Тарифы Услуги Сим-карты

Как выбрать звуковую карту? Звуковая карта компьютера

Имеет ли смысл оснащать свой ПК дискретным звуковым адаптером, если на подавляющем большинстве системных плат есть интегрированная звуковая подсистема с многоканальным выходом? Чтобы ответить на этот вопрос, необходимо учитывать как специфику задач, для решения которых применяется компьютер, так и индивидуальные особенности его владельца.

Дитя компромиссов

Сейчас интегрированный звуковой адаптер с многоканальным выходом имеется практически на каждой системной плате. Но всегда ли это «условно бесплатное» встроенное решение позволяет в полной мере удовлетворить потребности пользователя? К сожалению, нет.

Прежде всего необходимо понимать, что интегрированная звуковая подсистема (как, впрочем, и любое сверхбюджетное решение) - это дитя множества компромиссов, рожденное под девизом «максимум функций за минимальные деньги». Ради значительного выигрыша в стоимости приходится расплачиваться качеством и функциональностью.

Начнем с того, что количество аппаратных компонентов интегрированной звуковой подсистемы сокращено до минимума. В результате радикального «хирургического вмешательства» интегрированный звуковой адаптер лишился собственного процессора. Его функции (включая обработку, коммутацию и микширование звуковых потоков) реализованы на программном уровне (как правило - в драйвере звуковой подсистемы). Из аппаратных компонентов остались лишь ЦАП и АЦП, операционные усилители с необходимой обвязкой, а также контроллер, обеспечивающий обмен данными с южным мостом чипсета системной платы. И это является принципиальным отличием интегрированного решения от дискретного звукового адаптера.

Таким образом, уже в самой концепции интегрированной звуковой подсистемы заложены принципиальные недостатки. Наиболее очевидным (но не единственным) является значительное увеличение нагрузки на центральный процессор. Разумеется, производительность процессоров даже бюджетных моделей современных ПК позволяет с легкостью решать задачи обработки звука в фоновом режиме. Однако в ситуации, когда центральный процессор загружен практически на 100% (а это может случиться при запуске игр с детальной трехмерной графикой, в процессе декодирования видео высокой четкости и т.п.), даже небольшое увеличение нагрузки может стать критичным фактором, приводящим к нежелательным последствиям. Например, к увеличению задержки звукового сигнала (вследствие чего нарушается синхронность звука и видеоряда), а в некоторых случаях - даже к «заиканиям» или кратко-временному пропаданию звука.

Еще одним существенным недостатком интегрированных решений являются весьма посредственные характеристики аналоговой части звукового тракта (в частности, отношение «сигнал/шум»). Отчасти это объясняется использованием наиболее дешевых компонентов, имеющих не самые совершенные характеристики. Однако необходимо учитывать и другой аспект: все элементы аналоговых цепей смонтированы прямо на системной плате и ничем не защищены от наводок и высокочастотных помех от расположенных в непосредственной близости компонентов и печатных проводников. И даже если отдельные компоненты (в частности, ЦАП и операционные усилители) сами по себе характеризуются относительно низким уровнем собственных шумов, то реальные показатели интегрированного звукового адаптера оказываются гораздо хуже в силу перечисленных причин.

Третий недостаток, не столь очевидный, как два вышеупомянутых, - это весьма ограниченные возможности интегрированной звуковой подсистемы по подключению внешних устройств. Дело в том, что характеристики аналоговой части звукового тракта оптимизированы для работы с мультимедийными акустическими системами, а также наушниками, микрофонами и гарнитурами бюджетного уровня. При подключении устройств более высокого класса (например, Hi-Fi-усилителя или высоко-омных наушников) могут возникнуть определенные проблемы.

Дело в том, что аналоговый тракт, обеспечивающий усиление сигнала линейного выхода фронтальной стереопары (и по совмес-тительству наушников) рассчитан на работу главным образом с маломощными моделями, имеющими импеданс порядка 16-32 Ом. При подключении высокоомных наушников (с импедансом 100 Ом и более) нередко просто не хватает запаса мощности для обеспечения приемлемого уровня громкости. Как следствие, возникают заметные искажения АЧХ. Конечно, подобный недостаток присущ и многим дискретным звуковым адаптерам начального уровня. Однако в большинстве современных моделей при подключении наушников задействуется отдельный усилитель мощности, а в некоторых устройствах даже предусмотрена возможность выбора значения импеданса для соответствующей коррекции.

Не лучше обстоит дело и с подключением микрофонов. Микрофонный усилитель интегрированной звуковой подсистемы рассчитан исключительно на работу с мультимедийными микрофонами и гарнитурами. Увы, реализовать потенциал даже недорогих динамических микрофонов полу-профессионального уровня (не говоря уже о моделях более высокого уровня) интегрированная звуковая подсистема не в состоянии.

Разумеется, всё вышеизложенное отнюдь не означает, что интегрированные решения никуда не годятся. Есть немало задач, для выполнения которых большего и не требуется, - например воспроизведение программ интернет-радиостанций, приложения IP-телефонии и видеоконференц-связи, передача голосовых сообщений в многопользовательских играх и др. Однако важно понимать, что круг задач, которые интегрированная звуковая подсистема способна выполнять с приемлемым качеством, небезграничен. Как только владелец ПК выходит за эти рамки, он сразу же сталкивается с различными проблемами.

Особые задачи

Какие же задачи требуют применения более совершенной звуковой подсистемы? Наиболее очевидный пример - ПК, используемый для работы с музыкальными проектами (Desktop Music Production, DMP). При этом непринципиально, как используется компьютер - лишь в качестве цифрового магнитофона или выполняет функции полноценной виртуальной студии.

Те, кто хотя бы раз сталкивался со специализированным ПО для многодорожечной звукозаписи, по собственному опыту знают, что одним из необходимых условий для работы таких приложений является наличие ASIO-драйверов звуковых устройств. Из­за того что многие функции интегрированной звуковой подсистемы реализованы на программном уровне, уложиться в приемлемые для многоканальной звукозаписи величины задержки сигнала практически невозможно.

Внешний звуковой адаптер M-Audio FastTrack -
одна из популярных моделей сегмента DMP

Конечно, это обусловлено тем, что мультимедийные приложения (с расчетом на потребности которых, собственно говоря, и проектируются интегрированные решения) не предъявляют столь строгих требований ко времени задержки. Например, даже при просмотре видео, отображаемого с частотой 30 кадров в секунду, отставание звукового сопровождения на 30-40 мс от картинки вряд ли будет замечено зрителем. Однако для нормальной работы с приложениями многоканальной звукозаписи необходимо обеспечить задержку сигнала не более 2 мс.

Если в процессе работы над музыкальным проектом потребуется записать вокал или какие­либо инструменты с микрофона, возникнут дополнительные трудности, обусловленные низким качеством микрофонного усилителя интегрированной звуковой подсистемы. Как показывает практика, проблемы возникают даже при оцифровке записей с аналоговых устройств (магнитофонов, проигрывателей грампластинок и т.д.): качество получаемой фонограммы оставляет желать лучшего.

