈÎÍÍÛÕ ÈÇÎÁÐÀÆÅÍÈÉ Введение Многие современные исследования

Домашнее задание. Обработка результатов наблюдений двухмерного случайного вектора.1. Содержание и порядок выполнения работы Дана парная выборка (x i ; y i) объема 50 из двумерного нормально распределенного

Пособие для учащихся учреждений общего среднего образования 5-е издание, исправленное М о з ы р ь «Белый Ветер» 2 0 1 4 УДК 372.851.046.14 ББК 74.262.21 Т36 С о с т а в и т е л ь Г. А. БУрьяК Р е ц е н

SWorld 218-27 December 2012 http://www.sworld.com.ua/index.php/ru/conference/the-content-of-conferences/archives-of-individual-conferences/december- 2012 MODERN PROBLEMS AND WAYS OF THEIR SOLUTION IN SCIENCE,

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ

УДК 004.021 1 Е. В. Леонтьева, Е. В. Медведева МЕТОД ВОССТАНОВЛЕНИЯ RGB-КОМПОНЕНТНЫХ ИЗОБРАЖЕНИЙ, ИСКАЖЕННЫХ АППЛИКАТИВНЫМИ ПОМЕХАМИ Предложен метод восстановления цветных изображений, искаженных аппликативными

Министерство образования Российской Федерации Волгоградский государственный технический университет Кафедра материаловедения и композиционных материалов Методы одномерного поиска Методические указания

Компьютерная Графика Подавление и устранение шума Борьба с шумом изображения Подавление и устранение шума Причины возникновения шума: Несовершенство измерительных приборов Хранение и передача изображений

Кафедра математического обеспечения АСУ Г.А. ШЕЙНИНА Структуры и алгоритмы обработки данных Рекомендовано редакционно-издательским советом университета в качестве методических указаний для студентов специальности

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П.КОРОЛЕВА

Нелинейная фильтрация зашумленных интерференционных полос 245 НЕЛИНЕЙНАЯ ФИЛЬТРАЦИЯ ЗАШУМЛЕННЫХ ИНТЕРФЕРЕНЦИОННЫХ ПОЛОС С ПРОСТРАНСТВЕННО ЗАВИСИМОЙ ИМПУЛЬСНОЙ РЕАКЦИЕЙ СИСТЕМЫ М.В. Волков Научный руководитель

МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. Н. И. ЛОБАЧЕВСКОГО Факультет вычислительной математики и кибернетики Кафедра математической

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» ВВЕДЕНИЕ В АНАЛИЗ И ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ

АЛГОРИТМЫ ПОИСКА РАССТОЯНИЙ ДО ОБЪЕКТНЫХ ПИКСЕЛОВ НА БИНАРНЫХ ИЗОБРАЖЕНИЯХ Н.Л. Казанский, В.В. Мясников, Р.В. Хмелев Институт систем обработки изображений РАН Постановка задачи Одной из важнейших задач

00 ВЕСТНИК НОВГОРОДСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 55 УДК 598765 ВЫДЕЛЕНИЕ КОНТУРОВ ИЗОБРАЖЕНИЯ ДВИЖУЩЕГОСЯ ОБЪЕКТА ИОТитов, ГМЕмельянов Институт электронных и информационных систем НовГУ, TitovIlya@yandexru

ISSN2221-2574 Телевизионные системы, передача и обработка изображений УДК 621.396 Построение модели тестового изображения Жиганов С.Н., Гашин И.В. В работе рассмотрена методика построения модели изображения,

Системы управления и моделирование Алгоритм анализа робастной устойчивости дискретных систем управления с периодическими ограничениями М. В. МОРОЗОВ Аннотация. Для дискретных линейных нестационарных систем

УДК 681.5:004.93 Калиниченко Ю.В. К ВОПРОСУ О ВЫДЕЛЕНИИ ГРАНИЦ ДЕТЕКТОРОМ КЕННИ Луганский национальный университет имени Тараса Шевченко Рассмотрен вопрос выделения границ детектором Кенни. Алгоритм реализован

Краевая научно-практическая конференция учебно-исследовательских работ учащихся 6-11 классов «Прикладные и фундаментальные вопросы математики» Прикладные вопросы математики Распознавание символов на электронных