Звуковые карты, ориентированные на сегмент DMP, обеспечивают гораздо более высокую точность преобразования сигнала, а также значительно более низкий уровень шумов и искажений. Достигается это как за счет применения более качественных компонентов (операционных усилителей, ЦАП, АЦП и т.д.), так и благодаря реализации ряда эффективных мер для защиты звукового сигнала от помех и наводок (экранирования аналоговых цепей, установки дополнительных фильтров и стабилизаторов шины питания и т.д.). Кроме того, такие модели обычно оборудованы качественными микрофонными усилителями и универсальными аналоговыми входами с возможностью симметричного подключения и подачи фантомного питания.

Еще один аспект - наличие интерфейса MIDI, который может потребоваться для взаимодействия ПК с внешним музыкальным оборудованием (синтезаторами, сэмплерами, модулями обработки и т.д.). Если ранее интерфейсом MIDI были оборудованы даже недорогие мультимедийные звуковые карты, то теперь эта опция доступна лишь в специализированных моделях.

Даже в условиях заметного снижения спроса на дискретные звуковые адаптеры в течение нескольких последних лет было выпущено немало новых моделей (в основном внешних) для сегмента DMP. И это неслучайно. Такие устройства позволяют при вполне приемлемых (даже для непрофессиональных домашних пользователей) затратах значительно повысить качество получаемых записей и к тому же обеспечивают возможность работы с широким спектром источников сигнала (в том числе с микрофонами разных типов, электромузыкальными инструментами и т.д.), подключаемых как по обычной, так и по симметричной линии. Кроме того, внешние звуковые карты этого класса можно подключать к ноутбукам, что позволяет получать качественную запись даже в мобильных условиях.

Довольно часто дискретные звуковые адаптеры используются в игровых ПК. Такое решение позволяет не только повысить качество воспроизведения звукового сопровождения (за счет использования более совершенных компонентов), но и снизить нагрузку на центральный процессор. Не менее важно и то, что только дискретные звуковые адаптеры позволяют в полной мере реализовать потенциал современных игр, поддерживающих новейшие API окружающего звука для максимально реалистичной имитации пространственных эффектов.

Мультимедийная звуковая карта Asus Xonar Essence STX

Необходимо отметить, что время универсальных звуковых карт прошло. Сейчас рынок дискретных звуковых адаптеров четко сегментирован. В частности, можно выделить сегмент моделей для звукозаписи и работы над музыкальными проектами (DMP), а также сегмент мультимедийных звуковых карт для игровых ПК и HTPC. По вполне понятным причинам модели, ориентированные на разные сегменты рынка, имеют существенные различия - это касается и конструкции аппаратной части, и набора функциональных возможностей, и особенностей программных компонентов. Так, для мультимедийных звуковых карт важное значение имеют следующие факторы: наличие многоканального аналогового выхода (для подсоединения активных АС) и цифровых выходов (S/PDIF, HDMI) для подключения к ресиверам и системам домашнего кинотеатра, функция декодирования многоканальных цифровых фонограмм (Dolby Digital, Dolby Digital EX, Dolby TrueHD, DTS и пр.), а также поддержка современных API окружающего звука.

Не картой единой

Установка дискретного звукового адаптера является необходимым, но далеко не всегда достаточным шагом на пути к более качественному звуку. Данная мера будет эффективной лишь при соблюдении как минимум еще двух условий.

Первым является качество исходной фонограммы (это может быть воспроизводимый медиапроигрывателем медиафайл или звуковой поток, программный синтезатор, игровое приложение и т.д.). Вполне понятно, что невозможно получить «кристально чистый звук» на выходе даже самой совершенной звуковой системы при прослушивании интернет-радио или сжатых файлов с битрейтом 128 Кбит/с.

Второе условие - соответствие остальных компонентов звукового тракта (в простейшем случае - активной акустической системы или наушников) уровню применяемого звукового адаптера. Поскольку все компоненты звукового тракта соединены последовательно, то его возможности ограничиваются характеристиками самого худшего из них. Естественно, что дешевая «компьютерная» АС с крохотными широкополосными динамиками, заключенными в пластиковый корпус толщиной с яичную скорлупу, просто не позволит услышать (и тем более оценить) разницу между интегрированным решением и дорогим звуковым адаптером.

Однако далеко не всегда дело ограничивается заменой акустической системы. Чем выше поднимается планка требований к качеству звучания, тем шире становится круг факторов, которые необходимо принимать в расчет. На восприятие звука оказывают влияние акустические особенности помещения, шум от работающего системного блока и т.д. Как следствие, на повестке дня появляются вопросы, о которых пользователь раньше и не задумывался: снижение создаваемого компьютером шума, акустическая обработка помещения, подбор специальной мебели и т.д.

Таким образом, улучшение звучания следует рассматривать как комплексную проблему, ключом к решению которой является построение максимально сбалансированной системы в рамках отведенного на эти цели бюджета.

Как оценить качество

Есть и другая проблема, с которой приходится сталкиваться в процессе поиска оптимального решения для улучшения звуковой подсистемы ПК. Дело в том, что методов, позволяющих однозначно оценить качество звука, выразив его в неких абсолютных единицах, попросту не существует. Конечно, можно измерять такие характеристики звукового тракта, как частотный диапазон, коэффициент нелинейных искажений, отношение «сигнал/шум» и т.д. Однако, как показывает практика, сами по себе числовые значения этих параметров не способны дать полную информацию о возможностях звукового тракта. Более того: сравнение двух звуковых устройств (акустических систем, усилителей и т.п.) исключительно путем сопоставления заявленных производителем характеристик способно скорее ввести в заблуждение, нежели дать представление о его реальном звучании.

Здесь уместно упомянуть об одном из альтернативных методов - сравнении по контрасту, который был предложен в середине 1990-х годов главой компании Audio Note Питером Квортрупом (Peter Qvortrup). Несмотря на то что позиция Квортрупа нередко подвергается критике - как со стороны так называемых ценителей звука (аудиофилов), так и производителей аудиоаппаратуры, - в предложенном им подходе, несомненно, есть рациональное зерно. Кроме того, метод сравнения по контрасту имеет как минимум два неоспоримых достоинства. Во­первых, он доступен всем желающим, поскольку для получения результата не нужна дорогостоящая измерительная аппаратура и специальное «заглушенное» помещение. Во­вторых, данный метод позволяет получить персонифицированный результат - то есть найти оптимальное сочетание компонентов звукового тракта именно с точки зрения того, кто занимается прослушиванием.

Заключение

Что ж, пора вернуться к вопросу, вынесенному в заголовок этой статьи. Нет смысла обсуждать, имеют ли дискретные звуковые адаптеры какие­либо преимущества перед интегрированными решениями. Не сомневайтесь: даже модели стоимостью порядка 1000 руб. (не говоря уже о более дорогих) способны обеспечить безусловное превосходство как по качеству звука, так и по набору функциональных возможностей. Так что, по большому счету, нужно лишь максимально честно ответить на два вопроса: во-первых, способны ли вы лично услышать эту разницу и, во-вторых, считаете ли вы стоимость выбранной звуковой карты оправданной платой за полученные преимущества. Если оба ответа будут положительными, значит дискретный звуковой адаптер вам действительно нужен.

Всякому человеку для работы нужен инструмент. Так уж получилось, что разумным человек начал называться именно с момента применения инструмента для какого-либо вида деятельности (формулировка хромает, но в целом это так). Собственно, любой музыкант, будучи человеком разумным, должен уметь хотя бы в какой-нибудь степени владеть музыкальным инструментом. Однако в рамках данной статьи речь пойдёт не о музыкальном инструменте в привычном понимании (гитара, фортепиано, треугольник…), а об инструменте, который в дальнейшем необходим для обработки звукового сигнала. Речь пойдёт об звуковом интерфейсе.


- Блажко Сергей Владимирович , мастер техники и технологии в направлении информатика и вычислительная техника.

Теоретическая основа

Оговоримся сразу, звуковой интерфейс, аудио интерфейс, звуковая карта – в рамках изложения являются контекстуальными синонимами. В общем, звуковая карта – это некое подмножество звукового интерфейса. С точки зрения системного анализа, интерфейс – это нечто , предназначенное для взаимодействия двух и более систем. В нашем случае, системы могут быть примерно такими:

  1. звукозаписывающее устройство (микрофон) – система обработки (компьютер);
  2. система обработки (компьютер) – звуковоспроизводящее устройство (колонки, наушники);
  3. гибриды 1 и 2.

Формально, всё что необходимо простому человеку от звукового интерфейса – это снять данные с устройства записи и отдать их компьютеру или наоборот, забрать данные из компьютера, отправив их на устройство воспроизведения. Во время прохождения сигнала через звуковой интерфейс производится специальное преобразование сигнала для того, чтобы принимающая сторона смогла в дальнейшем этот сигнал обработать. Устройство воспроизведения (конечное) так или иначе воспроизводит аналоговый или синусовый сигнал, который выражается в виде звуковой или упругой волны. Современный компьютер работает с цифровой информацией, то есть информацией, которая закодирована в виде последовательности нулей и единиц (говоря более точным языком, в виде сигналов дискретных полос аналоговых уровней). Таким образом, на звуковой интерфейс накладывается обязательство по преобразованию аналогового сигнала в цифровой и/или наоборот, что собственно и является ядром звукового интерфейса: цифро-аналоговый и аналогово-цифровой преобразователь (ЦАП и АЦП или DAC и ADC соответственно), а также обвязка в виде аппаратного кодека, всевозможных фильтров и пр.
Современные ПК, ноутбуки, планшеты, смартфоны и пр., как правило, уже имеют встроенную звуковую карту, что позволяет записывать и воспроизводить звуки, при наличии устройств записи и воспроизведения.

Тут-то и возникает один из самых часто задаваемых вопросов:

можно ли использовать встроенную звуковую карту для звукозаписи и/или обработки звука?

Ответ на этот вопрос весьма неоднозначен.

Как работает звуковая карта

Разберемся, что же происходит с сигналом, который проходит через звуковую карту. Для начала, попробуем понять, как же цифровой сигнал преобразуется в аналоговый. Как сказано ранее, для подобного рода преобразования используется ЦАП. Не будем вдаваться в дебри аппаратной начинки, рассматривая различные технологии и элементную базу, просто обозначим «на пальцах», что же происходит в «железе».

Итак, у нас имеется некая цифровая последовательность, которая представляет собой звуковой сигнал для вывода на устройство.

111111000011001 001100101010100 1111110011001010 00000110100001 011101100110110001

0000000100011 00010101111100101 00010010110011101 1111111101110011 11001110010010

Здесь цветами помечены закодированные маленькие кусочки звука. Одна секунда звука может быть закодирована различным количеством таких кусочков, число этих кусочков определяется частотой дискретизации, то есть, если частота дискретизации составляет 44.1 кГц – то одна секунда звука будет разделена на 44100 таких кусочков. Количество нулей и единиц в одном кусочке определяется глубиной дискретизации или квантованием, или, попросту, разрядностью.

Теперь, чтобы представить, как работает ЦАП, вспомним школьный курс геометрии. Представим, что время – это ось X, уровень – это Y. На оси Х отмечаем количество отрезков, которое будет соответствовать частоте дискретизации, на оси У – 2 n отрезков которое будет обозначать количество уровней дискретизации, после чего, постепенно отмечаем точки, которым будут соответствовать конкретные звуковые уровни.

Стоит отметить, что реально, кодирование по указанному выше принципу будет иметь вид ломаной (оранжевый график), однако во время преобразования применяется т.н. аппроксимация к синусоиде, или попросту приближение сигнала к виду синусоиды, что приведет к сглаживанию уровней (голубой график).

Примерно так будет выглядеть аналоговый сигнал, который получается в результате декодирования цифрового. Стоит отметить, что аналогово-цифровое преобразование производится с точностью до наоборот: каждые 1/частота_дискретизации секунд снимается уровень сигнала и кодируется исходя их глубины дискретизации.

Итак, как работают ЦАП и АЦП разобрались (более-менее), теперь стоит рассмотреть какие параметры влияют на конечный сигнал.

Основные параметры звуковой карты

В ходе рассмотрения работы преобразователей мы познакомились с двумя основными параметрами, это частота и глубина дискретизации, рассмотрим их подробнее.
Частота дискретизации – это, грубо, количество временных отрезков на которые делится 1 секунда звука. Почему же для звукачей так важно иметь звуковую карту, которая способна работать на частоте выше чем 40 кГц. Это связано с т.н. теоремой Котельникова (да-да, опять математика).Если тривиально, то, согласно этой теореме, при идеальных условиях, аналоговый сигнал может быть восстановлен из дискретного (цифрового) сколь угодно точно, если частота дискретизации больше чем 2 частотных диапазона этого самого аналогового сигнала. То есть, если мы работаем со звуком, который слышит человек (~20 Гц – 20кГц) то частота дискретизации будет (20 000 – 20)х2 ~ 40 000 Гц, отсюда и де-факто стандарт 44.1 кГц, это частота дискретизации чтобы наиболее точно закодировать сигнал плюс еще чуть-чуть (это, конечно же, утрированно, поскольку этот стандарт задан компанией Sony и причины гораздо более прозаичны). Однако, как было сказано ранее, это в идеальных условиях. Под идеальными условиями понимается следующее: сигнал должен быть бесконечно протяжённым по времени и не иметь сингулярностей в виде нуля спектральной мощности или пиковых всплесков большой амплитуды. Само собой разумеется, что типичный звуковой аналоговый сигнал не подходит под идеальные условия, ввиду того, что этот сигнал конечен по времени и имеет всплески и уходы в «ноль» (грубо говоря, имеет временные разрывы).


Глубина дискретизации или разрядность – это количество степеней числа 2 определяющее на сколько интервалов будет делиться амплитуда сигнала. Человек, ввиду несовершенства своего звукового аппарата, как правило, ощущает комфорт в восприятии при разрядности сигнала не менее 10 бит, то есть 1024 уровней, дальнейшее увеличение разрядности человек вряд ли как-то ощутит, чего нельзя сказать о технике.

Как видно из вышесказанного, при преобразовании сигнала звуковая карта идёт на определённые «уступки».

Всё это приводит к тому, что результирующий сигнал не будет в точности повторять исходный.