АЛГОРИТМЫ КОНТРОЛЯ КООРДИНАТ ИСТОЧНИКА ИЗЛУЧЕНИЯ НА ФОТОЧУВСТВИТЕЛЬНОЙ ПОВЕРХНОСТИ МАТРИЦЫ В.В.Замятин Для измерения координат точечного источника излучения на поверхности фоточувствительной матрицы применяют

Цифровая Обработка Сигналов 4/28 УДК 68.58 АДАПТИВНАЯ ФИЛЬТРАЦИЯ ИЗОБРАЖЕНИЙ СО СТРУКТУРНЫМИ ИСКАЖЕНИЯМИ Костров Б.В., Саблина В.А. Введение Процесс регистрации аэрокосмических изображений сопровождается

370 Секция 6. Цифровая обработка сигналов и изображений УДК 004. 93"12 И.С. Личканенко, В.Н. Пчелкин Донецкий национальный технический университет, г. Донецк кафедра компьютерных систем мониторинга МЕТОДЫ

ОБРАБОТКА КОСМИЧЕСКИХ ИЗОБРАЖЕНИЙ НА ОСНОВЕ ЧАСТОТНЫХ ПРЕДСТАВЛЕНИЙ А.Ю. Лихошерстный Белгородский государственный университет e-mail: [email protected] В работе изложен новый метод фильтрации

ISSN 1995-55. Вестник РГРТУ. 1 (выпуск 31). Рязань, 0 УДК 1.391 Ю.М. Коршунов ОЦЕНКА КАЧЕСТВА РАБОТЫ ЦИФРОВЫХ ФИЛЬТРОВ НА ОСНОВЕ ИСКУССТВЕННО СОЗДАННОЙ ИМИТАЦИОННОЙ МОДЕЛИ СИГНАЛА И ПОМЕХИ Предложен метод

АНАЛИЗ ДИСПЕРСНОГО СОСТАВА МИКРОСКОПИЧЕСКИХ ОБЪЕКТОВ С ИСПОЛЬЗОВАНИЕМ ЭВМ Королев Д. В., Суворов К. А. Санкт-Петербургский государственный технологический институт (технический университет), [email protected]

УДК 528.854 Кузьмин С. А. ИССЛЕДОВАНИЕ АЛГОРИТМОВ УСТРАНЕНИЯ ИМПУЛЬСНЫХ ПОМЕХ В ВИДЕОРЯДАХ Рассмотрена задача повышения характеристик алгоритмов обнаружения объектов в видеопоследовательностях путем подавления

УДК 681.3.082.5 Г.Н. Глухов Алгоритм цифрового сглаживания поверхности Предлагается алгоритм оптимального сглаживания поверхности. Критерием оптимальности выбран минимум взвешенных сумм: суммы квадратов

Пособие для учащихся учреждений общего среднего образования С о с т а в и т е л ь Г. И. Струк 5-е издание М о з ы р ь «Белый Ветер» 2 0 1 4 УДК 372.851.046.14 ББК 74.262.21 Т36 Р е ц е н з е н т ы: кандидат

SWorld 8-29 June 203 http://www.sworld.com.ua/index.php/ru/conference/the-content-of-conferences/archives-of-individual-conferences/june-203 MODERN PROBLEMS AND WAYS OF THEIR SOLUTION IN SCIENCE, TRANSPORT,

Министерство образования Российской Федерации Санкт-Петербургский государственный университет низкотемпературных и пищевых технологий Кафедра теоретической механики ИССЛЕДОВАНИЕ СИЛ РЕАКЦИЙ ОПОР СОСТАВНОЙ

УДК 004.932.72; 681.3 Н. Ю. Р я з а н о в а, В. А. У л ь и х и н ВОПРОСЫ МАСШТАБИРОВАНИЯ ИЗОБРАЖЕНИЙ С УЧЕТОМ ИХ СОДЕРЖАНИЯ Рассмотрены вопросы выбора алгоритмов выявления сюжета и определения значимости

УДК 621.397:621.396.96 ВЫДЕЛЕНИЕ ПРЯМОЛИНЕЙНЫХ КРОМОК НА ЗАШУМЛЕННЫХ ИЗОБРАЖЕНИЯХ В. Ю. Волков, доктор техн. наук, профессор Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.

Министерство образования и науки РФ Алтайский государственный университет О. Ю. Воронкова, С. В. Ганжа ОРГАНИЗАЦИОННО-ЭКОНОМИЧЕСКИЙ МЕХАНИЗМ РЕГУЛИРОВАНИЯ ЗЕМЕЛЬНО-ИПОТЕЧНЫХ ОТНОШЕНИЙ В РЫНОЧНЫХ УСЛОВИЯХ

ВОССТАНОВЛЕНИЕ ИЗОБРАЖЕНИЙ НЕЛИНЕЙНЫМИ ФИЛЬТРАМИ, ПОЛУЧЕННЫМИ ИДЕНТИФИКАЦИЕЙ ЛИНЕЙНОЙ ПО ПАРАМЕТРАМ МОДЕЛИ В.А. Фурсов, Д.А. Елкин Самарский государственный аэрокосмический университет имени академика

ISSN 0868 5886, c. 101 106 ПРИБОРЫ, УСТАНОВКИ, МЕТОДЫ УДК 621.38 Б. С. Гуревич, С. Б. Гуревич, В. В. Манойлов ВЕЙВЛЕТ-ФИЛЬТРАЦИЯ ПРОСТРАНСТВЕННЫХ ЧАСТОТ ПРИ ДИСКРЕТИЗАЦИИ СВЕТОВЫХ ПОЛЕЙ Рассматриваются

Электронный журнал «Труды МАИ». Выпуск 50.mai.ru/science/trud/ УДК 004.9 ББК 3.97 Методика фильтрации периодических помех цифровых изображений В.Ю. Гусев А.В. Крапивенко Аннотация В статье рассмотрена

МОДЕЛЬ ЗРИТЕЛЬНОЙ СИСТЕМЫ ЧЕЛОВЕКА- ОПЕРАТОРА ПРИ РАСПОЗНАВАНИИ ОБРАЗОВ ОБЪЕКТОВ Ю.С. Гулина, В.Я. Колючкин Московский государственный технический университет им. Н.Э. Баумана, Изложена математическая

ОПТИКО-ЭЛЕКТРОННОЕ МЕТОДЫ КОНТРОЛЯ КООРДИНАТ ИЗЛУЧАТЕЛЯ НА ПОВЕРХНОСТИ МАТРИЦЫ С ПРИМЕНЕНИЕМ ЦЕНТРОИДАЛЬНЫХ АЛГОРИТМОВ В. И. Замятин В. В. Замятин Алтайский государственный технический университет им.

УДК 621.396 УМЕНЬШЕНИЕ ВЛИЯНИЯ 8-БИТНОГО КВАНТОВАНИЯ ГРАДАЦИЙ ЯРКОСТЕЙ НА ВОЗМОЖНОСТИ ВОССТАНОВЛЕНИЯ А. Ю. Зражевский, А. В. Кокошкин, В. А. Коротков Институт радиотехники и электроники им. В.А. Котельникова

Лабораторная работа 3 Задание Требуется реализовать программу, выполняющую действия над массивами. При выполнении части 1 допускается использование массивов статического размера. При выполнении части 2

Методика априорной оценки эффективности сжатия цифровых изображений в системе оперативной передачи данных дистанционного зондирования Земли 2.3. Анализ алгоритмов сжатия на линейность Для анализа цифрового

Занятие 3 РЕГРЕССИОННЫЙ АНАЛИЗ ДЛЯ ОБРАБОТКИ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА Регрессионный анализ часто используется в химии с целью обработки экспериментальных данных, совокупность которых представлена некоторой

Практикум для учащихся учреждений общего среднего образования М о з ы р ь «Белый Ветер» 2 0 1 4 УДК 51(075.2) ББК 22.1я71 Л84 Р е ц е н з е н т ы: кандидат педагогических наук, доцент кафедры методики

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Донской государственный технический университет Кафедра «Программное обеспечение вычислительной

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ МЕТОД ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ ХРОНИЧЕСКОГО ПАНКРЕАТИТА И АДЕНОКАРЦИНОМЫ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ Инструкция по применению УЧРЕЖДЕНИЯ-РАЗРАБОТЧИКИ: УО «Белорусский

ВОССТАНОВЛЕНИЕ ФАЗЫ ИНТЕРФЕРЕНЦИОННЫХ ПОЛОС МЕТОДОМ НЕЛИНЕЙНОЙ ДВУМЕРНОЙ ФИЛЬТРАЦИИ КАЛМАНА А.С. Захаров Исследованы характеристики двумерного дискретного нелинейного фильтра Калмана при динамическом оценивании