Проблемы при выборе звуковой карты

Итак, инженер по звуку или музыкант (выберите своё) купил компьютер с новенькой ОС, крутым процессором, большим объёмом оперативной памяти со встроенной в материнскую плату звуковой картой которая распиарена производителем, имеет выходы для обеспечения 5.1 звуковой системы, ЦАП-АЦП имеет частоту дискретизации 48 кГц (это уже не 44.1 кГц!), 24 битную разрядность и прочее-прочее… На радостях инженер устанавливает ПО для звукозаписи и обнаруживает, что данная звуковая карта не может одновременно «снимать» звук, накладывать эффекты и тут же мгновенно воспроизводить. Звук пусть и получается весьма качественным, однако между моментом, когда инструмент воспроизведет ноту, компьютер обработает сигнал и воспроизведет пройдет определенное время или, говоря по-простому возникает лаг. Странно, ведь консультант из эльдорадо так хвалил этот компьютер, распинался про звуковую карточку и вообще… а тут… эх. С горя, инженер, идёт обратно в магазин, отдаёт купленный компьютер, доплачивает еще баснословную сумму, чтобы взамен возвращённого купить компьютер с ещё более мощным процессором, бо́льшим объёмом оперативной памяти, звуковой карточкой на 96 (!!!) кГц и 24 бит и… в итоге то же самое.

На самом деле, типовые компьютеры с типовыми встроенными звуковыми картами и стоковыми драйверами к ним, изначально не предназначены для того, чтобы в режиме, приближённом к реальному времени обрабатывать звук и воспроизводить его, то есть не предназначены для VST-RTAS обработки. Дело тут нисколько не в «базовой» начинке в виде процессор-оперативная память-жёсткий диск, каждый из этих компонентов способен на такой режим работы, проблема в том, что данная звуковая карта, порой, просто не «умеет» работать в режиме реального времени.
При работе любого компьютерного устройства ввиду разности в скоростях работы возникают т.н. задержки. Это выражается в ожидании процессором набора данных, которые необходимы для обработки. Помимо этого, при разработке как операционной системы, так и драйверов, а также прикладного ПО, программисты прибегают к т.н. созданию т.н. программных абстракций, это когда каждый вышестоящий слой программного кода «скрывает» всю сложность нижестоящего уровня, предоставляя на своём уровне лишь простейшие интерфейсы. Иногда таких уровней абстракций набирается десятки тысяч. Такой подход упрощает процесс разработки, но увеличивает время прохождения данных от источника к получателю и наоборот.

На самом деле, лаги могут возникать не только у встроенных звуковых карт, но и тех, которые подключаются через USB, WireFire (земля ему пухом), PCI и пр.

Чтобы избежать подобного рода лагов, разработчики используют обходные пути, которые позволяют избавиться от ненужных абстракций и программных преобразований. Одним из таких решений является всеми любимый ASIO для ОС Widows, JACK (не путать с разъёмом) – для Linux, CoreAudio и AudioUnit – для OSX. Стоит отметить, что у OSX и Linux всё отлично и без «костылей» как у Windows. Тем не менее, не каждое устройство способно работать с необходимой скоростью и требуемой точностью.
Допустим, что наш инженер/музыкант относится к разряду Кулибиных и смог настроить JACK/CoreAudio или заставить работать свою звуковую карту с ASIO-драйвером фирмы «народный промысел».
В лучшем случае, таким образом наш мастер уменьшил лаг с пол секунды до почти приемлемых 100 мсек. Проблема последних миллисекунд кроется ко всему прочему и во внутренней передаче сигнала. При прохождении сигнала от источника через интерфейс USB или PCI к центральному процессору, сигнал курирует южный мост, который собственно и занимается тем, что работает с большей частью периферии и непосредственно подчиняется центральному процессору. Тем не менее, центральный процессор – персонаж важный и занятой, поэтому у него не всегда найдётся время вот-прямо-сейчас обрабатывать звук, поэтому нашему мастеру придётся или смириться с тем, что эти 100 мсек могут «скакать» на ± 50 мсек если не больше. Решением данной проблемы может быть покупка звуковой карты с собственной микросхемой для обработки данных или DSP (Digital Signal Processor).

Как правило, большая часть всех «внешних» звуковых карт (т.н. игровых звуковых карт) имеет подобного рода сопроцессор, однако он весьма негибок для работы и предназначен по сути для «улучшайзинга» воспроизводимого звука. Звуковые карты, которые изначально предназначены для обработки звука имеют более адекватный сопроцессор, или, в граничном варианте, такой сопроцессор продаётся отдельно. Преимуществом использования сопроцессора является тот факт, что в случае его применения, специальное программное обеспечение будет обрабатывать сигнал, практически не используя центральный процессор. Недостатком такого подхода может служить цена, а также «заточка» оборудования для работы со специальным программным обеспечением.
Отдельно, хотелось бы отметить интерфейс сопряжения звуковой карты и компьютера. Требования тут достаточно приемлемые: для достаточно высокой скорости обработки будет достаточно таких интерфейсов как USB 2.0, PCI. Звуковой сигнал на самом деле не является сколь-либо большим объёмом данных, как, например, видеосигнал, поэтому требования минимальные. Однако добавлю ложку дёгтя: протокол USB не гарантирует 100% доставку информации от отправителя получателю.
С первой проблемой определились – большие задержки при использовании стандартных драйверов или большая цена за использование звуковой карты с адекватной задержкой.
Ранее мы определились, что добиться идеальной передачи аналогового сигнала не такая уж и простая задача. В добавок к этому, стоит упомянуть шумы и погрешности, которые возникают в процессе снятия/преобразования/передачи сигнала как данных, поскольку, если вспомнить физику, любой измерительный прибор обладает своей погрешностью, а любой алгоритм своей точностью.

Данная шутка очень показательна ввиду того, что на работу звуковой карты также влияет излучение расположенной рядом аппаратуры, вплоть до ультразвука, издаваемого центральным процессором во время работы. Ко всему прочему стоит добавить искажения в характеристику записываемого/воспроизводимого сигнала которые зависят от конечного устройства (микрофона, звукоснимателя, динамиков, наушников и пр.). Зачастую для маркетинга производители различных звуковых устройств сознательно увеличивают возможную частоту снимаемого/воспроизводимого сигнала, от чего у человека, который учил биологию и физику в школе возникает вполне осознанный вопрос «а зачем, если человек не слышит вне диапазона 20-20кГц?». Как говорится, в каждой правде есть доля правды. Действительно, очень многие производители лишь на бумаге обозначают более качественные характеристики у своего оборудования. Тем не менее, если всё-же производитель действительно сделал устройство, которое способно снять/воспроизвести сигнал в чуть большем диапазоне частот, о покупке данного оборудования стоит хоть ненадолго, но задуматься.
Дело вот в чем. Все прекрасно помнят, что такое АЧХ, красивые графики с неровностями и прочим. При снятии звука (рассмотрим только этот вариант), микрофон соответствующим образом его искажает, что характеризуется неровностями его АЧ-характеристики в пределах того диапазона, который он «слышит».

Таким образом, имея микрофон, который способен снять сигнал в стандартных пределах (20-20к) мы получим искажения лишь на этом диапазоне. Как правило, искажения подчиняются нормальному распределению (вспоминаем теорию вероятностей), с небольшими вкраплениями случайных погрешностей. Что будет, если мы при прочих равных условиях расширим диапазон снимаемого сигнала? Если следовать логике – то «шапка» (график плотности вероятности) растянется в сторону увеличения диапазона, тем самым сместив искажения за пределы интересующего нас слышимого диапазона.