СБОРНИК НАУЧНЫХ ТРУДОВ НГТУ. 28. 4(54). 37 44 УДК 59.24 О КОМПЛЕКСЕ ПРОГРАММ ДЛЯ РЕШЕНИЯ ЗАДАЧИ ИДЕНТИФИКАЦИИ ЛИНЕЙНЫХ ДИНАМИЧЕСКИХ ДИСКРЕТНЫХ СТАЦИОНАРНЫХ ОБЪЕКТОВ Г.В. ТРОШИНА Рассмотрен комплекс программ

Материалы V Международной научно-технической школы-конференции, 3 ноября 8 г. МОСКВА МОЛОДЫЕ УЧЕНЫЕ 8, часть 4 МИРЭА ОЦЕНКА КАЧЕСТВА ФИЛЬТРОВ ИНТЕРПОЛЯЦИИ В СТАНДАРТАХ ВИДЕОКОДИРОВАНИЯ 8 г. Д.Б. ПОЛЯКОВ

Величина является порогом фильтрации .В приложениях используется еще целый ряд простейших нелинейных фильтров. Например, модуль изображения, содержащего пиксели с отрицательным значением, или фильтр, обнуляющий все значения пикселей, меньше данного порога.

Более сложным фильтром, задействующим в вычислениях окрестность пикселя, является медиана. Медианная фильтрация определяется следующим образом:

(8.10)

т.е. результат фильтрации есть медианное значение пикселей окрестности 1 Медианой набора чисел является число из набора, не меньшее половины чисел набора и не большее другой половины чисел набора. , форма которой выбирается произвольно. В разделе 8.2 мы рассмотрели шумоподавление при помощи сглаживающих фильтров. Шум с нулевым математическим ожиданием, добавленный к исходному сигналу, является только одним из видов помех. Медианная фильтрация способна эффективно справляться с помехами в более общем случае, когда помехи независимо воздействуют на отдельные пиксели.Например, такими помехами являются "битые" и "горячие" пиксели при цифровой съемке, "снеговой" шум, когда часть пикселей заменяется на пиксели с максимальной интенсивностью, и т.п. Преимущество медианной фильтрации перед линейной сглаживающей фильтрацией заключается в том, что "горячий" пиксель на темном фоне будет заменен на темный, а не "размазан" по окрестности (рис. 8.6).

Последней парой фильтров, которые мы рассмотрим в этом разделе, являются фильтры минимум и максимум, которые определяются по правилам

(8.11)
(8.12)

т.е. результат фильтрации есть минимальное и максимальное значения пикселей окрестности.

ВВЕДЕНИЕ

Лекция 16. МЕДИАННЫЕ ФИЛЬТРЫ

Медианные фильтры достаточно часто применяются на практике как средство предварительной обработки цифровых данных. Специфической особенностью фильтров является слабая реакция на отсчеты, резко выделяющиеся на фоне соседних. Это свойство позволяет применять медианную фильтрацию для устранения аномальных значений в массивах данных, уменьшения импульсных помех. Характерной особенностью медианного фильтра является его нелинейность. Во многих случаях применение медианного фильтра оказывается более эффективным по сравнению с линейными фильтрами, поскольку процедуры линейной обработки являются оптимальными при равномерном или гауссовом распределении помех, что в реальных сигналах может быть далеко не так. В случаях, когда перепады значений сигналов велики по сравнению с дисперсией аддитивного белого шума, медианный фильтр дает меньшее значение среднеквадратической ошибки по сравнению с оптимальными линейными фильтрами. Особенно эффективным медианный фильтр оказывается при очистке сигналов от импульсных шумов при обработке изображений, акустических сигналов, передаче кодовых сигналов и т.п. Однако детальные исследования свойств медианных фильтров как средства фильтрации сигналов различного типа являются довольно редкими.

Принцип фильтрации. Медианный фильтр представляет собой оконный фильтр, последовательно скользящий по массиву сигнала, и возвращающий на каждом шаге один из элементов, попавших в окно (апертуру) фильтра. Выходной сигнал y k скользящего медианного фильтра шириной 2n+1 для текущего отсчета k формируется из входного временного ряда …, x k -1 , x k , x k +1 ,… в соответствии с формулой:

y k = Me(x k - n , x k - n +1 ,…, x k -1 , x k , x k +1 ,…, x k + n -1 , x k + n), (16.1.1)

где Me(x 1 , …, x m , …, x 2n+1) = x n+1 , x m – элементы вариационного ряда, т.е. ранжированные в порядке возрастания значений x m: x 1 = min(x 1 , x 2 ,…, x 2n+1) ≤ x (2) ≤ x (3) ≤ … ≤ x 2n+1 = max(x 1 , x 2 ,…, x 2n+1).

Одномерные фильтры. Медианная фильтрация реализуется в виде процедуры локальной обработки отсчетов в скользящем окне, которое включает определенное число отсчетов сигнала. Для каждого положения окна выделенные в нем отсчеты ранжируются по возрастанию или убыванию значений. Средний по своему положению отчет в ранжированном списке называется медианой рассматриваемой группы отсчетов. Этим отсчетом заменяется центральный отсчет в окне для обрабатываемого сигнала.

Алгоритм медианной фильтрации обладает явно выраженной избирательностью к элементам массива с немонотонной составляющей последовательности чисел в пределах апертуры и наиболее эффективно исключает из сигналов одиночные выбросы, отрицательные и положительные, попадающие на края ранжированного списка. С учетом ранжирования в списке медианные фильтры хорошо подавляют шумы и помехи, протяженность которых составляет менее половины окна. Монотонные составляющие сигналов медианный фильтр оставляет без изменений.



Рис. 16.1.1.

Благодаря этой особенности, медианные фильтры при оптимально выбранной апертуре могут сохранять без искажений резкие границы объектов, подавляя некоррелированные и слабо коррелированные помехи и малоразмерные детали. При аналогичных условиях алгоритмы линейной фильтрации неизбежно «смазывает» резкие границы и контуры объектов. На рис. 16.1.1 приведен пример обработки сигнала с импульсными шумами медианным и треугольным фильтрами с одинаковыми размерами окна N=3. Преимущество медианного фильтра очевидно.

Окно медианного фильтра, как правило, устанавливается нечетным. В общем случае окно может быть и четным, при этом медиана устанавливается, как среднее арифметическое двух средних отсчетов. В качестве начальных и конечных условий фильтрации обычно принимаются концевые значения сигналов, либо медиана находится только для тех точек, которые вписываются в пределы апертуры.

Рис. 16.1.2.

На рис. 16.1.2 приведен пример медианной фильтрации модельного сигнала a k , составленного из детерминированного сигнала s k в сумме со случайным сигналом q k , имеющим равномерное распределение с одиночными импульсными выбросами. Окно фильтра равно 5. Результат фильтрации – отсчеты b k .

Двумерные фильтры. Основную информацию в изображениях несут контуры объектов. При фильтрации зашумленных изображений степень сглаживания контуров объектов напрямую зависит от размеров апертуры фильтра. При малых размерах апертуры лучше сохраняются контрастные детали изображения, но в меньшей степени подавляется импульсные шумы. При больших размерах апертуры наблюдается обратная картина. Это противоречие в некоторой степени сглаживается при применении фильтров с адаптацией размеров апертуры под характер изображения. В адаптивных фильтрах большие апертуры используются в монотонных областях обрабатываемого сигнала (лучшее подавление шумов), а малые – вблизи неоднородностей, сохраняя их.

Рис. 16.1.3.

Кроме размеров окна эффективность фильтра в зависимости от характера изображения и параметров статистики шумов существенно зависит от формы маски выборки отсчетов. Примеры формы масок с минимальной апертурой приведены на рис. 16.1.3. Оптимальный выбор формы сглаживающей апертуры зависит от специфики решаемой задачи и формы объектов.

На рис. 16.1.4 приведен пример очистки зашумленного изображения медианным фильтром Черненко /2i/. Зашумление изображения по площади составляло 15%, для очистки фильтр применен последовательно 3 раза.

Рис. 16.1.4.

Достоинства медианных фильтров.

  • Простая структура фильтра как для аппаратной, так и для программной реализации.
  • Фильтр не изменяет ступенчатые и пилообразные функции.
  • Фильтр хорошо подавляет одиночные импульсные помехи и случайные шумовые выбросы отсчетов.
  • Медианный фильтр легко реализуется на два измерения с двухмерным окном любой формы (прямоугольное, крестообразное, кольцевое, круговое).

Недостатки медианных фильтров.