На практике, всё зависит от разработчика оборудования и следует очень тщательно это проверять. Тем не менее, факт остаётся фактом.

Если вернуться к нашему железу, то, к сожалению, не всё так радужно. Аналогично заявлениям разработчиков микрофонов и динамиков, производитель звуковых карт также часто привирают относительно режимов работы своих устройств. Иногда для конкретной звуковой карты можно видеть, что она работает в режиме 96к/24бит, хотя на деле это всё те же 48к/16бит. Тут дело может обстоять в том, что в пределах драйвера звук действительно может быть закодирован с указанными параметрами, хотя реально звуковая карта (ЦАП-АЦП) не могут выдать необходимые характеристики и просто отбрасывают старшие разряды у глубины дискретизации и пропуская часть частот у частоты дискретизации. Этим в своё время очень часто грешили простейшие встроенные звуковые карты. И хотя, как мы выяснили для человеческого слуха вполне достаточно таких параметров как 40к/10бит, для обработки звука этого будет маловато из-за вносимых искажений в процессе обработки звука. То есть, если инженер или музыкант снял звук при помощи среднего микрофона или звуковой карты, то в дальнейшем с использованием даже лучших программ и железа будет очень проблематично вычистить весь шум и погрешности, которые были внесены на этапе записи. К счастью производители полупрофессионального или профессионального звукового оборудования подобным не грешат.

Последняя проблема заключается в том, что встроенные звуковые карты попросту не имеют достаточного числа необходимых разъёмов для подключения необходимых устройств. По факту, даже джентельменский набор в виде наушников, и пары мониторов будет попросту некуда подключить, а уж о таких изысках как выходы с фантомным питанием и отдельными регуляторами для каждого из каналов и вовсе придётся забыть.

Итого : первое что нужно определить для дальнейшего выбора типа звуковой карты – это то, чем мастер будет заниматься. Вполне вероятно, что для черновой обработки, когда нет нужды записывать в высоком качестве или для имитации «ушей» конечного слушателя может быть достаточно встроенной или внешней, но относительно дешевой звуковой карты. Также это может пригодиться для начинающих музыкантов, если им не лень разбираться с уменьшением задержек при real-time обработке. Для мастеров, которые занимаются исключительно офлайн обработкой, следует не заморачиваться в уменьшении задержек и акцентировать внимание на устройства, которые будут реально выдавать положенные им герцы и биты. Для этого не обязательно покупать сверх дорогую звуковую карту, в самом дешевом варианте может подойти более-менее адекватная «игровая» звуковая. НО, акцентирую внимание на том, что драйвера для таких звуковых карт пытаются улучшить звучание определенным образом, что недопустимо, поскольку для обработки необходимо получить звук как можно более чистый и сбалансированный с минимальным вкраплением драйверного «улучшайзинга».

Однако, если Вам, как мастеру, необходимо устройство, которое будет отвечать требованиям по качеству записываемого-воспроизводимого сигнала, а также по скорости обработки этого сигнала – тут придётся или доплатить, получив аппарат надлежащего качества или выбрать 2 чем можно пожертвовать: высокое качество, низкая цена, высокая скорость.

Прим. Ред.: Если вы музыкант, и не хотите разбираться во всех сложностях современной обработки — заказывайте сведение и мастеринг в нашей студии, и мы сделаем все необходимое, чтобы Вы получили качественный материал! ->

Главная задача любой звуковой карты - перевести цифровые данные в простой который можно передать на наушники или колонки. Во всех материнских платах, выпускаемых сейчас, уже встроены, и необходимое качество звука они обеспечивают.

Но у некоторых звуковых карт не хватает функциональности для работы всех программ, например, они не умеют одновременно воспроизводить и записывать звук. Поэтому, чтобы расширить возможности воспроизведения и используется отдельная звуковая карта, например звуковая карта USB, причём за небольшие деньги качество звука можно улучшить значительно.

Ещё один плюс такой звуковой карты: она способна немного разгрузить процессор компьютера. Дело в том, что штатная карта многие функции по обработке звука перекладывает на процессор, кроме этого, ещё и занимая определённую часть памяти. Так что дополнительная звуковая карта USB - в любом случае приобретение рациональное.

По способу подключения можно выделить три группы карт:

  1. Через разъём PCI или PCI Express. Это подключение через разъёмы, расположенные непосредственно на материнской плате. Такие карты несколько дешевле аналогичных внешних. Но по качеству и функциональности они им обычно проигрывают.
  2. Внешняя звуковая карта USB - подключается через USB-порт, подходит для любого ноутбука или универсальность - это одно из ее достоинств. Современная звуковая карта USB может при записи сразу же выдавать звук на выход,
  3. Внешние FireWire карты - подключаются через FireWire. Это самые качественные профессиональные звуковые карты, они устойчивы к помехам. Для их подключения к ноутбуку нужен PCMCI - FireWire переходник.

Покупая звуковую карту, обратите внимание на количество имеющихся у нее входов и выходов. Чем их больше - тем лучше. Обязательно должны быть MIDI-вход и MIDI-выход. Они предназначаются для подключения MIDI-клавиатуры. Подключив её, вы получите хороший синтезатор. Хорошо, если есть оптические выходы SPDIF. Оптический интерфейс SPDIF обеспечивает самое качественное, чистое звучание. Для записи музыки с инструментов также нужно соответствующее количество входов/выходов, чтобы подключить необходимое количество устройств, хотя можно записать их по очереди.

Также следует посмотреть количество микрофонных и Звуковая карта может дополнятся специальными входами для синхронизации при многоканальной записи и дополнительными мониторными выходами.

Сегодня разнообразие предложений рынка позволяет без труда найти карту нужного качества и цены. Выложив за покупку скромную сумму, можно значительно улучшить качество звука у компьютера, расширить функциональные возможности. Это может обеспечить даже простая звуковая карта USB.

Качественная карта может стать основой для домашней звуковой студии, она комплектуется собственным программным обеспечением для удобства в работе, но стоит эта карточка очень недёшево. Такие устройства используют профессионалы в своей работе, простому обывателю достаточно дополнительной внутренней карты, чтобы получить качественный объёмный звук для сопровождения игр и просмотра фильмов.

Имеет ли смысл оснащать свой ПК дискретным звуковым адаптером, если на подавляющем большинстве системных плат есть интегрированная звуковая подсистема с многоканальным выходом? Чтобы ответить на этот вопрос, необходимо учитывать как специфику задач, для решения которых применяется компьютер, так и индивидуальные особенности его владельца.

Дитя компромиссов

Сейчас интегрированный звуковой адаптер с многоканальным выходом имеется практически на каждой системной плате. Но всегда ли это «условно бесплатное» встроенное решение позволяет в полной мере удовлетворить потребности пользователя? К сожалению, нет.

Прежде всего необходимо понимать, что интегрированная звуковая подсистема (как, впрочем, и любое сверхбюджетное решение) - это дитя множества компромиссов, рожденное под девизом «максимум функций за минимальные деньги». Ради значительного выигрыша в стоимости приходится расплачиваться качеством и функциональностью.