  • Медианная фильтрация нелинейна, так как медиана суммы двух произвольных последовательностей не равна сумме их медиан, что в ряде случаев может усложнять математический анализ сигналов.
  • Фильтр вызывает уплощение вершин треугольных функций.
  • Подавление белого и гауссового шума менее эффективно, чем у линейных фильтров. Слабая эффективность наблюдается также при фильтрации флюктуационного шума.
  • Двумерная обработка приводит к более существенному ослаблению сигнала. При увеличении размера окна происходит также размытие контуров изображений.

Недостатки метода можно уменьшить, если применять медианную фильтрацию с адаптивным изменением размера окна фильтра в зависимости от динамики сигнала и характера шумов (адаптивная медианная фильтрация). В качестве критерия размера окна можно использовать, например, величину отклонения значений соседних отсчетов относительно яркости центрального ранжированного отсчета /1i/. При уменьшении этой величины ниже определенного порога размер окна увеличивается.

Введение

Медианный фильтр - один из видов цифровых фильтров, широко используемый в цифровой обработке сигналов и изображений для уменьшения уровня шума.

Реализуется с помощью окна, состоящего из нечётного количества отсчётов. Значения отсчётов внутри окна сортируются по порядку; и среднее значение, то есть значение находящееся в середине упорядоченного списка, принимается выходным значением. На следующем шаге окно передвигается на один отсчёт вперёд и вычисления повторяются. Крайние значения массива мыслим продублированными столько раз, чтобы можно было применить окно к первому и к последнему значению.

Медианная фильтрация - обычная процедура обработки изображений. Она особенно часто используется для уменьшения шума в изображении.

Постановка задачи

Дана матрица NxN. Необходимо реализовать параллельный алгоритм медианной фильтрации этой матрицы.

Метод решения

(Примечание: для простоты был реализован фильтр 3x3)

Последовательный алгоритм:

Фильтрация проводится построчно – для первого элемента строки заполняется массив окрестности (с учетом того, что искусственно добавляются три значения-соседи слева), этот массив сортируется быстрой сортировкой, затем среднее значение записывается в выходную матрицу. Для каждого следующего элемента строки массив окрестности не заполняется заново – в него лишь добавляются новые три элемента, замещая старые три. Для того, чтобы это было возможно сделать за один проход (по массиву окрестности и новым трем элементам) введен специальный массив с «количеством жизней» элемента. Жизней может быть 1, 2 и 3. Добавляемые 3 элемента предварительно сортируются и добавление производится слиянием: во время него элементы с 1й жизнью затираются, элементы, имевшие 2 и 3 жизни получают 1 и 2 соответственно, а добавляемые элементы становятся обладателями 3х жизней. Средний элемент записывается в выходной массив. Обработка последнего элемента производится повторением итерации предпоследнего шага. На практике данный метод по сравнению с полной выборкой окрестности и ее сортировкой показывает превосходство по скорости в 3 раза.

Параллельный алгоритм:

(Примечание: размерность матрицы была ограничена значениями кратными двойке)

Т.к. в данной задаче наблюдается независимость по данным, параллелизм производится на основе деления матрицы на части (по несколько строк, а именно N/p, где p –количество процессов). Если учесть что в персональных компьютерах обычно 1, 2, 4 или 8 ядер у процессора, то деление будет производиться без остатка. После деления матрицы на части по высоте – они обрабатываются последовательным алгоритмом, но необходимо учесть, то при этом невозможно обработать граничные строки (за исключением первой и последней в матрице) – после завершения параллельных вычислений, части собираются обратно в одну матрицу, а оставшиеся строки необходимо отфильтровать отдельно.

Анализ эффективности

Время фильтрации 1го элемента строки:

(2*9+9*ln(9)*2+1)*t , где t - время выполнения одной операции.