Начнем с того, что количество аппаратных компонентов интегрированной звуковой подсистемы сокращено до минимума. В результате радикального «хирургического вмешательства» интегрированный звуковой адаптер лишился собственного процессора. Его функции (включая обработку, коммутацию и микширование звуковых потоков) реализованы на программном уровне (как правило - в драйвере звуковой подсистемы). Из аппаратных компонентов остались лишь ЦАП и АЦП, операционные усилители с необходимой обвязкой, а также контроллер, обеспечивающий обмен данными с южным мостом чипсета системной платы. И это является принципиальным отличием интегрированного решения от дискретного звукового адаптера.

Таким образом, уже в самой концепции интегрированной звуковой подсистемы заложены принципиальные недостатки. Наиболее очевидным (но не единственным) является значительное увеличение нагрузки на центральный процессор. Разумеется, производительность процессоров даже бюджетных моделей современных ПК позволяет с легкостью решать задачи обработки звука в фоновом режиме. Однако в ситуации, когда центральный процессор загружен практически на 100% (а это может случиться при запуске игр с детальной трехмерной графикой, в процессе декодирования видео высокой четкости и т.п.), даже небольшое увеличение нагрузки может стать критичным фактором, приводящим к нежелательным последствиям. Например, к увеличению задержки звукового сигнала (вследствие чего нарушается синхронность звука и видеоряда), а в некоторых случаях - даже к «заиканиям» или кратко-временному пропаданию звука.

Еще одним существенным недостатком интегрированных решений являются весьма посредственные характеристики аналоговой части звукового тракта (в частности, отношение «сигнал/шум»). Отчасти это объясняется использованием наиболее дешевых компонентов, имеющих не самые совершенные характеристики. Однако необходимо учитывать и другой аспект: все элементы аналоговых цепей смонтированы прямо на системной плате и ничем не защищены от наводок и высокочастотных помех от расположенных в непосредственной близости компонентов и печатных проводников. И даже если отдельные компоненты (в частности, ЦАП и операционные усилители) сами по себе характеризуются относительно низким уровнем собственных шумов, то реальные показатели интегрированного звукового адаптера оказываются гораздо хуже в силу перечисленных причин.

Третий недостаток, не столь очевидный, как два вышеупомянутых, - это весьма ограниченные возможности интегрированной звуковой подсистемы по подключению внешних устройств. Дело в том, что характеристики аналоговой части звукового тракта оптимизированы для работы с мультимедийными акустическими системами, а также наушниками, микрофонами и гарнитурами бюджетного уровня. При подключении устройств более высокого класса (например, Hi-Fi-усилителя или высоко-омных наушников) могут возникнуть определенные проблемы.

Дело в том, что аналоговый тракт, обеспечивающий усиление сигнала линейного выхода фронтальной стереопары (и по совмес-тительству наушников) рассчитан на работу главным образом с маломощными моделями, имеющими импеданс порядка 16-32 Ом. При подключении высокоомных наушников (с импедансом 100 Ом и более) нередко просто не хватает запаса мощности для обеспечения приемлемого уровня громкости. Как следствие, возникают заметные искажения АЧХ. Конечно, подобный недостаток присущ и многим дискретным звуковым адаптерам начального уровня. Однако в большинстве современных моделей при подключении наушников задействуется отдельный усилитель мощности, а в некоторых устройствах даже предусмотрена возможность выбора значения импеданса для соответствующей коррекции.

Не лучше обстоит дело и с подключением микрофонов. Микрофонный усилитель интегрированной звуковой подсистемы рассчитан исключительно на работу с мультимедийными микрофонами и гарнитурами. Увы, реализовать потенциал даже недорогих динамических микрофонов полу-профессионального уровня (не говоря уже о моделях более высокого уровня) интегрированная звуковая подсистема не в состоянии.

Разумеется, всё вышеизложенное отнюдь не означает, что интегрированные решения никуда не годятся. Есть немало задач, для выполнения которых большего и не требуется, - например воспроизведение программ интернет-радиостанций, приложения IP-телефонии и видеоконференц-связи, передача голосовых сообщений в многопользовательских играх и др. Однако важно понимать, что круг задач, которые интегрированная звуковая подсистема способна выполнять с приемлемым качеством, небезграничен. Как только владелец ПК выходит за эти рамки, он сразу же сталкивается с различными проблемами.

Особые задачи

Какие же задачи требуют применения более совершенной звуковой подсистемы? Наиболее очевидный пример - ПК, используемый для работы с музыкальными проектами (Desktop Music Production, DMP). При этом непринципиально, как используется компьютер - лишь в качестве цифрового магнитофона или выполняет функции полноценной виртуальной студии.

Те, кто хотя бы раз сталкивался со специализированным ПО для многодорожечной звукозаписи, по собственному опыту знают, что одним из необходимых условий для работы таких приложений является наличие ASIO-драйверов звуковых устройств. Из­за того что многие функции интегрированной звуковой подсистемы реализованы на программном уровне, уложиться в приемлемые для многоканальной звукозаписи величины задержки сигнала практически невозможно.

Внешний звуковой адаптер M-Audio FastTrack -
одна из популярных моделей сегмента DMP

Конечно, это обусловлено тем, что мультимедийные приложения (с расчетом на потребности которых, собственно говоря, и проектируются интегрированные решения) не предъявляют столь строгих требований ко времени задержки. Например, даже при просмотре видео, отображаемого с частотой 30 кадров в секунду, отставание звукового сопровождения на 30-40 мс от картинки вряд ли будет замечено зрителем. Однако для нормальной работы с приложениями многоканальной звукозаписи необходимо обеспечить задержку сигнала не более 2 мс.

Если в процессе работы над музыкальным проектом потребуется записать вокал или какие­либо инструменты с микрофона, возникнут дополнительные трудности, обусловленные низким качеством микрофонного усилителя интегрированной звуковой подсистемы. Как показывает практика, проблемы возникают даже при оцифровке записей с аналоговых устройств (магнитофонов, проигрывателей грампластинок и т.д.): качество получаемой фонограммы оставляет желать лучшего.

Звуковые карты, ориентированные на сегмент DMP, обеспечивают гораздо более высокую точность преобразования сигнала, а также значительно более низкий уровень шумов и искажений. Достигается это как за счет применения более качественных компонентов (операционных усилителей, ЦАП, АЦП и т.д.), так и благодаря реализации ряда эффективных мер для защиты звукового сигнала от помех и наводок (экранирования аналоговых цепей, установки дополнительных фильтров и стабилизаторов шины питания и т.д.). Кроме того, такие модели обычно оборудованы качественными микрофонными усилителями и универсальными аналоговыми входами с возможностью симметричного подключения и подачи фантомного питания.

Еще один аспект - наличие интерфейса MIDI, который может потребоваться для взаимодействия ПК с внешним музыкальным оборудованием (синтезаторами, сэмплерами, модулями обработки и т.д.). Если ранее интерфейсом MIDI были оборудованы даже недорогие мультимедийные звуковые карты, то теперь эта опция доступна лишь в специализированных моделях.

Даже в условиях заметного снижения спроса на дискретные звуковые адаптеры в течение нескольких последних лет было выпущено немало новых моделей (в основном внешних) для сегмента DMP. И это неслучайно. Такие устройства позволяют при вполне приемлемых (даже для непрофессиональных домашних пользователей) затратах значительно повысить качество получаемых записей и к тому же обеспечивают возможность работы с широким спектром источников сигнала (в том числе с микрофонами разных типов, электромузыкальными инструментами и т.д.), подключаемых как по обычной, так и по симметричной линии. Кроме того, внешние звуковые карты этого класса можно подключать к ноутбукам, что позволяет получать качественную запись даже в мобильных условиях.

Довольно часто дискретные звуковые адаптеры используются в игровых ПК. Такое решение позволяет не только повысить качество воспроизведения звукового сопровождения (за счет использования более совершенных компонентов), но и снизить нагрузку на центральный процессор. Не менее важно и то, что только дискретные звуковые адаптеры позволяют в полной мере реализовать потенциал современных игр, поддерживающих новейшие API окружающего звука для максимально реалистичной имитации пространственных эффектов.

Мультимедийная звуковая карта Asus Xonar Essence STX

Необходимо отметить, что время универсальных звуковых карт прошло. Сейчас рынок дискретных звуковых адаптеров четко сегментирован. В частности, можно выделить сегмент моделей для звукозаписи и работы над музыкальными проектами (DMP), а также сегмент мультимедийных звуковых карт для игровых ПК и HTPC. По вполне понятным причинам модели, ориентированные на разные сегменты рынка, имеют существенные различия - это касается и конструкции аппаратной части, и набора функциональных возможностей, и особенностей программных компонентов. Так, для мультимедийных звуковых карт важное значение имеют следующие факторы: наличие многоканального аналогового выхода (для подсоединения активных АС) и цифровых выходов (S/PDIF, HDMI) для подключения к ресиверам и системам домашнего кинотеатра, функция декодирования многоканальных цифровых фонограмм (Dolby Digital, Dolby Digital EX, Dolby TrueHD, DTS и пр.), а также поддержка современных API окружающего звука.

Не картой единой

Установка дискретного звукового адаптера является необходимым, но далеко не всегда достаточным шагом на пути к более качественному звуку. Данная мера будет эффективной лишь при соблюдении как минимум еще двух условий.

Первым является качество исходной фонограммы (это может быть воспроизводимый медиапроигрывателем медиафайл или звуковой поток, программный синтезатор, игровое приложение и т.д.). Вполне понятно, что невозможно получить «кристально чистый звук» на выходе даже самой совершенной звуковой системы при прослушивании интернет-радио или сжатых файлов с битрейтом 128 Кбит/с.

Второе условие - соответствие остальных компонентов звукового тракта (в простейшем случае - активной акустической системы или наушников) уровню применяемого звукового адаптера. Поскольку все компоненты звукового тракта соединены последовательно, то его возможности ограничиваются характеристиками самого худшего из них. Естественно, что дешевая «компьютерная» АС с крохотными широкополосными динамиками, заключенными в пластиковый корпус толщиной с яичную скорлупу, просто не позволит услышать (и тем более оценить) разницу между интегрированным решением и дорогим звуковым адаптером.

Однако далеко не всегда дело ограничивается заменой акустической системы. Чем выше поднимается планка требований к качеству звучания, тем шире становится круг факторов, которые необходимо принимать в расчет. На восприятие звука оказывают влияние акустические особенности помещения, шум от работающего системного блока и т.д. Как следствие, на повестке дня появляются вопросы, о которых пользователь раньше и не задумывался: снижение создаваемого компьютером шума, акустическая обработка помещения, подбор специальной мебели и т.д.

Таким образом, улучшение звучания следует рассматривать как комплексную проблему, ключом к решению которой является построение максимально сбалансированной системы в рамках отведенного на эти цели бюджета.

Как оценить качество

Есть и другая проблема, с которой приходится сталкиваться в процессе поиска оптимального решения для улучшения звуковой подсистемы ПК. Дело в том, что методов, позволяющих однозначно оценить качество звука, выразив его в неких абсолютных единицах, попросту не существует. Конечно, можно измерять такие характеристики звукового тракта, как частотный диапазон, коэффициент нелинейных искажений, отношение «сигнал/шум» и т.д. Однако, как показывает практика, сами по себе числовые значения этих параметров не способны дать полную информацию о возможностях звукового тракта. Более того: сравнение двух звуковых устройств (акустических систем, усилителей и т.п.) исключительно путем сопоставления заявленных производителем характеристик способно скорее ввести в заблуждение, нежели дать представление о его реальном звучании.

Здесь уместно упомянуть об одном из альтернативных методов - сравнении по контрасту, который был предложен в середине 1990-х годов главой компании Audio Note Питером Квортрупом (Peter Qvortrup). Несмотря на то что позиция Квортрупа нередко подвергается критике - как со стороны так называемых ценителей звука (аудиофилов), так и производителей аудиоаппаратуры, - в предложенном им подходе, несомненно, есть рациональное зерно. Кроме того, метод сравнения по контрасту имеет как минимум два неоспоримых достоинства. Во­первых, он доступен всем желающим, поскольку для получения результата не нужна дорогостоящая измерительная аппаратура и специальное «заглушенное» помещение. Во­вторых, данный метод позволяет получить персонифицированный результат - то есть найти оптимальное сочетание компонентов звукового тракта именно с точки зрения того, кто занимается прослушиванием.

Заключение

Что ж, пора вернуться к вопросу, вынесенному в заголовок этой статьи. Нет смысла обсуждать, имеют ли дискретные звуковые адаптеры какие­либо преимущества перед интегрированными решениями. Не сомневайтесь: даже модели стоимостью порядка 1000 руб. (не говоря уже о более дорогих) способны обеспечить безусловное превосходство как по качеству звука, так и по набору функциональных возможностей. Так что, по большому счету, нужно лишь максимально честно ответить на два вопроса: во-первых, способны ли вы лично услышать эту разницу и, во-вторых, считаете ли вы стоимость выбранной звуковой карты оправданной платой за полученные преимущества. Если оба ответа будут положительными, значит дискретный звуковой адаптер вам действительно нужен.

Установленная внешняя звуковая карта для ноутбука USB даёт возможность значительно улучшить качество звука – тем более, что производители переносных компьютеров обычно не снабжают их качественными аудиосистемами.

Интегрированной карты обычно недостаточно для получения безупречного звука, а в простых моделях компьютеров иногда нечего даже рассчитывать на нормальное звучание аудиозаписи и разборчивую звуковую дорожку фильма.

Зачем нужна внешняя звуковая карта?

Принимать решение о покупке внешней звуковой карты следует в таких случаях:

  • при необходимости получить хороший звук на переносном компьютере. Проблему можно решить подключением аудиоколонок, но это увеличит только громкость звука, но не качество;
  • при выходе из строя основной, встроенной карты.

Особенности внешних моделей

Как правило, внешняя карта для воспроизведения звука представляет собой небольшое устройство размером с флешку или кардридер. Усиливает сходство и способ подключения к ноутбуку – через USB-вход.

Более дорогие модели достигают размеров внешнего жёсткого диска, а самые производительные имеют габариты, сравнимые с самим ноутбуком.

Возможности любой внешней карты включают:

  • усиление звука по сравнению со встроенной системой ноутбука;
  • подключение одного или нескольких микрофонов, наушников или аудиоколонок.