  • (2*9 операций – заполнение массива окрестности и соответствующего массива «жизней»
  • 9*ln(9)*2 – быстрая сортировка массивов

Фильтрация последующих элементов строки:

  • 9+3 – проход по массиву окрестности с добавлением новых элементов и удалением старых
  • 18 – копирование массива окрестности и массива «жизней» из вспомогательных массивов
  • 1 – выборка и присваивание медианы выходному элементу

Итого на требующееся на фильтрацию строки время:

((2*9+9*ln(9)*2)+1+(N-1)*(9+3+18+1))*t ≈(21N+37)*t

Время на фильтрацию всей матрицы:

Tp = (α+ω/β*N^2/p)+(21N+37)*t*(N/p+2*(p-1))

  • α – латентность
  • β - пропускная способность среды передачи
  • ω - размер элемента матрицы
  • 2*(p-1) – количество строк, оставшихся неотфильтрованными при делении матрицы на части)

T1 = (21N+37)*t*N

Ускорение: Sp = (T1)/(Tp) = ((21N+37)*t*N)/((21N+37)*t*(N/p+2*(p-1))+α+ω/β*N^2/p) = βp/ (β+ω/21) ,при N→∞

Эффективность: Ep = (Sp)/p = β/(β+ω/21) ,при N→∞

Демонстрация

Ширина матрицы

Время выполнения (сек)

Сравнение теоретических оценок ускорения с практическими:

Ширина матрицы

Характеристики машины: Intеl Core i7 920 @ 2.80GHz 2.00ГБ ОЗУ

латентность: a = 0,00005 cек

пропускная способность: b = 25,6 ГБ/с

время выполнения стандартной операции: t = 0,000000004912 сек

размер элемента набора: w = 4

Работу выполнили студенты группы 8411: Муравьев Владимир и Соловьев Павел

Медианная фильтрация – метод нелинейной обработки сигналов, разработанный Тьюки. Этот метод оказывается полезным при подавлении шума на изображении. Одномерный медианный фильтр представляет собой скользящее окно, охватывающее нечетное число элементов изображения. Центральный элемент заменяется медианой всех элементов в окне. Медианой дискретной последовательности для нечетного N является тот ее элемент, для которого существуют элементов, меньших или равных ему по величине, и элементов, больших или равных ему по величине.

Пусть в окно попали элементы изображения с уровнями 80, 90, 200, 110 и 120; в этом случае центральный элемент следует заменить значением 110, которое является медианой упорядоченной последовательности 80, 90, 110, 200. Если в этом примере значение 200 является шумовым выбросом в монотонно возрастающей последовательности, то медианная фильтрация обеспечит существенное улучшение. Напротив, если значение 200 соответствует полезному импульсу сигнала (при использовании широкополосных датчиков), то обработка приведет к потере четкости воспроизводимого изображения. Таким образом, медианный фильтр в одних случаях обеспечивает подавление шума, в других вызывает нежелательное подавление сигнала.

Рассмотрим воздействие медианного и усредняющего (сглаживающего) фильтров с пятиэлементным окном на ступенчатый, пилообразный, импульсный и треугольный дискретные сигналы (рис. 4.23). Из этих диаграмм, видно, что медианный фильтр не влияет на ступенчатые или пилообразные функции, что обычно является желательным свойством. Однако этот фильтр подавляет импульсные сигналы, длительность которых

составляет менее половины ширины окна. Фильтр также вызывает уплощение вершины треугольной функции.

Возможности анализа действия медианного фильтра ограничены. Можно показать, что медиана произведения постоянной и последовательности равна:

кроме того,

Однако медиана суммы двух произвольных последовательностей и не равна сумме их медиан:

Это неравенство можно проверить на примере последовательностей 80, 90, 100, 110, 120 и 80, 90, 100, 90, 80.

Возможны различные стратегии применения медианного фильтра для подавления шумов. Одна из них рекомендует начинать с медианного фильтра, окно которого охватывает три элемента изображения. Если ослабление сигнала незначительно, окно фильтра расширяют до пяти элементов. Так поступают до тех пор, пока медианная фильтрация начинает приносить больше вреда, чем пользы.

Другая возможность состоит в осуществлении каскадной медианной фильтрации сигнала с использованием фиксированной или изменяемой ширины окна. В общем слу

чае те области, которые остаются без изменения после однократной обработки фильтром, не меняются и после повторной обработки. Области, в которых длительность импульсных сигналов составляет менее половины ширины окна, будут подвергаться изменениям после каждого цикла обработки.

Концепцию медианного фильтра легко обобщить на два измерения, применяя двумерное окно желаемой формы, например прямоугольное или близкое к круговому. Очевидно, что двумерный медианный фильтр с окном размера обеспечивает более эффективное подавление шума, чем последовательно примененные горизонтальный и вертикальный одномерные медианные фильтры с окном размера . Двумерная обработка, однако, приводит к более существенному ослаблению сигнала.