Функциональность более дорогих моделей включает кнопки громкости и индикаторы. Для топовых моделей характерно наличие различных разъёмов и интерфейсов, например, выходных аналоговых каналов и коаксиального выхода, хотя их размеры намного больше, чем у компактных звуковых карт.

Преимущества внешних звуковых карт заключаются в следующем:

  • резкое улучшение качества воспроизведения и, при выборе подходящей модели, записи аудио;
  • мобильность, позволяющая подключить внешнюю карту и к любому другому компьютеру – как стационарному, так и переносному. Также устройство часто подключается к планшету или телефону;
  • достаточно большой ассортимент моделей для того, чтобы выбрать и функциональное, и доступное по цене устройство;
  • простая настройка звука, в том числе громкость, тембр и басы с помощью кнопок на корпусе карты. На ноутбуке без внешнего звукового устройства это можно сделать только программным способом.

Для маломощных и старых ноутбуков карта позволяет снять нагрузку с процессора. Ведь из-за того, что обработка звука происходит с помощью внешнего устройства вычислительные мощности самого компьютера освобождаются. В результате техника меньше нагревается, а её работоспособность увеличивается.

Выбор карты

При выборе звуковой карты стоит рассмотреть несколько характеристик, зависящих от задач, которые должно выполнять устройства:

  • для домашнего использования достаточно одного аудиовхода и аудиовыхода. Для компактного домашнего кинотеатра – хотя бы двух. А при использовании в качестве профессионального устройства для записи звука стоит выбрать модель с 3–4 парами разъёмов, хотя она обойдётся дороже;
  • разрядность звуковой карты должна быть не меньше 24 бит;
  • соотношение параметров сигнала и шума – на уровне 100–114 дБ;
  • для работы с музыкальными инструментами требуется интерфейс, позволяющий подключение этих устройств.

Желательно, чтобы внешняя карта поддерживала стандарт звучания Digital Theater System или Dolby Digital, позволяющие считывать многоканальные аудио и видеодорожки – это может быть важным при просмотре фильмов.

Поддержка протокола передачи аудио ASIO необязательна, но позволяют увеличить удобство профессиональной работы со звуком.

Технология EAX может обеспечить звуковые эффекты окружающей среды, что станет неплохим преимуществом для игрока, использующего игровые приложения с многоканальным звучанием.

Самый выгодный вариант

Звуковая карта типа Dynamode C-Media 108 (7.1) может стать отличным выбором для получения качественного звука.

Плюсы модели – компактность, простоту использования, прочный корпус и минимальная стоимость (около 300 руб.), а среди минусов – сравнительно небольшая функциональность. Такую звуковую карту стоит купить для ноутбука, у которого сломалась встроенная карта для воспроизведения звука. С её помощью вполне можно подключить аудиосистему 7.1 – звучание будет лучше, чем при включении в обычный разъём, но не таким качественным, как при использовании более функциональных моделей.

Карта для портативного домашнего кинотеатра

Преимущества внешнего звукового адаптера ASUS Xonar U7 заключаются в следующих характеристиках:

  • наличие, кроме обычных разъёмов типа мини-джек для наушников и микрофона, ещё и восьмиканального аналогового выхода, улучшающего звук для аудиосистемы домашних кинотеатров;
  • полное соответствие всем параметрам для хорошей звуковой карты – звук 24 бит/192 кГц и отношение сигнал/шум на уровне 114 дБ, диапазон сопротивления до 150 Ом;
  • простота подключения и настройки.

Стоимость этой карты, которую можно назвать неплохим вариантом для любителей просмотра фильмов с хорошим качеством, не превышает 3000 рублей.

Игровая карта

Любители поиграть в игры, где качество звука настолько же важно, как и параметры видео, оценят возможности модели Bahamut.

Эта внешняя карта от компании Thermaltake работает и с Windows, и с MacOS, отличается привлекательным внешним видом и наличием на корпусе кнопок для включения и выключения подключаемых устройств (наушников, микрофона, колонок).

При подключении карты обязательно установить драйвера (идут в комплекте), а в процессе использования – своевременно их обновлять. Стоимость модели находится в среднем диапазоне – от 2500 до 3000 рублей.

Универсальный вариант

Неплохой вариант внешней звуковой карты со средней стоимостью представляет собой модель Creative Sound Blaster Play 2.

Несмотря на небольшие размеры, это устройство обеспечивает объёмный звук и позволяет практически без помех записывать аудио. Технология SBX Pro Studio даёт заметное усиление громкости по сравнению со встроенной картой и создаёт эффект 3D-звучания при использовании аудиосистем любого типа – от наушников до 7.1.

Среди других преимуществ карты – удобное управление через соответствующее приложение. При этом, на корпусе самого устройства нет никаких кнопок для управления звуком. Правда, отсутствие внешнего управления обеспечивает компактность, позволяя легко переносить Sound Blaster Play 2 с места на место. Стоимость гаджета в интернет-магазинах не превышает 2500 руб., однако можно найти варианты и за 1600 руб.

Карта для музыканта

Модель FOCUSRITE SCARLETT SOLO STUDIO 2ND GEN может стать отличным выбором для людей, связанных с музыкой и звукозаписью. Тем более что её небольшие размеры обеспечивают высокую степень мобильности, позволяя перемещать устройство вместе с ноутбуком или перевозить его в транспорте.

Устройство отличается:

  • высоким качеством воспроизведения и записи;
  • компактным и прочным металлическим корпусом;
  • стильным внешним видом;
  • совместимость с ноутбуками, работающими под управлением разных ОС;
  • возможностью одновременной записи с гитары и микрофона;
  • общим регулятором громкости для всех выходов (наушников и колонок);
  • комплектацией всеми необходимыми для записи устройствами – конденсаторным микрофоном, студийными наушниками и соединительными кабелями.

Кроме этой модели, существует немало других интересных вариантов для записи и воспроизведения звука. Однако по соотношению стоимости и возможностей этот можно назвать одним из лучших и доступных по цене. Купить его в сети можно примерно за 20–22 тыс. руб.

Запуск и отключение карты

Для подключения внешней карты не потребуется много времени. Достаточно просто соединить устройство с ноутбуком (с помощью кабеля или просто вставить в USB-вход). Далее необходимо подождать определения ноутбуком внешней карты и автоматической установки драйверов, и только потом подключать к ней наушники, микрофон или колонки. Если система не находит нужное программное обеспечение в своей базе или устройство требует использования только своих программ, их устанавливают с диска или с официального сайта производителя.

Совет: для воспроизведения качественного звука желательно, чтобы разъём поддерживал технологию USB 3.0. И, если ваше устройство имеет два варианта USB-входов (2.0 и 3.0), следует выбрать для подключения карты именно второй.

Возможные проблемы

При установке внешней звуковой карты на ноутбук могут возникнуть следующие неполадки:

  1. Ноутбук «не видит» устройство;
  2. Карта установлена, но звук не воспроизводится.

Решить первую проблему поможет переустановка в следующий USB-разъём (если карта будет работать, значит, причина неисправности – неработающий вход) или подключение к другому компьютеру. Если это не помогло вернуть работоспособность карты, стоит переустановить её драйвера (скачав из сети или диска, идущего в комплекте с оборудованием). Последний способ позволяет справиться и со второй проблемой. Невозможность запуска внешней звуковой карты может свидетельствовать о её неисправности или заводском браке.